JPS6265439A - Gate array type semiconductor integrated circuit - Google Patents

Gate array type semiconductor integrated circuit

Info

Publication number
JPS6265439A
JPS6265439A JP60205627A JP20562785A JPS6265439A JP S6265439 A JPS6265439 A JP S6265439A JP 60205627 A JP60205627 A JP 60205627A JP 20562785 A JP20562785 A JP 20562785A JP S6265439 A JPS6265439 A JP S6265439A
Authority
JP
Japan
Prior art keywords
circuit
sram
cells
gate array
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60205627A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60205627A priority Critical patent/JPS6265439A/en
Publication of JPS6265439A publication Critical patent/JPS6265439A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To scale up the scale of a circuit constituted by using fundamental cells of a predetermined kind as main bodies without lowering the degree of integration of the circuit by organizing an excess section in the circuit by employing fundamental cells of a different kind and forming the expanding section of the circuit by using the excess of the fundamental cells. CONSTITUTION:A peripheral circuit region ap is formed regularly to the peripheral section of a semiconductor chip 11, and an A cell region aA and a B cell region aB are distributed at a prescribed ratio and shaped in a region on the inside of the region aP. Said A cell region aA consists of four elements advantageous for forming apparatus such as logic gates, and has pattern structure favorable for shaping the logic gates, and first fundamental cells A mainly functioning as the formation of the logic gates are aligned and disposed. The B cell region aB is composed of six elements advantageous for forming an SRAM, and has pattern structure favorable for shaping the SRAM, and second fundamental cells B mainly serving as the formation of the SRAM are aligned and arranged. Accordingly, when the scale of the SRAM is scaled up, excess SRAM cells, which cannot be constituted sufficiently by the second fundamental cells, are organized of the first fundamental cells leaving a margin by the variation of usage.

Description

【発明の詳細な説明】 (概 要〕 例えば論理ゲートの形成を主体としこれに有利な素子数
及びパターン構造に形成された第1の基本セルと、メモ
リ回路の形成を主体としこれに有利な素子数及びパター
ン構造に形成された第2の基本セルとを同一基板上に所
定の比率でそれぞれ配列し、論理回路或いはメモリ回路
の何れか一方の回路規模を拡大しようとする際該回路の
拡大分を、該回路の形成を主体としない種類の基本セル
の余剰を用いて形成することにより、集積度の大幅な低
下を生ぜずに所望の回路の規模拡大を可能にしたゲート
アレイ型半導体集積回路。
[Detailed Description of the Invention] (Summary) For example, a first basic cell mainly used for forming a logic gate and formed with an advantageous number of elements and a pattern structure, and a first basic cell formed mainly for forming a memory circuit and advantageous for this purpose. When attempting to expand the circuit scale of either a logic circuit or a memory circuit by arranging the number of elements and second basic cells formed in a patterned structure on the same substrate at a predetermined ratio, the circuit can be expanded. A gate array type semiconductor integrated circuit that makes it possible to expand the scale of a desired circuit without significantly reducing the degree of integration by forming the remaining basic cells of a type that is not primarily used to form the circuit. circuit.

〔産業上の利用分野〕[Industrial application field]

本発明は汎用性を持たせ、且つ集積度の向上を図ったゲ
ートアレイ型半導体集積回路に関する。
The present invention relates to a gate array type semiconductor integrated circuit which is versatile and has an improved degree of integration.

大規模集積回路が大型化するにつれて、多種少量生産の
傾向の著しい今日、製造コストを低減し、且つ製造期間
を短縮するために、マスタースライス方式即ちゲートア
レイ型の大規模集積回路が多用されるようになって来た
As large-scale integrated circuits become larger, there is a remarkable trend towards high-mix, low-volume production.In order to reduce manufacturing costs and shorten manufacturing time, master slice type, ie gate array type, large-scale integrated circuits are often used. It has come to be like this.

このゲートアレイ型大規模集積回路においては多機能化
も望までおり、メモリを内蔵したゲートアレイ型大規模
集積回路等も提供されているが、論理ゲートとメモリの
数量比率を、集積度を大幅に低下させることなく成る程
度変えられるるような、汎用型のゲートアレイが要望さ
れている。
It is desirable for gate array type large-scale integrated circuits to have multiple functions, and gate array type large-scale integrated circuits with built-in memory are also available, but the ratio of logic gates to memory and the degree of integration have been greatly improved. There is a need for a general-purpose gate array that can be changed to a certain extent without degrading the performance.

[従来の技術] 従来のメモリを内蔵するゲートアレイ型半導体集積回路
は、メモリが所定の領域に固定パターンとして形成され
、論理回路だけがマスタースライスによって構成される
方式であった。
[Prior Art] A conventional gate array type semiconductor integrated circuit incorporating a memory is of a type in which the memory is formed as a fixed pattern in a predetermined area, and only the logic circuit is configured by a master slice.

そのため論理回路及びメモリ回路の規模は限定され、例
えば論理回路の規模を拡大したい場合、例えメモリ回路
の規模に余裕があってもこれが使用出来ないために更に
大規模のゲートアレイを用いなければならず、製造原価
の増大を招くという問題があった。
Therefore, the scale of logic circuits and memory circuits is limited. For example, if you want to expand the scale of logic circuits, even if there is room for memory circuits, you will not be able to use this, so you will have to use an even larger gate array. First, there was a problem of increased manufacturing costs.

そこで近時、メモリ形成に有利な例えば6個の素子(ト
ランジスタ)数を有する基本セルを基板全面に配列し、
この基本セルを用いてマスタースライスによりメモリ及
び論理ゲートを構成することによって、それぞれ回路を
任意の規模比率に形成し得る汎用型ゲートアレイが提案
されている。
Therefore, recently, basic cells having six elements (transistors), which are advantageous for memory formation, are arranged on the entire surface of the substrate.
A general-purpose gate array has been proposed in which a memory and a logic gate are configured using a master slice using this basic cell, thereby allowing circuits to be formed in any scale ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記従来のゲートアレイにおいては、例えば6ト
ランジスタ型のスタティック型ランダムアクセスメモリ
 (SRAM)の形成に有利な、nチャネルMOSトラ
ンジスタ(n−Tr) 4個とpチャネルMOSトラン
ジスタ(p−Tr) 2個よりなる1種類の基本セルが
基板全面に配列されるので、この基本セルを用いて、通
常n−Trが2個とp−Trが2個の上記SRAMより
少ない素子で構成される論理ゲートを形成した際には、
使用されない素子が多量に発生し、その分回路の集積度
が低下するという問題があった。
However, the conventional gate array described above has four n-channel MOS transistors (n-Tr) and two p-channel MOS transistors (p-Tr), which are advantageous for forming, for example, a six-transistor static random access memory (SRAM). Since one type of basic cell consisting of 1000 µm is arranged on the entire surface of the substrate, this basic cell can be used to form a logic gate which is composed of fewer elements than the above-mentioned SRAM, which usually has 2 n-Trs and 2 p-Trs. When formed,
There is a problem in that a large number of unused elements are generated, and the degree of integration of the circuit is reduced accordingly.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理を示す図である。 FIG. 1 is a diagram showing the principle of the present invention.

上記問題点は同図に示すように、 素子(Tr)数及びパターン構造を異にする複数種類の
基本セル(A) 、 (B)が一半導体基板上にそれぞ
れ配列され、所定の種類の基本セル(A)を主体として
用いて構成される回路(CA)の余剰部分が、異なる種
類の基本セル(B)を用いて構成されてなる本発明によ
るゲートアレイ型半導体集積回路によって解決される。
As shown in the figure, the above problem is caused by the fact that multiple types of basic cells (A) and (B) with different numbers of elements (Tr) and pattern structures are arranged on one semiconductor substrate, and a predetermined type of basic cell The redundant portion of the circuit (CA) mainly using cells (A) is solved by the gate array type semiconductor integrated circuit according to the present invention, which is formed using different types of basic cells (B).

〔作 用〕[For production]

即ち本発明のゲートアレイ型半導体集積回路は、例えば
論理ゲートが効率的に形成できる素子数及びパターン構
造を有し論理ゲートの形成を主体とする第1の基本セル
と、メモリが効率的に形成できる素子数及びパターン構
造を有しメモリの形成を主体とする第2の基本セルとを
、同一基板上に使用確率の大きい所定の比率で配列して
おき、仕様の変更に伴って、第1の基本セルを用いて構
成して生じた論理ゲートの不足分を、余裕を有している
論理ゲートの形成を主体としない第2の基本セルを用い
て構成するか、又は第2の基本セルを用いて構成して生
じたメモリの不足分を、余裕を有しているメモリの形成
を主体としない第1の基本セルを用いて構成することに
よって、上記仕様変更に対応することを・1能にしたも
のであり、論理ゲート又はメモリ何れかの主体セル部で
生じた余剰分のみが、その回路形成を主体としないセル
によって構成されるだけであるので、この陸生ずる余剰
素子数は大幅に減少する。
That is, the gate array type semiconductor integrated circuit of the present invention has a first basic cell mainly for forming logic gates, which has a number of elements and a pattern structure that allow logic gates to be formed efficiently, and a memory that can be formed efficiently. A second basic cell, which has a possible number of elements and a pattern structure, and is mainly used to form a memory, is arranged on the same substrate at a predetermined ratio with a high probability of use. The shortage of logic gates caused by configuring using basic cells of In order to cope with the above specification change, the memory shortage caused by the memory configuration using the above-mentioned configuration can be compensated for by configuring the memory using the first basic cell which is not mainly used for memory formation and which has a margin. Since only the surplus generated in the main cell part of either the logic gate or memory is composed of cells that do not mainly form the circuit, the number of surplus elements generated on land is significantly reduced. decreases to

従って回路の集積度は向上し、該ゲートアレイ型半導体
集積回路の回路規模の拡大が図れる。
Therefore, the degree of circuit integration is improved, and the circuit scale of the gate array type semiconductor integrated circuit can be expanded.

〔実施例〕〔Example〕

以下本発明のゲートアレイ型半導体集積回路を、論理ゲ
ートの構成を主体とする4素子型の基本セルと、6トラ
ンジスタ型のスタティック型ランダムアクセスメモリ 
(SRAM)の構成を主体とする6素子型の基本セルと
を有する図示実施例により、具体的に説明する。
The gate array type semiconductor integrated circuit of the present invention will be described below as a four-element basic cell mainly composed of logic gates and a six-transistor static random access memory.
The present invention will be specifically explained using an illustrated embodiment having a six-element basic cell mainly composed of (SRAM).

第3図は同実施例における第1の基本セルの等価回路図
(a)及び模式平面図fbl、第4図は同実施例におけ
る第2の基本セルの等価回路図(al及び模式平面図(
bl、第5図は同第1の基本セルにより構成した2段イ
ンバータの等価回路図(al及び配線構造の模式平面図
fb)、第6図は同第2の基本セルにより構成した6ト
ランジスタ型SRAMの等価回路図(a)及び配線構造
の模式平面図(bl、第7図は同第1の基本セルにより
構成した6トランジスタ型SRAMの配線構造を示す模
式平面図、第8図は同第2の基本セルにより構成した2
段インバータの配線構造を示す模式平面図である。
FIG. 3 is an equivalent circuit diagram (a) and a schematic plan view fbl of the first basic cell in the same embodiment, and FIG. 4 is an equivalent circuit diagram (al) and a schematic plan view (fbl) of the second basic cell in the same embodiment.
bl, Fig. 5 is an equivalent circuit diagram (al and schematic plan view fb of wiring structure) of a two-stage inverter constructed from the same first basic cell, and Fig. 6 is a six-transistor type inverter constructed from the same second basic cell. An equivalent circuit diagram (a) of the SRAM and a schematic plan view (bl) of the wiring structure; FIG. 2 composed of 2 basic cells
FIG. 2 is a schematic plan view showing the wiring structure of a stage inverter.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

上記実施例のゲートアレイ・チ・7プにおいては第2図
に示すように、該半導体チップ11の周辺部に通常とお
り周辺回路領域a、が設けられ、その内側の領域に、例
えば論理ゲート形成に有利な4素子(トランジスタ)よ
りなり、且つ論理ゲート形成に有利なパターン構造を有
し、論理ゲートの形成を主体とする第1の基本セルAが
整列配設されてなるAセル領域a、と、SRAMの形成
に有利な6素子よりなり、且つSRAMの形成に有利な
パターン構造を有し、SRAMの形成を主体とする第2
の基本セル8が整列配設されてなるBセル領域allが
所定の割合に配分されて設けられている。
In the gate array chip 7 of the above embodiment, as shown in FIG. 2, a peripheral circuit area a is provided at the periphery of the semiconductor chip 11 as usual, and a logic gate is formed in the inner area. A cell area a in which first basic cells A, which are composed of four elements (transistors) that are advantageous for the formation of logic gates and are mainly used to form logic gates, are arranged in an aligned manner; The second semiconductor device is composed of six elements that are advantageous for forming SRAM, has a pattern structure that is advantageous for forming SRAM, and is mainly used for forming SRAM.
B cell areas all are provided in which basic cells 8 are arranged in a predetermined proportion.

この実施例の場合、Bセル領域a、を大きくとりRAM
容量を増大せしめている。
In this embodiment, the B cell area a is large and the RAM
It is increasing the capacity.

第3図において、(alは上記Aセル領域a、に配列さ
れる論理ゲートの形成を主体とする第1の基本セルの等
価回路図を示したものである。
In FIG. 3, (al indicates an equivalent circuit diagram of the first basic cell mainly consisting of the formation of logic gates arranged in the A cell region a).

同図のように該実施例における第1の基本セルは、例え
ば2個の独立したnチャネルMO3)ランジスタTN1
. TN2と2個の独立したpチャネル間O3)ランジ
スタTPI、TP2との4素子で構成される。
As shown in the figure, the first basic cell in this embodiment includes, for example, two independent n-channel transistors TN1
.. It is composed of four elements: TN2 and two independent p-channel transistors (O3) transistors TPI and TP2.

また、同図(bJはそのパターン構造を示したもので、
図中、lはn−型シリコン基板、2はp型ウェル、3は
n゛゛基板コンタクト6U域、4はp゛型型上エルコン
タクト領域5a、 5b、 5c、 5dはソース若し
くはドレインとなるn゛型領領域6a、6b、6c、6
dはソース若しくはドレインとなるp゛型領領域7a、
 7b、 7c、 7dはゲート電極である。
Also, in the same figure (bJ shows the pattern structure,
In the figure, l is an n-type silicon substrate, 2 is a p-type well, 3 is an n'substrate contact 6U region, and 4 is a p'-type upper well contact region 5a, 5b, 5c, and 5d, which will be a source or drain.゛-type regions 6a, 6b, 6c, 6
d is a p-type region 7a which becomes a source or a drain;
7b, 7c, and 7d are gate electrodes.

なお該実施例において、ウェルは帯状を存し通常通り所
定の間隔で基板面に並んで形成される。
In this embodiment, the wells are strip-shaped and are formed along the substrate surface at predetermined intervals as usual.

そして基板コンタクト領域3及びウェルコンタクト領域
4は図示のように各基本セル毎に設けられる場合と、複
数のセル毎に設けられる場合とがある。
The substrate contact region 3 and the well contact region 4 may be provided for each basic cell as shown in the figure, or may be provided for each plurality of cells.

第4図はBセル領域a、に配列されるSRAM形成を主
体とする第2の基本セルを示したもので、(alは等価
回路図、fb)は模式平面図である。
FIG. 4 shows a second basic cell mainly forming an SRAM arranged in the B cell region a, (al is an equivalent circuit diagram, and fb is a schematic plan view).

該基本セルBは等価回路図(alのように、ソース又は
ドレインの一方を共有する2個のnチャネルMO5I−
ランジスタTN3とTN4及びpチャネルMOSトラン
ジスタTP3とTP4を有し、且つ異なる同士の2組の
トランジスタ対がゲートを共有するように構成されたC
MO3構造の4素子部と、独立した2個のnチャネルM
OSトランジスタTN5、 TN6とによって構成され
る。
The basic cell B is an equivalent circuit diagram (as shown in al, two n-channel MO5I-
A C having transistors TN3 and TN4 and p-channel MOS transistors TP3 and TP4, and configured such that two different pairs of transistors share a gate.
4-element part with MO3 structure and 2 independent n-channel M
It is composed of OS transistors TN5 and TN6.

模式平面図fb)はそのパターン構造を示したもので、
図中、lはn型のシリコン基板、2はp型ウェル、3は
n°型基板コンタク) 8i域、4はp。
The schematic plan view fb) shows the pattern structure.
In the figure, l is an n-type silicon substrate, 2 is a p-type well, 3 is an n° type substrate contact) 8i area, and 4 is a p-type substrate.

型ウェルコンタクト領域、5e、5f、5g、5h、5
i、5j、5にはソース若しくはドレインとなるn゛型
領領域6e。
Type well contact area, 5e, 5f, 5g, 5h, 5
i, 5j, and 5 have n-type regions 6e that become sources or drains.

6f、6gはソース若しくはドレインとなるp゛型領領
域7c、7fはそれぞれnチャネル・トランジスタとp
チャネル・トランジスタに共通のゲート電極、7g、7
hは独立したゲート電極を示す。
6f and 6g are p'-type regions 7c and 7f, which serve as sources and drains, respectively, and are n-channel transistors and p-type regions 7c and 7f, respectively.
Gate electrode common to channel transistors, 7g, 7
h indicates an independent gate electrode.

第3図に示した第1の基本セルでは、前述したように主
として論理回路が構成される。
The first basic cell shown in FIG. 3 mainly includes a logic circuit as described above.

第5図に、第1の基本セルで構成された2段インバータ
の等価回路図(a)及びその配線構造の模式平面図(b
)を示す。
FIG. 5 shows an equivalent circuit diagram (a) of a two-stage inverter configured with the first basic cell and a schematic plan view (b) of its wiring structure.
) is shown.

図中、8はマスタースライス法により形成されたアルミ
ニウム等よりなる配線、9は配線接続部、■。。は高電
位電源、VS3は低電位(接地)電源、Vinは入力端
、Voutは出力端を示し、その他の対称物は第3図と
同符号で表しである。
In the figure, 8 is a wiring made of aluminum or the like formed by the master slicing method, 9 is a wiring connection part, and ■. . VS3 is a high potential power supply, VS3 is a low potential (ground) power supply, Vin is an input end, Vout is an output end, and other symmetrical objects are represented by the same symbols as in FIG. 3.

また第4図に示す第2の基本セルでは、前述したように
主としてメモリ回路が構成される。
The second basic cell shown in FIG. 4 mainly includes a memory circuit as described above.

第6図に第2の基本セルで構成された6トランジスタ型
SRAMの等価回路図(al及びその配線構造の模式平
面図(blを示す。
FIG. 6 shows an equivalent circuit diagram (al) of a six-transistor type SRAM configured with the second basic cell and a schematic plan view (bl) of its wiring structure.

図中、8はマスタースライス法等により形成された配線
、9は配線接続部、VDDは高電位電源、V33は低電
位(接地)電源、−1,はワード線、肛、BLはビット
線、その他の対称物は第4図と同符号で表しである。
In the figure, 8 is a wiring formed by master slicing method etc., 9 is a wiring connection part, VDD is a high potential power supply, V33 is a low potential (ground) power supply, -1 is a word line, BL is a bit line, Other objects are designated by the same reference numerals as in FIG.

仕様の変更等により例えば通常の構成より論理ゲートの
数を減らしSRAMの容量を増やした集積回路を形成し
たい場合、或いはSRAMの容量を減らして論理回路の
規模を増やした集積回路を形成したい場合等、本実施例
に示すゲートアレイにおいてはそれが可能になる。
For example, if you want to form an integrated circuit with a reduced number of logic gates and increased SRAM capacity compared to the normal configuration due to changes in specifications, or if you want to form an integrated circuit with reduced SRAM capacity and increased logic circuit scale, etc. This becomes possible with the gate array shown in this embodiment.

即ち、SRAMの規模を拡大する場合は、第2の基本セ
ルによって構成しきれない余分のSRAMセルが、上記
使用変更により余裕を生じている第1の基本セルによっ
て構成される。
That is, when expanding the scale of the SRAM, the extra SRAM cells that cannot be configured by the second basic cells are configured by the first basic cells that have a surplus due to the above change in use.

この場合の配線構造を模式的に示したのが第7図である
FIG. 7 schematically shows the wiring structure in this case.

図示のように1個のSRAMに対して2個の第1の基本
セルA1とA2が使用され、基本セルA、のnチャネル
・トランジスタTNIIとnチャネル・トランジスタT
PII及びnチャネル・トランジスタTN12とnチャ
ネル・トランジスタTP12のゲートをそれぞれ共通に
接続し、第6図同様の配線を行うことにより、該第1の
基本セルA1によってトランスファゲート(第6図TN
5.TN6に相当)を除いたメモリセルが形成され、基
本セルA2のnチャネル・トランジスタTN21とTN
22が第6図のTN5゜TN6に対応するトランスファ
ゲートとして接続されて6トランジスタ型SRAMが形
成される。なお同図において、15a−15d及び25
a 〜25dはソース若しくはドレインとなるn°型領
領域16a〜16d及び26a〜26bはソース若しく
はドレインとなるp゛型領領域17a 〜17d及び2
7a 〜27dはゲート電極を示し、上記以外の符号は
第6図と同符号を用いている。
As shown, two first basic cells A1 and A2 are used for one SRAM, and the n-channel transistor TNII and the n-channel transistor T of the basic cell A,
By connecting the gates of PII, n-channel transistor TN12, and n-channel transistor TP12 in common, and performing wiring similar to that shown in FIG. 6, a transfer gate (TN
5. TN6) are formed, and the n-channel transistors TN21 and TN of basic cell A2 are formed.
22 are connected as transfer gates corresponding to TN5 and TN6 in FIG. 6 to form a six-transistor type SRAM. In addition, in the same figure, 15a-15d and 25
a to 25d are n° type regions 16a to 16d, which become sources or drains, and p' type regions 17a to 17d, and 26a to 26b, which become sources or drains.
7a to 27d indicate gate electrodes, and the same symbols as in FIG. 6 are used for the other symbols.

またSRAMの容量を減らして論理回路の規模を増やす
場合は、第8図に示す配線構造の模式平面図のように、
第2の基本セルB内に配設されている2組の、ゲートを
共有するnチャネル・トランジスタとnチャネル・トラ
ンジスタTN13とTP13及びTN14とTP14に
よって図示のような配線がなされて前記第5図に示した
と同様の2段インバータが形成される。この際、独立の
nチャネル・トランジスタTN15及びTN16は使用
しない。
Also, when reducing the capacity of the SRAM and increasing the scale of the logic circuit, as shown in the schematic plan view of the wiring structure shown in Figure 8,
The two sets of n-channel transistors and n-channel transistors TN13 and TP13 and TN14 and TP14, which share the gate, arranged in the second basic cell B are connected as shown in FIG. A two-stage inverter similar to that shown in is formed. At this time, independent n-channel transistors TN15 and TN16 are not used.

なお同図において、15e〜15にはソース若しくはド
レインになるn゛型領領域16e〜16gはソース若し
くはドレインになるp°型領領域17e及び17fはn
チャネル・トランジスタとnチャネル・トランジスタに
それぞれ共通のゲート電極、17g及び17hは単独の
ゲート電極、上記以外の符号は第5図2第6図と同符号
を用いている。
In the same figure, n-type regions 16e-16g that become sources or drains are included in 15e-15, and p-type regions 17e and 17f that become sources or drains are n-type regions 16e-16g that become sources or drains.
The gate electrodes 17g and 17h are common to the channel transistor and the n-channel transistor, respectively, and individual gate electrodes are used. Reference numerals other than the above are the same as in FIG. 5 and FIG. 6.

以上の実施例において、第1の基本セルAで6トランジ
スタ型SRAMを形成する場合は、該第1の基本セル2
個について2個のnチャネル・トランジスタTP21と
TP22が、また第2の基本セルBで論理ゲートを形成
する場合は、該第2の基本セル1個について2個のnチ
ャネル・トランジスタTN15とTN16がそれぞれ余
るが、通常かかる数量的な仕様変更は、該集積回路の本
来保持する回路規模に対して僅かな割合で行われるので
、上記により回路の集積規模が大きく低下することがな
い。
In the above embodiment, when forming a 6-transistor SRAM with the first basic cell A, the first basic cell 2
two n-channel transistors TP21 and TP22 for each second elementary cell and, if a logic gate is formed in the second elementary cell B, two n-channel transistors TN15 and TN16 for one second elementary cell B. However, since such quantitative specification changes are usually made in a small proportion of the original circuit scale of the integrated circuit, the above does not significantly reduce the circuit integration scale.

そして本発明に係るゲートアレイにおいては、上記実施
例のように、複数種類の汎用性のある基本セルが配設さ
れるので、該ゲートアレイ型半導体集積回路の一部の機
能を拡大する仕様変更に際して、該ゲートアレイ内の総
ての基本セルを融通し合ってこれに対応できるので、更
に大規模のゲートアレイを使用しないでも済むようにな
り、納期の短縮、原価の低減等が図れる。
In the gate array according to the present invention, as in the above embodiment, a plurality of types of general-purpose basic cells are arranged, so the specifications are changed to expand some functions of the gate array type semiconductor integrated circuit. In this case, all the basic cells in the gate array can be used interchangeably to cope with this, so there is no need to use a larger gate array, leading to shorter delivery times and lower costs.

なお上記実施例においては2種類の基本セルを配列した
が、3種類以上の基本セルを配置しても勿論差支えない
In the above embodiment, two types of basic cells are arranged, but it is of course possible to arrange three or more types of basic cells.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、回路の集積度の低下
が抑制された汎用性を有するゲートアレイが提供される
ので、ゲートアレイ型大規模築積回路の仕様変更に際し
て、製造原価を低減せしめ、且つ製造納期を短縮せしめ
る効果を生ずる。
As explained above, according to the present invention, a versatile gate array is provided in which a decrease in circuit integration degree is suppressed, and therefore manufacturing costs can be reduced when changing the specifications of a gate array type large-scale integrated circuit. This has the effect of shortening the manufacturing delivery time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す模式平面図、平面図、 第3図は同実施例における第1の基本セルの等価回路図
(al及び模式平面図(bl、第4図は同実施例におけ
る第2の基本セルの等価回路図(al及び模式平面図(
b)、第5図は同第1の基本セルにより構成した2段イ
ンバータの等価回路図(al及び配線構造の模式平面図
(bl、 第6図は同第2の基本セルにより構成した6トランジス
タ型SRAMの等価回路図(al及び配線構造の模式平
面図(b)、 第7図は同第1の基本セルにより構成した6トランジス
タ型SRAMの配線構造を示す模式平面図、 第8図は同第2の基本セルで構成した2段インバータの
配線構造を示す模式平面図である。 図において、 lはn−型シリコン基板、 2はp型ウェル、 3はn゛型基板コンククト領域、 4はp9型ウェルコンタクト領域、 5a 〜5に、15a〜15に、 25a〜25dはn
”型領域、6a〜6g、 16a〜16g、 26a〜
26dはp°型領領域7a〜7h、17a〜17h、 
27a 〜27dはゲート電極、8は配線、 A、A+、Azは第1の基本セル、 Bは第2の基本セル、 CAは第1のセルで形成される回路、 Trは素子、 a、は周辺回路領域、 aaは第1のセル配列領域、 a、は第2のセル配列領域、 TNI〜TN6.TN11〜TN16.TN21.TN
22はnチャネルMO3)ランジスタ、 TPI〜TP4.TPII〜TP14はpチャネルMO
Sトランジスタ、 VDIllは高電位電源、 VSSは低電位電源、 ■、、、は入力端、 V outは出力端、 すしはワード線、 BL、BLはビット線 を示す。
1 is a schematic plan view showing the principle of the present invention, FIG. 3 is an equivalent circuit diagram (al) and a schematic plan view (BL) of the first basic cell in the same embodiment, and FIG. 4 is a schematic plan view (BL) of the first basic cell in the same embodiment. The equivalent circuit diagram (al and schematic plan view) of the second basic cell in
b), Fig. 5 is an equivalent circuit diagram (al) of a two-stage inverter constructed from the same first basic cell and a schematic plan view (bl) of the wiring structure, and Fig. 6 is a six-transistor inverter constructed from the same second basic cell. Figure 7 is a schematic plan view showing the wiring structure of a 6-transistor type SRAM constructed from the same first basic cell; It is a schematic plan view showing the wiring structure of a two-stage inverter configured with a second basic cell. p9 type well contact region, 5a to 5, 15a to 15, 25a to 25d are n
"Mold area, 6a~6g, 16a~16g, 26a~
26d are p° type regions 7a to 7h, 17a to 17h,
27a to 27d are gate electrodes, 8 is a wiring, A, A+, Az are first basic cells, B is a second basic cell, CA is a circuit formed by the first cell, Tr is an element, and a and a are Peripheral circuit area, aa is first cell array area, a is second cell array area, TNI to TN6. TN11-TN16. TN21. TN
22 is an n-channel MO3) transistor, TPI to TP4. TPII to TP14 are p-channel MOs
S transistor, VDIll is a high potential power supply, VSS is a low potential power supply, 2, , , are input terminals, V out is an output terminal, sushi is a word line, and BL and BL are bit lines.

Claims (1)

【特許請求の範囲】 素子(Tr)数及びパターン構造を異にする複数種類の
基本セル(A)、(B)が一半導体基板上にそれぞれ配
列され、 所定の種類の基本セル(A)を主体として用いて構成さ
れる回路(C_A)の余剰部分が、異なる種類の基本セ
ル(B)を用いて構成されてなることを特徴とするゲー
トアレイ型半導体集積回路。
[Claims] A plurality of types of basic cells (A) and (B) having different numbers of elements (Tr) and pattern structures are respectively arranged on one semiconductor substrate, and a predetermined type of basic cell (A) is arranged on one semiconductor substrate. A gate array type semiconductor integrated circuit characterized in that a surplus portion of a circuit (C_A) configured using a main cell is configured using a different type of basic cell (B).
JP60205627A 1985-09-18 1985-09-18 Gate array type semiconductor integrated circuit Pending JPS6265439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205627A JPS6265439A (en) 1985-09-18 1985-09-18 Gate array type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205627A JPS6265439A (en) 1985-09-18 1985-09-18 Gate array type semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6265439A true JPS6265439A (en) 1987-03-24

Family

ID=16510019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205627A Pending JPS6265439A (en) 1985-09-18 1985-09-18 Gate array type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6265439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306639A (en) * 1987-06-08 1988-12-14 Fujitsu Ltd Master slice type semiconductor integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212149A (en) * 1982-06-04 1983-12-09 Hitachi Ltd Integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212149A (en) * 1982-06-04 1983-12-09 Hitachi Ltd Integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306639A (en) * 1987-06-08 1988-12-14 Fujitsu Ltd Master slice type semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US8193044B2 (en) Memory cells
US6972450B2 (en) SRAM cell design for soft error rate immunity
US6590802B2 (en) Semiconductor storage apparatus
US10748913B2 (en) SRAM cell with T-shaped contact
JPS61100947A (en) Semiconductor integrated circuit device
JPS5943548A (en) Semiconductor integrated circuit device
JPH0516188B2 (en)
TW201913669A (en) Write assist circuit for semiconductor memory device, semiconductor memory device and control method thereof
US6496435B2 (en) Sense amplifier control circuit of semiconductor memory device
JPH0358184B2 (en)
KR19980019133A (en) SEMICONDUCTOR MEMORY
JPS6265439A (en) Gate array type semiconductor integrated circuit
JPH06204438A (en) Semiconductor device
JP2000031300A (en) Static semiconductor memory device
JP3268690B2 (en) Semiconductor integrated circuit device
JPH10125803A (en) Semiconductor memory device
JPH0329187B2 (en)
JP2868016B2 (en) Basic cell of gate array
KR19980024416A (en) Semiconductor integrated circuit
JPH07130876A (en) Static memory cell
JP2000208643A (en) Semiconductor storage device
JPS60134435A (en) Semiconductor integrated circuit device
JP2720104B2 (en) Memory cell circuit of semiconductor integrated circuit device
JPH0680807B2 (en) Gate array LSI device
JPH03145762A (en) Master slice integrated circuit