JPS6264058A - Manufacture of sealed lead-acid battery - Google Patents

Manufacture of sealed lead-acid battery

Info

Publication number
JPS6264058A
JPS6264058A JP60204703A JP20470385A JPS6264058A JP S6264058 A JPS6264058 A JP S6264058A JP 60204703 A JP60204703 A JP 60204703A JP 20470385 A JP20470385 A JP 20470385A JP S6264058 A JPS6264058 A JP S6264058A
Authority
JP
Japan
Prior art keywords
electrolyte
cell
separator
amount
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60204703A
Other languages
Japanese (ja)
Inventor
Hiroyuki Jinbo
裕行 神保
Kiichi Koike
喜一 小池
Yoshie Suzuki
芳江 鈴木
Akihiko Sano
佐野 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60204703A priority Critical patent/JPS6264058A/en
Publication of JPS6264058A publication Critical patent/JPS6264058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To reduce the scattering of the amount of electrolyte and the concentration of electrolyte after completion of formation by pouring electrolyte into a plurality of cells each of which is formed by covering a plate group with an outer jacket, and connecting in series each cell with its thickness constant, then charging the sells for formation. CONSTITUTION:A plate group comprising a positive plate welded to a post, a negative plate, and a separator is covered with an outer jacket made of thermoplastic film or sheet to form a cell, then a plurality of cells are formed. After pouring electrolyte into each cell, the posts are connected in series with the thickness of each cell constant, and the cells are charged for formation. This formation makes the shrinkage ratio of separator in each cell constant, and this makes the amount of electrolyte contained in the separator constant. Therefore, the scattering of the amount of electrolyte and the concentration of electrolyte is reduce and the electrochemical performance of a battery is stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポータプル機器の電源等に使用される密閉形
鉛蓄電池の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a sealed lead-acid battery used as a power source for portable equipment.

従来の技術 密閉式鉛蓄電池は、セパレータであるガラスマット等が
電解液を保持して、流動させないため、電解液が電そう
外にもれず、携帯に便利な小型電2ページ 源として広く普及している。
Conventional technology Sealed lead-acid batteries have a separator, such as a glass mat, that holds the electrolyte and prevents it from flowing, so the electrolyte does not leak out during charging, and has become widely used as a convenient and portable power source. ing.

従来の密閉形鉛蓄電池は、正極板、負極板およびセパレ
ータから成る極板群がABS樹脂等で成形された箱形の
電そうに挿入され、電池内が高圧にならないように所定
圧力で開弁する安全弁を備えたふたを接着あるいは溶着
して密閉した構造を有している。このような構造におい
て、セパレータは弾性を有しているので、所定の圧力を
加えて、容量が十分取り出せるようにしている。
In conventional sealed lead-acid batteries, a group of electrode plates consisting of a positive electrode plate, a negative electrode plate, and a separator is inserted into a box-shaped cell made of ABS resin, etc., and the valve is opened at a predetermined pressure to prevent high pressure inside the battery. It has a sealed structure with a lid that is glued or welded and equipped with a safety valve. In such a structure, since the separator has elasticity, a predetermined pressure is applied so that a sufficient volume can be extracted.

しかし、このような構造であるため、製造工程において
極板群の挿入やふた等の接着、あるいは安全弁のはめ込
み等機械化が困難である工程が多いため、量産性が悪く
、製造コストの上昇につながっていた。
However, because of this structure, there are many steps in the manufacturing process that are difficult to mechanize, such as inserting the electrode plate group, gluing the lid, etc., and fitting the safety valve, which makes mass production difficult and leads to increased manufacturing costs. was.

この対策として、特開昭58−83108号公報に示さ
れたように、電そう材質にポリエチレン等のフィルム状
あるいはシート状の合成樹脂体を使用して極板群を包み
込み、熱溶着によって密封するとともに、安全弁も同時
に形成するような方法が提案されている。
As a countermeasure for this, as shown in Japanese Patent Application Laid-Open No. 58-83108, a film or sheet-like synthetic resin such as polyethylene is used as the electrolytic material to wrap the electrode plate group and seal it by heat welding. In addition, a method has been proposed in which a safety valve is also formed at the same time.

3ヘーノ 発明が解決しようとする問題点 上記の電池の製造方法、とくに極板の化成方法としては
、未化成状態の正極板、負極板からなる極板群全ポリエ
チレン等のフィルム状あるいはシート状の合成樹脂体で
包み込み、電解液を極板に注入した後、各セルが一定の
厚みとなる状態で極柱を直列に接続し、化成充電してい
た。しかしながら、との化成充電方法において、次の問
題点があった。すなわち、セル中の正極板、負極板、セ
パレータの厚みにはそれぞればらつきがあるため、一定
のセル厚状態で化成すると、セパレータの収縮率もばら
つきがある状態で化成充電される。化成充電において、
セパレータと極板中に含有されない電解液中の水分は電
気分解あるいは、蒸発される。したがって、セパレータ
の収縮率が高い場合、セパレータ中に含有される水分量
は少ないために、化成充電終了時には水分の減少量は大
きくなる。反対に、セパレータの収縮率が低い場合、水
分の減少量は小さくなる。化成充電前の電解液の電極群
に対する注液量は一定に規制されるために、化成充電に
おける水分の減少量の大小によって、化成充電終了時の
電解液量、電解液濃度は大きくばらつくことになる。こ
のばらつきは、電池自体の特性、とくに保存特性、ザイ
クル寿命特性に大きな影響を及ぼす。各セルが一定の厚
みとなる状態で化成充電した場合、このような問題点が
あった。
3. Problems to be Solved by the Heno Invention The method for manufacturing the above-mentioned battery, especially the method for chemically forming the electrode plates, involves forming an electrode group consisting of an unformed positive electrode plate and a negative electrode plate in the form of a film or sheet of polyethylene or the like. After encasing it in a synthetic resin body and injecting an electrolyte into the electrode plate, the pole columns were connected in series with each cell having a constant thickness, and chemical charging was performed. However, the chemical charging method had the following problems. That is, since there are variations in the thickness of the positive electrode plate, negative electrode plate, and separator in the cell, if the cell is formed with a constant cell thickness, the shrinkage rate of the separator is also changed with variation. In chemical charging,
Moisture in the electrolyte that is not contained in the separator and electrode plates is electrolyzed or evaporated. Therefore, when the shrinkage rate of the separator is high, the amount of water contained in the separator is small, and the amount of water reduced is large at the end of chemical charging. On the other hand, if the shrinkage rate of the separator is low, the amount of moisture loss will be small. Since the amount of electrolyte injected into the electrode group before chemical charging is regulated, the amount of electrolyte and the concentration of electrolyte at the end of chemical charging will vary greatly depending on the amount of water loss during chemical charging. Become. This variation greatly affects the characteristics of the battery itself, especially the storage characteristics and cycle life characteristics. Such problems occur when chemical charging is performed with each cell having a constant thickness.

本発明は、このような問題点を解決する化成充電するこ
とを目的としたものである。
The present invention is aimed at performing chemical charging to solve these problems.

問題点を解決するための手段 本発明は、上記従来の問題点を解決するために、それぞ
れ極柱と溶接された正極板、負極板およびセパレータで
構成された極板群を、熱可塑性のフィルム又はシートか
らなる外被で囲んだ複数のセルを用意し、各セル内に電
解液を注入した後、各セルが一定の厚みとなる状態で極
柱相互を直列に接続し、化成充電することを特徴とする
密閉形鉛蓄電池の製造法を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention has provided an electrode group consisting of a positive electrode plate, a negative electrode plate, and a separator, each welded to a pole pole, using a thermoplastic film. Alternatively, prepare multiple cells surrounded by an outer covering made of sheets, inject electrolyte into each cell, connect the poles in series with each cell with a constant thickness, and perform chemical charging. The present invention provides a method for manufacturing a sealed lead-acid battery characterized by the following.

作   用 この化成充電方法においては、化成充電中のセロページ パレータの収縮率は各セルとも一定になる。したがって
、セパレータ中に含有される電解液量は各セルとも一定
とカリ、極板中に含有される電解液量のばらつきによっ
てのみ、化成充電時における水分の減少量は変動する。
Function: In this chemical charging method, the shrinkage rate of the cellopagerator during chemical charging is constant for each cell. Therefore, the amount of electrolyte contained in the separator is constant for each cell, and the amount of water loss during chemical charging varies only due to variations in the amount of electrolyte contained in the electrode plates.

一般に密閉形鉛蓄電池において、極板群中に含有される
全電解液量の60%以上は、セパレータ中に含有される
ために、セパレータの収縮率が一定の状態で、化成充電
されると、化成充電中の水分の減少量のばらつきは、従
来の化成充電方法の場合と比べて、半分以下になる。す
なわち、本発明の化成充電方法においては、化成充電に
おける水分の減少量のばらつきを従来方法よりも、より
小さくすることによって、化成終了時の電解液量、電解
液濃度のばらつきは小さくなり、電池の電気化学的特性
も安定化できる。
Generally, in a sealed lead-acid battery, 60% or more of the total amount of electrolyte contained in the electrode plate group is contained in the separator. The variation in the amount of water loss during chemical charging is less than half that of the conventional chemical charging method. That is, in the chemical charging method of the present invention, by making the variation in the amount of water loss during chemical charging smaller than in the conventional method, the variation in the amount of electrolyte and the electrolyte concentration at the end of chemical charging is reduced, and the battery The electrochemical properties of can also be stabilized.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

6 ベージ る極板群をポリエチレンフィルム内に収納して10個の
セルを用意し、各セル内に電解液を一定量(8ml)注
入し、10セルの極柱を相互に直列に接続して化成充電
した。本発明を実施する化成充電方法においては、化成
充電中、常に20Kq/am”の圧力が各セルの極板群
にかかるように加圧治具に袋を固定し充電した。比較の
ために従来の方法によっても化成充電した。すなわち、
化成開始時の極板群に5oKq/dm”の圧力がかかる
ように治具に袋を固定し、一定のセル厚みとし、化成充
電した。以後、本発明を実施した化成充電方法をへ方法
、従来の化成充電方法(i=)B方法とする。へ方法、
B方法にヨッテ、各6oセノv、2V、 1.oAhの
電池を作成した。
6 Prepare 10 cells by storing the electrode plates to be assembled in a polyethylene film, inject a certain amount (8 ml) of electrolyte into each cell, and connect the 10 cell poles in series. Charged chemically. In the chemical charging method of the present invention, the bag was fixed to a pressure jig so that a pressure of 20 Kq/am'' was always applied to the electrode plate group of each cell during chemical charging.For comparison, the conventional Chemical charging was also carried out by the method of
The bag was fixed to a jig so that a pressure of 5 Kq/dm was applied to the electrode plate group at the start of chemical formation, the cell thickness was kept constant, and chemical charging was performed. Conventional chemical charging method (i=) B method.To method,
Yotte to B method, each 6 o Seno v, 2 V, 1. An oAh battery was created.

第1図イ2口に、へ方法、B方法における、化成充電中
の水分の減少量の分布を示した。2つの方法を比較する
と水分の減少量の平均値は、はぼ同じであるが、ばらつ
きに関しては、へ方法の方がはるかに小さいことが判る
。−!だ、各セル中の電解液濃度、電解液量に関しても
へ方法で充電し7ペーノ たセルの方がばらつきが小さいことは明らかである。
FIG. 1A shows the distribution of the amount of water loss during chemical charging in Method A and Method B. Comparing the two methods, it can be seen that the average value of the amount of water loss is almost the same, but the variation is much smaller in the method. -! However, it is clear that the variation in the electrolyte concentration and amount of electrolyte in each cell is smaller in the cells charged by the 7-cycle method.

次に、へ方法、B方法で充電したセルの保存特性を調べ
た結果を第2図イ9口に示す。保存特性の評価方法とし
ては、5時間率で初期容量を調べた後、各セルを60℃
の雰囲気中に2週間放置し、その後の6時間率容量を調
べ、これと初期容量との比全容量残存率とし、自己放電
の大小を調べる方法を採用した。第2図の結果からも、
へ方法で充電したセルの容量残存率のばらつきは、B方
法で充電したセルと比べて、はるかに小さいことが明ら
かである。
Next, the results of examining the storage characteristics of cells charged by method B and method B are shown in Figure 2, Figure 2, A9. To evaluate storage characteristics, after checking the initial capacity at a 5-hour rate, each cell was incubated at 60°C.
A method was employed in which the battery was left in an atmosphere for 2 weeks, and the subsequent 6-hour rate capacity was checked, and this was determined as the total capacity remaining rate relative to the initial capacity, and the magnitude of self-discharge was determined. From the results in Figure 2,
It is clear that the variation in the remaining capacity rate of cells charged by method B is much smaller than that of cells charged by method B.

発明の効果 以上のように、本発明の化成充電方法において製造され
た電池の電気化学的特性は、従来方法で製造された電池
に比べてばらつきが非常に小さく、品質が安定し、信頼
性の高いものである。このように本発明は工業的価値が
非常に大きい製造法を提供するものである。
Effects of the Invention As described above, the electrochemical characteristics of the battery manufactured by the chemical charging method of the present invention have very small variations, stable quality, and reliability compared to batteries manufactured by the conventional method. It's expensive. As described above, the present invention provides a manufacturing method of great industrial value.

第1図イ9口は本発明および従来方法の化成充電におけ
る水分の減少を示す特性図、第2図イ。
Figure 1 (a) 9 is a characteristic diagram showing the decrease in water content during chemical conversion charging according to the present invention and the conventional method, and Figure 2 (a) is a characteristic diagram showing the decrease in water content during chemical charging of the present invention and the conventional method.

口は同電池の保存特性を示す図である。The figure above is a diagram showing the storage characteristics of the same battery.

代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 イ ハ方祷 第2図 イ /)ブタ5と B1力 Bガよ
Name of agent: Patent attorney Toshio Nakao (1st person)
Figure Iha Direction Figure 2 I/) Pig 5 and B1 Power Bga

Claims (1)

【特許請求の範囲】[Claims] (1)それぞれ極柱と溶接された正極板、負極板および
セパレータで構成された極板群を、熱可塑性合成樹脂の
フィルム又はシートからなる外被で囲んだ複数のセルを
用意し、各セル内に電解液を注入した後、各セルの厚み
方向に一定の圧力を加えた状態で極柱相互を直列に接続
し、上記加圧力が経時変化しない状態で化成充電するこ
とを特徴とする密閉形鉛蓄電池の製造法。
(1) Prepare a plurality of cells in which a group of electrode plates, each consisting of a positive electrode plate, a negative electrode plate, and a separator, each welded to a pole pole, is surrounded by an outer cover made of a thermoplastic synthetic resin film or sheet, and each cell After injecting an electrolyte into the cell, the pole columns are connected in series while applying a constant pressure in the thickness direction of each cell, and chemical charging is performed while the applied pressure does not change over time. Manufacturing method for lead-acid batteries.
JP60204703A 1985-09-17 1985-09-17 Manufacture of sealed lead-acid battery Pending JPS6264058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60204703A JPS6264058A (en) 1985-09-17 1985-09-17 Manufacture of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204703A JPS6264058A (en) 1985-09-17 1985-09-17 Manufacture of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPS6264058A true JPS6264058A (en) 1987-03-20

Family

ID=16494912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204703A Pending JPS6264058A (en) 1985-09-17 1985-09-17 Manufacture of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPS6264058A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223632A (en) * 1975-08-19 1977-02-22 Shin Kobe Electric Machinery Method of producing battery
JPS58123659A (en) * 1982-01-20 1983-07-22 Japan Storage Battery Co Ltd Manufacture of lead storage battery
JPS59207558A (en) * 1983-05-11 1984-11-24 Matsushita Electric Ind Co Ltd Manufacture of closed lead-acid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223632A (en) * 1975-08-19 1977-02-22 Shin Kobe Electric Machinery Method of producing battery
JPS58123659A (en) * 1982-01-20 1983-07-22 Japan Storage Battery Co Ltd Manufacture of lead storage battery
JPS59207558A (en) * 1983-05-11 1984-11-24 Matsushita Electric Ind Co Ltd Manufacture of closed lead-acid battery

Similar Documents

Publication Publication Date Title
MY112884A (en) Electrolyte activatable lithium-ion rechargeable battery cell and method of making same.
JPS60175379A (en) Sealed lead storage battery and method of producing same
JPS59207558A (en) Manufacture of closed lead-acid battery
US4572879A (en) Lead-acid cell and method of producing same
GB873811A (en) Improvements relating to electric batteries
JPS6264058A (en) Manufacture of sealed lead-acid battery
GB2129193A (en) Manufacturing recombination electric storage cells
JPS6132348A (en) Outer fitting of elementary cell
JPH04341766A (en) Spiral type closed storage battery
ZA94687B (en) Microporous separator material for electrochemical cells in particular for lead-sulphuric acid storage batteries and cells and storage batteries comprising said material
JPS5630270A (en) Sealed type lead storage battery
JPH01149376A (en) Sealed lead-acid battery
JPS5882472A (en) Lead storage battery and manufacture thereof
US2544517A (en) Method of making batteries
JPH0193066A (en) Manufacture of sealed lead-acid battery
US4295940A (en) Method for battery plate
JPS6047375A (en) Sealed lead storage battery
JPH053709B2 (en)
JPH04118853A (en) Separator for lead storage battery
JPS60185371A (en) Enclosed type lead storage battery
JPS57123664A (en) Enclosed lead storage battery
JPH0443570A (en) Manufacture of sealed lead storage battery
JPS63291370A (en) Sealed type lead storage battery
JPS59173968A (en) Manufacture of organic electrolyte battery
JPS59157966A (en) Sealed type lead storage battery