JPS6264033A - Linear electron beam generator - Google Patents

Linear electron beam generator

Info

Publication number
JPS6264033A
JPS6264033A JP20384285A JP20384285A JPS6264033A JP S6264033 A JPS6264033 A JP S6264033A JP 20384285 A JP20384285 A JP 20384285A JP 20384285 A JP20384285 A JP 20384285A JP S6264033 A JPS6264033 A JP S6264033A
Authority
JP
Japan
Prior art keywords
electron beam
cathode
anode
linear
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20384285A
Other languages
Japanese (ja)
Inventor
Shuichi Saito
修一 齋藤
Hidekazu Okabayashi
岡林 秀和
Hiromitsu Namita
博光 波田
Tsuyoshi Nakamura
強 中村
Yutaka Kawase
河瀬 豊
Hideki Kobayashi
英樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20384285A priority Critical patent/JPS6264033A/en
Publication of JPS6264033A publication Critical patent/JPS6264033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve linear beam even of high current while to uniform distribution of current density in the long side direction of beam by providing a take-out electrode having higher potential then the anode and a rectangular electron beam path hole in the way between the cathode and anode. CONSTITUTION:A control electrode 2 having a cathode 1 and an electron beam path hole 8 and a take-out electrode 3 having a rectangular electron beam path hole 9 applied with higher voltage than the anode 4 are arranged between the cathode 1 and anode 4. Consequently, asymmetric field is distributed in the electron beam path area to make linear the electron beam while to make uniform the current density distribution in long side of linear beam.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は線状電子ビーム発生装置に関し、特に線状電子
ビームにより、導電体、半導体、誘電体等の材料の表面
層を熱処理する線状電子ビーム発生装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a linear electron beam generator, and particularly to a linear electron beam generating device for heat-treating the surface layer of a material such as a conductor, a semiconductor, or a dielectric with a linear electron beam. This invention relates to an electron beam generator.

r従来の技術] 線状の電子ビームを取り出ず方法として、従来使用され
ている様なスボッI・状フィラメン1〜を用いた電子ビ
ーム発生装置において、カソードを線状にし、かつ、矩
形状の電子ビーム通過孔を存する制御電極に変えて使用
することが考えられる。
rPrior art] As a method for extracting a linear electron beam, in an electron beam generator using a conventionally used sub-I-shaped filament 1, the cathode is made linear and the cathode is made into a rectangular shape. It is conceivable to use the control electrode in place of a control electrode having an electron beam passage hole.

この場合、アノードは円形の電子ビーム通過孔を有し、
光学系も軸回転対称形となっている。
In this case, the anode has a circular electron beam passage hole,
The optical system is also axially rotationally symmetrical.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この時、線状電子ビームのビーム電流が小さい時、例え
ば、10.、A程度の場合、電流密度分布が線状ビーム
の長辺方向にほぼ均一な状態で得られ、熱処理等に十分
使用可能である。しかし、加熱処理の条件によっては、
より大電流例えば、100〜200 mA程度゛の電流
が必要となる。この様な大電流を、前記の様な構成で取
り出そうとすると、電流自体取り出すことが困難であり
、また、取り出したとしても、ビーム形状は線状とはな
らず、だ円状になり、かつ、電流密度分布も均一ではな
くガウス分布状になってしまうという間圧がある。
At this time, when the beam current of the linear electron beam is small, for example, 10. , A, the current density distribution can be obtained in a substantially uniform state in the long side direction of the linear beam, and it can be sufficiently used for heat treatment and the like. However, depending on the heat treatment conditions,
A larger current, for example about 100 to 200 mA, is required. If you try to extract such a large current with the above configuration, it is difficult to extract the current itself, and even if you extract it, the beam shape will not be linear but elliptical, and However, there is a problem that the current density distribution is not uniform but becomes a Gaussian distribution.

本発明の目的は、このような従来の問題点を解決し、大
電流においてもビーム形状が線状であり、かつ、その電
流密度分布が線状ビームの長辺方向でほぼ均一となる様
な、線状電子ビーム発生装置を提供することである。
The purpose of the present invention is to solve these conventional problems, and to create a linear beam with a linear beam shape even at large currents, and a current density distribution that is almost uniform in the long side direction of the linear beam. An object of the present invention is to provide a linear electron beam generating device.

〔問題点を解決するための手段] 本発明の線状電子ビーム発生装置は、矩形状のカソード
と、カソードを包囲する矩形孔を有する制御電極と、カ
ソードに対し高電位であり、矩形状の電子ビーム通過孔
を有するアノードと、カソードとアノードの中間に位置
し、アノードよりも更に高電位であり、矩形状の電子ビ
ーム通過孔を存する引出電極とを備えることにより構成
される。
[Means for Solving the Problems] The linear electron beam generator of the present invention includes a rectangular cathode, a control electrode having a rectangular hole surrounding the cathode, and a rectangular electron beam generator having a high potential with respect to the cathode. It is constructed by comprising an anode having an electron beam passage hole, and an extraction electrode located between the cathode and the anode, having a higher potential than the anode, and having a rectangular electron beam passage hole.

1作用] カソードとアノードとの間に引出電極を設け、この引出
電極に、アノードに印加する電圧、即ち、加速電圧より
高電圧を印加することにより、カソードより大電流を取
り出し、電子ビームが引出電極からアノードを通過する
ことにより、電子ビームは減速され、加速電圧に対応す
る速度で、アノードから収り出すことかできる。
1 Effect] An extraction electrode is provided between the cathode and the anode, and by applying a voltage higher than the voltage applied to the anode, that is, the accelerating voltage, to this extraction electrode, a large current is extracted from the cathode, and an electron beam is extracted. By passing from the electrode to the anode, the electron beam is decelerated and can exit the anode at a speed corresponding to the accelerating voltage.

従って、加速電圧が低くても、引出電圧を高くすること
により、低加速電圧で大電流を取り出すことが可能であ
る。さらに、引出電極及びアノードの電子ビーム通過孔
を矩形にすることにより、電子ビームの通過領域には、
非対称な電界分布が形成され、電子ビームの形状を線状
に保つ作用をする。アノードより取り出された電子ビー
ムは光学系により、加熱処理する材料に投影されるが、
この光学系は線状電子ビームに比べて十分大きく、収差
が十分小さければ、特に問題はない。
Therefore, even if the accelerating voltage is low, it is possible to extract a large current with a low accelerating voltage by increasing the extracting voltage. Furthermore, by making the electron beam passage holes of the extraction electrode and the anode rectangular, the electron beam passage area has a
An asymmetric electric field distribution is formed, which serves to keep the electron beam in a linear shape. The electron beam extracted from the anode is projected onto the material to be heated by an optical system.
If this optical system is sufficiently large compared to a linear electron beam and its aberrations are sufficiently small, there will be no particular problem.

[実施例〕 次に、本発明について図面を参照して説明する。[Example〕 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

第1図に示すように、矩形状の電子放出部を有するカッ
−F ]と、この電−r放出部に適合する矩形状の電子
ビーム通過孔8を存する制御電極2とアノード4より、
高電圧をかけた矩形状の電子ビーム通過孔9を有する引
出電極3をカソード1とアノード4の間に配置する。こ
の時、引出電極の電子ビーム通過孔9は、矩形状であり
、その長辺方向は、カソード1の長辺方向と同−向きに
合わせておく。なお、理解を容易にするため制御電極2
、引出電極3のそれぞれの平面図を右側の対応位置に示
した。この時、引出電極3には、加速電圧より高い電圧
を印加するため、(本実施例では、加速電圧10〜20
kvに対し、引出電圧は40〜60kvとしたが)カソ
ード1から放出される電子ビームは、加速電圧ではなく
、引出電圧により定まる。従って、例えば、60kvの
引出電圧により、カソード1より18On+Aと大電流
が容易に取り出される。さらに、引出電極3の電子ビー
ム通過孔9は矩形状であるため、電子ビームの形状が、
矩形状に制限されている。次に、引出電極3により取り
出された電子ビームは、アノード4により、例えば15
kvの加速電圧とすると、15kvの電圧に減速される
ことになる。従って、本構成をとることにより、15k
vと低い加速電圧でありながら、180a+^という大
電流が容易に取り出せることになる。また、アノード4
の電子ビーム通過孔10は、その右側の平面図に示すよ
うに、矩形状となっており、その長辺方向は、矩形のカ
ソード1のクロスオーバ一点が矩形のカソードlの短辺
方向と同じ方向に合わせている。これは、カソード1の
短辺方向と長辺方向とでは異なっており、短辺方向のク
ロスオーバ一点が長辺方向のものに比べてよりカソード
1側に形成されるために、アノード4の位置における電
子ビームの広かりは、カソード1の短辺側の方がより大
きくなるため、平面図に示したようなビーム通過孔の形
状とした。
As shown in FIG. 1, from the control electrode 2 and anode 4, which have a rectangular electron-emitting part, a control electrode 2 and an anode 4, each having a rectangular electron beam passing hole 8 that fits the electron-emitting part.
An extraction electrode 3 having a rectangular electron beam passage hole 9 to which a high voltage is applied is placed between the cathode 1 and the anode 4. At this time, the electron beam passage hole 9 of the extraction electrode has a rectangular shape, and its long side direction is aligned in the same direction as the long side direction of the cathode 1. In addition, for ease of understanding, control electrode 2
, respective plan views of the extraction electrodes 3 are shown at corresponding positions on the right side. At this time, in order to apply a voltage higher than the accelerating voltage to the extraction electrode 3 (in this embodiment, the accelerating voltage is 10 to 20
kv, the extraction voltage was set to 40 to 60 kv)) The electron beam emitted from the cathode 1 is determined by the extraction voltage, not the accelerating voltage. Therefore, for example, a large current of 18 On+A can be easily extracted from the cathode 1 with an extraction voltage of 60 kV. Furthermore, since the electron beam passage hole 9 of the extraction electrode 3 is rectangular, the shape of the electron beam is
Limited to rectangular shapes. Next, the electron beam extracted by the extraction electrode 3 is
If the acceleration voltage is kv, the speed will be decelerated to a voltage of 15 kv. Therefore, by adopting this configuration, 15k
Although the accelerating voltage is as low as v, a large current of 180a+^ can be easily extracted. Also, anode 4
As shown in the plan view on the right side, the electron beam passing hole 10 has a rectangular shape, and its long side direction is the same as the short side direction of the rectangular cathode 1 such that one crossover point of the rectangular cathode 1 It's aligned with the direction. This is different in the short side direction and the long side direction of the cathode 1, and because one crossover point in the short side direction is formed closer to the cathode 1 than in the long side direction, the position of the anode 4 is Since the width of the electron beam is larger on the short side of the cathode 1, the beam passage hole is shaped as shown in the plan view.

このように、引出電極3及びアノード4の電子ビームの
通過孔を矩形状の非対称形とすることにより、カソード
1から取り出された線状電子ビームは、カソードの形状
と類似した線状に保ったまで取り出すことができた。ア
ノード4を通過した電子ビームは、レンズコイル5によ
り試料7上に投影されるが、レンズコイル5は軸対称の
ものであっても、その収差が十分小さければ、投影する
ものの形状が線状であっても特に問題はない。また、偏
向コイル6により線状電子ビームを開面する場合も、レ
ンズコイルの場合と同様である。
In this way, by making the electron beam passage holes of the extraction electrode 3 and the anode 4 rectangular and asymmetrical, the linear electron beam extracted from the cathode 1 is kept in a linear shape similar to the shape of the cathode. I was able to take it out. The electron beam that has passed through the anode 4 is projected onto the sample 7 by the lens coil 5. Even if the lens coil 5 is axially symmetrical, if its aberration is sufficiently small, the shape of the projected object will be linear. There is no problem even if there is. Further, the case where the linear electron beam is opened to the surface by the deflection coil 6 is similar to the case of the lens coil.

従って、低加速電圧(10〜20kv)のもとで、比較
的大電流(本実施例では、加速電圧15kv、引出電圧
60kvの件で1.80mA)が取り出せ、かつ、電子
ビームの形状は線状であり、ファラデー・ケージで測定
した結果、ビーム長は約5mmであり、ビームの幅は約
0.3mmであった。また、電流密度分布は、ビームの
長辺方向で約3〜5%の変化はあったものの、はぼ均一
な状態が実現できた。また、ビーム電流は引出電圧を上
下することによりその形状は変えずにビーム電流のみを
制御できるため、小さなビーム電流でも均一な電流密度
分布を存するものが取り出せる。
Therefore, a relatively large current (in this example, 1.80 mA at an accelerating voltage of 15 kv and an extraction voltage of 60 kv) can be extracted under a low accelerating voltage (10 to 20 kv), and the shape of the electron beam is linear. As a result of measurement using a Faraday cage, the beam length was approximately 5 mm, and the beam width was approximately 0.3 mm. Further, although the current density distribution varied by about 3 to 5% in the long side direction of the beam, a fairly uniform state could be achieved. Moreover, since only the beam current can be controlled without changing its shape by increasing or decreasing the extraction voltage, a beam with a uniform current density distribution can be obtained even with a small beam current.

(発明の効果〕 以」二説明したように、本発明の線状電子ビーム発生装
置によれば、10〜20kvと比較的小さな加速電圧で
、50〜200I[l^と比較的大電流を容易に取り出
すことができ、さらに電子ビームの形状を線状に保ち、
かつ、その電流密度分布をほぼ均一に保ったまま電流を
制御でき、大面積領域〈ビーム長3−5mm)を均一に
一括処理でき、処理の均一・性を向上できるとともに処
理時間の短縮ができる。
(Effects of the Invention) As explained below, according to the linear electron beam generator of the present invention, a relatively large current of 50 to 200 I[l^] can be easily generated with a relatively small accelerating voltage of 10 to 20 kV. In addition, the shape of the electron beam can be kept linear,
In addition, the current can be controlled while keeping the current density distribution almost uniform, allowing uniform batch processing of large areas (beam length 3-5 mm), improving uniformity and efficiency of processing, and shortening processing time. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の槁成図である。 】・・・カソード、2・・・制御電極、3・・・引出電
極、4・・・アノード、5・・・レンズコイル、し)・
・・偏向コイル、7・・・試料、8.9.10・・・電
子ビーノ\通過孔。 51/〉ズコスル℃   ■ 卒 ・ ’I!I
FIG. 1 is a diagram of one embodiment of the present invention. ]... Cathode, 2... Control electrode, 3... Extraction electrode, 4... Anode, 5... Lens coil,
... Deflection coil, 7... Sample, 8.9.10... Electronic beano\passing hole. 51/〉Zukosuru℃ ■ Graduation ・ 'I! I

Claims (1)

【特許請求の範囲】[Claims] 矩形状のカソードと、カソードを包囲する矩形孔を有す
る制御電極と、カソードに対し高電位であり、矩形状の
電子ビーム通過孔を有するアノードと、カソードとアノ
ードの中間に位置し、アノードよりも更に高電位であり
、矩形状の電子ビーム通過孔を有する引出電極とを備え
たことを特徴とする線状電子ビーム発生装置。
a rectangular cathode, a control electrode having a rectangular hole surrounding the cathode, an anode having a high potential with respect to the cathode and having a rectangular electron beam passage hole, and a control electrode located between the cathode and the anode and having a rectangular hole surrounding the cathode; A linear electron beam generating device further comprising an extraction electrode having a high potential and having a rectangular electron beam passage hole.
JP20384285A 1985-09-13 1985-09-13 Linear electron beam generator Pending JPS6264033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20384285A JPS6264033A (en) 1985-09-13 1985-09-13 Linear electron beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20384285A JPS6264033A (en) 1985-09-13 1985-09-13 Linear electron beam generator

Publications (1)

Publication Number Publication Date
JPS6264033A true JPS6264033A (en) 1987-03-20

Family

ID=16480600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20384285A Pending JPS6264033A (en) 1985-09-13 1985-09-13 Linear electron beam generator

Country Status (1)

Country Link
JP (1) JPS6264033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360035A2 (en) * 1988-09-20 1990-03-28 Siemens Aktiengesellschaft Electron beam source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165943A (en) * 1981-04-02 1982-10-13 Akashi Seisakusho Co Ltd Acceleration controlling method for charged particle beams in electron microscope and similar device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165943A (en) * 1981-04-02 1982-10-13 Akashi Seisakusho Co Ltd Acceleration controlling method for charged particle beams in electron microscope and similar device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360035A2 (en) * 1988-09-20 1990-03-28 Siemens Aktiengesellschaft Electron beam source

Similar Documents

Publication Publication Date Title
CA1061416A (en) Method for varying the diameter of a beam of charged particles
JPH08212965A (en) Ion implanting device
US9799489B2 (en) Exposure apparatus
JPS6264033A (en) Linear electron beam generator
KR20040034600A (en) Slit lens arrangement for particle beams
US3417224A (en) Method and device for working material by means of a corpuscular beam
JPH06290725A (en) Ion source apparatus and ion implantation apparatus with ion source apparatus
JPH027503B2 (en)
JPS62229643A (en) Electron ray generating device
JPH0539555Y2 (en)
JPS61227354A (en) Linear electron beam generating device
JPS62194614A (en) Linear electron beam annealing device
JP2870858B2 (en) Linear electron beam irradiation method and apparatus
JPS61245453A (en) Linear electron beam thermal processor
JPS62206754A (en) Linear electron beam generator
KR20010054277A (en) Ion Counting Device
JPS6391945A (en) Ion beam device
JPH088084B2 (en) Ion beam vapor deposition equipment
JPH0266844A (en) Focussed ion beam generator
JPH0799160A (en) Method and apparatus for working of neutral particles
JPS60249318A (en) Ion micro beam implantation
JPH09213250A (en) Deflection device for charged particle beam
JPH0562419B2 (en)
JPH0218847A (en) Charged particle beam device
JPS61131355A (en) Method and equipment for ion implantation