JPS6263657A - Method for stabilizing shape memory characteristic of shape memory ti-ni alloy - Google Patents

Method for stabilizing shape memory characteristic of shape memory ti-ni alloy

Info

Publication number
JPS6263657A
JPS6263657A JP20164785A JP20164785A JPS6263657A JP S6263657 A JPS6263657 A JP S6263657A JP 20164785 A JP20164785 A JP 20164785A JP 20164785 A JP20164785 A JP 20164785A JP S6263657 A JPS6263657 A JP S6263657A
Authority
JP
Japan
Prior art keywords
shape memory
shape
memory alloy
alloy
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20164785A
Other languages
Japanese (ja)
Other versions
JPH0530904B2 (en
Inventor
Masaru Honma
大 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20164785A priority Critical patent/JPS6263657A/en
Publication of JPS6263657A publication Critical patent/JPS6263657A/en
Publication of JPH0530904B2 publication Critical patent/JPH0530904B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the shape memory characteristics of a shape memory alloy by selectively accumulating dislocation in the grains of the alloy so as to increase the dislocation density in the grains and to keep the dislocation density on the grain boundaries low. CONSTITUTION:Stock for a shape memory alloy is made to memorize a prescribed shape (a). The stock is so largely elongated as to cause plastic deformation (b). The load is relieved from the stock and the shape of the stock is restored by heating to the Md point or above at which restoration recrystallization is not caused or is hardly caused (c). The stock is rapidly cooled (d). The stages (b), (c), (d) are repeatedly carried out until the restored shape is stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、Ti−Ni形状記憶合金に変形および形状回
復の動作を繰り返し行わせる際の形状記憶合金の形状記
憶特性を安定化させるための、Ti−Ni形状記憶合金
の形状記憶特性安定化処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a Ti-Ni shape memory alloy which is used to stabilize the shape memory properties of a shape memory alloy when the alloy undergoes repeated deformation and shape recovery operations. -Regarding a method for stabilizing the shape memory properties of a Ni shape memory alloy.

従来の技術および発明が解決しようとする問題点 Ti−Ni形状記憶合金の変態は、マルテンサイト変態
や析出、酸化等の問題が複雑にからみ合い、各相の検出
が困難なため、いろいろな研究者によって異説が唱えら
れているのが現状である。
Problems to be solved by conventional techniques and inventions The transformation of Ti-Ni shape memory alloys is complicated by problems such as martensitic transformation, precipitation, and oxidation, and it is difficult to detect each phase. The current situation is that different opinions are being advocated by different people.

特に12H” K以下の温度域については、現在でも不
明瞭な点が多く、従って1’−1−1’Ji形状記憶合
金の完全な熱処理法は確立されていないのが現状でおる
Especially in the temperature range below 12H''K, there are still many points that are unclear, and therefore a complete heat treatment method for 1'-1-1'Ji shape memory alloys has not yet been established.

Ti−Ni形状記憶合金を製造し、さらに所定の形状を
記憶させる方法として、従来より一般的に行なわれてい
る方法は、次のような工程を踏む。
A conventional method for producing a Ti--Ni shape memory alloy and for memorizing a predetermined shape involves the following steps.

まず、形状記憶合金のインゴットを1ooo〜1200
°にの高温でおおまかな形に熱間加工した後、冷間で少
しずつ加工しては900〜1000°にの温度で焼なま
す操作を繰り返し、所定形状に近付ける。
First, a shape memory alloy ingot of 100 to 1200
After hot working into a rough shape at a high temperature of 100°, cold working little by little and annealing at a temperature of 900 to 1000° are repeated to approximate the desired shape.

このように焼なまし操作を繰り返すのは、Ti−Ni形
状記憶合金は強い加工硬化を起しやすいためでおる。市
販のTi−Ni形状記憶合金素材は、このような過程で
加工されたもので、最後に冷間加工されたままの非常に
硬い状態にある。最終的な使用時に必要な記憶形状は、
上述のようにして得られたTi−44i形状記憶合金素
材を焼なましだ後、所定の形に変形したまま固定して、
600〜1000’ Kの温度に1511Iin〜1h
r保持することによって得ている。
The reason why the annealing operation is repeated in this way is that the Ti--Ni shape memory alloy tends to undergo strong work hardening. Commercially available Ti-Ni shape memory alloy materials are processed through such a process, and are still in a very hard state after being cold-worked. The memory shape required for final use is
After annealing the Ti-44i shape memory alloy material obtained as described above, it is fixed while being deformed into a predetermined shape.
1511Iin~1h at a temperature of 600~1000'K
It is obtained by holding r.

従来においては、前記のようにして得られた記憶処理済
み形状記憶合金に変形−形状回復の動作を繰り返し行わ
せたとき、該動作の繰り返し数が増加するにつれて永久
ひずみが生じ、Ti−Ni形状記憶合金が記憶形状を消
失したり(言い換えれば、記憶形状に戻らなくなったり
)、破断したりする問題が生じていた。このような記憶
形状の消失や破断の問題は、最高加熱温度が高く、かつ
変形量が大きい場合に特に起りやずい。したがって、例
えば、変形量を大きくし、しかも部分的に加熱状態にも
なりうる虞のある通電加熱等で形状回復を行わせるよう
なヘビー・デユーティな使用条件下においては、前記繰
り返し動作に伴う記憶形状の消失や破断等の問題が生じ
やすかった。例えば、本発明者の経験によれば、前記一
般的な記憶処理を施したTi−Ni合金をそのまま通電
加熱型のアクチュエータ等に使用した場合、数」−同程
度の繰り返し動作で記憶形状が消失してしまい、形状記
憶合金の設置状態を幾何学的に調整し直す必要がある(
例えば、ワイヤ状の形状記憶合金を用いた場合、形状記
憶合金の長さを調整し直す必要がある)。
Conventionally, when the memory-treated shape memory alloy obtained as described above is repeatedly subjected to the deformation-shape recovery operation, permanent strain occurs as the number of repetitions of the operation increases, and the Ti-Ni shape Problems have arisen in which the memory alloy loses its memorized shape (in other words, it does not return to its memorized shape) or breaks. Such problems of loss or breakage of the memorized shape are particularly likely to occur when the maximum heating temperature is high and the amount of deformation is large. Therefore, under heavy-duty usage conditions, for example, where shape recovery is performed by electrical heating, etc., which increases the amount of deformation and may also lead to partial heating, the memory associated with the repetitive operation may Problems such as loss of shape and breakage were likely to occur. For example, according to the inventor's experience, when a Ti-Ni alloy subjected to general memory treatment is used as it is in an electrically heated actuator, etc., the memorized shape disappears after the same number of repeated operations. , and it is necessary to geometrically adjust the installation state of the shape memory alloy (
For example, if a wire shape memory alloy is used, the length of the shape memory alloy must be readjusted).

このため、従来は、形状記憶合金の使用に当って、最高
加熱温度を低目にしく例えば、A1点+60’ K以下
にする)、変形量を十分小さくして(例えば、2%以下
にする)、均一な加熱を行いやすい加熱方法でおる空気
や水等を媒体とする伝導加熱で加熱することを薦める研
究者やメーカーが多かった。しかしながら、空気や水等
を媒体とする伝導加熱を行う場合、応答性の低下、ひい
ては制御性の低下を招くとともに、装置が大型化すると
いう不都合が生じ、用途が限定されやすい。
For this reason, conventionally, when using shape memory alloys, the maximum heating temperature was kept low (for example, below A1 point + 60' K) and the amount of deformation was kept sufficiently small (for example, below 2%). ), many researchers and manufacturers recommended heating by conduction heating using a medium such as air or water, which is a heating method that facilitates uniform heating. However, when conducting conduction heating using air, water, or the like as a medium, there is a problem in that the responsiveness and controllability are lowered, and the device becomes larger, which tends to limit its use.

その点、形状記憶合金に直接通電してジュール熱により
形状記憶合金を加熱する通電加熱は、応答性が良く、制
御も容易で、かつ装置を小型化することができるという
長所を有している。したがって、記憶形状の消失や破断
の問題を生じることなく、通電加熱により形状記憶合金
に形状回復を行わせることができれば、理想的である。
In this regard, energization heating, which heats the shape memory alloy with Joule heat by directly applying electricity to the shape memory alloy, has the advantages of good responsiveness, easy control, and the ability to miniaturize the device. . Therefore, it would be ideal if the shape memory alloy could be caused to recover its shape by heating with electricity without causing problems such as loss of the memorized shape or breakage.

一方、形状記憶合金には、字間(トレーニング)効果と
いう現象があることが良く知られている。
On the other hand, it is well known that shape memory alloys have a phenomenon called a training effect.

第4図は、Ti−1’4i形状記憶合金を、所定の変形
あるいは負荷以内で加熱温度を低目にして、変形−形状
回復動作(この図の場合、変形としては伸び変形を与え
ている)を繰り返させた場合の、動作繰り返し数と形状
記憶合金の塑性変形による記憶形状からの伸びとの関係
を示したものである。
Figure 4 shows the deformation-shape recovery behavior of Ti-1'4i shape memory alloy at a low heating temperature within a predetermined deformation or load (in this figure, the deformation is elongation deformation). ) shows the relationship between the number of motion repetitions and the elongation from the memorized shape due to plastic deformation of the shape memory alloy.

この図から明らかなように、形状記憶合金においては、
所定の変形あるいは負荷以内で加熱温度を低目にして変
形−形状回復動作を繰り返させると、次第に形状的に安
定し、動きもスムーズになって行く(第4図の斜線部は
、形状記憶合金の回復時の形状が安定する安定領域を示
す)、。これが前記学習効果と呼ばれる現象である。
As is clear from this figure, in shape memory alloys,
If the heating temperature is kept low and the deformation-shape recovery operation is repeated within a predetermined deformation or load, the shape will gradually become stable and the movement will become smooth (the shaded area in Figure 4 shows the shape memory alloy). ), indicating a stable region where the shape is stable upon recovery. This is the phenomenon called the learning effect.

本発明者は、先に特開昭60−70167号において、
上述のような学習効果を利用して形状記憶合金の形状記
憶特性を安定化する「形状記憶合金の慣し運転方法」を
提案している。しかし、このような学習効果を利用して
形状記・臣合金の形状記憶特性を安定化させる方法は、
前記のように比較的に大きな変形を繰り返し与え、かつ
局部的加熱が生じやすい通電加熱により加熱するという
ヘビー・デユーティ−な使用条件下では、やはり、前記
記憶形状の消失や破断の問題を解決することはできなか
った。また、上述のように字間効果を利用して形状記憶
合金の形状記憶特性を安定化させる場合には、相当多数
回の変形−形状回復動作を繰り返し行わせなければなら
ないため、長時間を要する上、形状記憶合金の疲労寿命
が短くなるという問題点もあった。
The present inventor previously disclosed in Japanese Patent Application Laid-open No. 60-70167,
We are proposing a ``shape memory alloy break-in method'' that uses the above-mentioned learning effect to stabilize the shape memory properties of shape memory alloys. However, there is no way to stabilize the shape memory properties of shape-memory alloys using such learning effects.
Under heavy-duty usage conditions such as the above-mentioned repeated application of relatively large deformation and heating by electrical heating that tends to cause local heating, the problem of loss or breakage of the memorized shape is still solved. I couldn't do that. Furthermore, when stabilizing the shape memory properties of a shape memory alloy using the inter-character effect as described above, the deformation and shape recovery operations must be repeated quite a number of times, which takes a long time. Moreover, there was also the problem that the fatigue life of shape memory alloys was shortened.

発明の目的 本発明は前記問題点を解決するためになされたもので、
比較的に大きな変形を繰り返し与え、かつ局部的加熱が
生じやすい通電加熱により加熱するような苛酷な使用条
件下においても、記憶形状の消失や破断の問題を生じに
くく、形状記憶特性が安定しており、しかも疲労寿命の
長い”’ri−Ni形状記憶合金を非常に短時間のうち
に得ること −ができるTi−Ni形状記憶合金の形状
記憶特性安定化処理方法を提供することを目的とする。
Purpose of the Invention The present invention has been made to solve the above problems.
Even under harsh usage conditions such as repeated relatively large deformations and electrical heating that tends to cause localized heating, it is unlikely to lose its memorized shape or break, and its shape memory properties are stable. The purpose of the present invention is to provide a treatment method for stabilizing the shape memory properties of a Ti-Ni shape memory alloy, which enables the production of a Ti-Ni shape memory alloy with a long fatigue life and a long fatigue life in a very short time. .

問題点を解決するための手段 本発明によるTi−Ni形状記憶合金の形状記憶特性安
定化処理方法は、次の工程を含んでなる。
Means for Solving the Problems The method for stabilizing the shape memory properties of a Ti-Ni shape memory alloy according to the present invention includes the following steps.

(a)形状記憶合金素材に所定の形状を記憶させる。(a) Memorize a predetermined shape in the shape memory alloy material.

(b)前記素材に、塑性変形を生じるような大きな伸び
変形を与える。
(b) Applying large elongation deformation to the material to cause plastic deformation.

(c)前記素材から負荷を取り除き、Md点以上の高い
温度で、なおかつ回復再結晶が生じないかまたは回復再
結晶が生じてもそれが僅かとなるような温度にまで加熱
し、形状回復させる。
(c) Remove the load from the material and heat it to a temperature higher than the Md point and at a temperature at which no recovery recrystallization occurs or only a small amount of recovery recrystallization occurs to recover the shape. .

(d)前記素材を急冷する。(d) rapidly cooling the material;

(e)回復時の形状が安定するまで前記(b)、(c)
および(d)の工程を繰り返す。
(e) The above (b) and (c) until the shape upon recovery is stabilized.
and repeating step (d).

作用 現段階では、何故そのような優れた効果を1qられるか
は、理論的にはまだ十分解明できていないが、本発明に
よる7−i−Ni形状記憶合金の形状記憶特性安定化処
理方法によれば、比較的に大きな変形を繰り返し与え、
かつ局部的加熱が生じやすい通電加熱により加熱するよ
うな苛酷な使用条件下においても、記憶形状の消失や破
断の問題を生じにくく、形状記憶特性が安定しており、
しかも疲労寿命の長いTi−Ni形状記憶合金を非常に
短時間のうちに得ることができる。
At the current stage of operation, it has not yet been fully clarified theoretically why such an excellent effect can be achieved, but the method for stabilizing the shape memory properties of 7-i-Ni shape memory alloy according to the present invention According to, relatively large deformations are repeatedly applied,
In addition, even under severe usage conditions such as electrical heating that tends to cause localized heating, it is unlikely to lose its memorized shape or break, and its shape memory properties are stable.
Moreover, a Ti--Ni shape memory alloy with a long fatigue life can be obtained in a very short time.

本発明者は、本発明により上述のような優れた効果を得
られる理由は、後で詳しく説明するように、形状記憶合
金の粒内に選択的に転位が蓄積され、粒内の転位密度が
高くなる一方、粒界の転位密度は低く維持されるからで
はないかと今のところ推測している。
The present inventor believes that the reason why the above-mentioned excellent effects can be obtained by the present invention is that, as will be explained in detail later, dislocations are selectively accumulated within the grains of the shape memory alloy, and the dislocation density within the grains is reduced. At present, we speculate that this is because the dislocation density at the grain boundaries remains low while the dislocation density increases.

実施例 以下、本発明を図面に示す実施例に基づいて説明する。Example Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

本実施例においては、次のような工程により市販のTi
−44i形状記憶合金ワイヤ(古河電気工業株式会社製
)の形状記憶特性安定化処理を打つlこ。
In this example, commercially available Ti
-44i shape memory alloy wire (manufactured by Furukawa Electric Co., Ltd.) was subjected to shape memory property stabilization treatment.

(1)素線を通常の方法で焼なます。これは、素線に生
じている加工硬化を除去するためでおる。
(1) Anneal the wire using the usual method. This is to remove work hardening occurring in the wire.

(II)前述のような一般的な形状記憶処理(例えば、
前記素線の形状を固定して673°に位の温度で1時間
位保持する)により、所定の形状(所定の長さ)を記憶
させる。
(II) General shape memory processing as described above (e.g.
The predetermined shape (predetermined length) is memorized by fixing the shape of the wire and holding it at a temperature of about 673° for about one hour.

(Ill性変形を生じるような大きな伸び変形(例えば
、形状回復状態から引張りひずみで7.5〜10%以上
)を与える。この場合、前記「塑性変形を生じるような
大きな変形」の目安として、第1図に示すように変形時
の応力−ひすみ線が急に立ち上る点を目安とするとよい
(Apply a large elongation deformation that causes Ill deformation (for example, 7.5 to 10% or more in tensile strain from the shape recovery state). In this case, as a guideline for the above-mentioned "large deformation that causes plastic deformation", As shown in FIG. 1, the point where the stress-strain line suddenly rises during deformation may be used as a guide.

(IV)負荷ヲ取す除キ、Md点(A 1 点+60゜
K〜100″に以上)以上の高い温度で、なおかつ回復
再結晶が生じないか、回復再結晶が生じてもそれが僅か
に起きるのみとなるような温度にまでパルス通電加熱に
より加熱し、形状回復させる。
(IV) When the load is removed, at a high temperature above the Md point (A 1 point + 60°K to 100″ or higher), and recovery recrystallization does not occur, or even if recovery recrystallization occurs, it is only slight. The shape is restored by heating it by pulsed current heating to a temperature that only causes a change in shape.

(V−)急冷する。この急冷は形状記憶合金のワイヤが
細い場合には、自然空冷によるちので十分である(この
ような自然空冷によっても、ワイヤが細い場合には、1
00″に/秒程度以上の冷却速度が得られる)が、空気
を形状記憶合金に吹き付ける強制空冷を行ってもよい。
(V-) Cool rapidly. If the wire of the shape memory alloy is thin, this rapid cooling is sufficient due to natural air cooling (even with such natural air cooling, if the wire is thin,
00''/second or more), forced air cooling may be performed in which air is blown onto the shape memory alloy.

なお、1℃/分程度の徐冷を行った場合には、本発明に
よる効果は得られない。
Note that when slow cooling is performed at a rate of about 1° C./min, the effects of the present invention cannot be obtained.

(Vl )回復時の形状が安定するまで前記(III)
、(IV)′および(V)の操作を繰り返す。この場合
処理が適切なら、第2図に示されるように、回数を増す
毎に極めて速いピッチで長さが安定して行き、数回ない
しは士数回の繰り返し数のうちに回復時の形状が安定す
ることが確認できる。なお、第2図の斜線部は回復時の
形状が安定する安定領域を示す。
(Vl) The above (III) until the shape upon recovery is stabilized.
, (IV)' and (V) are repeated. In this case, if the treatment is appropriate, the length will stabilize at an extremely fast pitch as the number of repetitions increases, and the shape at the time of recovery will become stable within a few or several repetitions, as shown in Figure 2. It can be confirmed that it is stable. Note that the shaded area in FIG. 2 indicates a stable region where the shape during recovery is stable.

(VI )前記工程(VI)の終了俊、実際の使用時の
予想応力の50〜100%増しの応力が作用するように
して形状記憶合金に変形−形状回復の動作を繰り返させ
る。ただし、この場合、形状回復を行わせる際の加熱温
度はMd点よりやや上の温度とする。
(VI) Immediately after the completion of step (VI), the shape memory alloy is repeatedly deformed and restored by applying a stress 50 to 100% higher than the expected stress during actual use. However, in this case, the heating temperature for shape recovery is set to be slightly higher than the Md point.

本形状記憶特性安定化処理を施した形状記憶合金は、は
じめから形状的に安定しており、比較的大きな変形(引
張りで4〜7%)を与えるとともに、通電加熱により加
熱するような苛酷な繰り返し動作を行わせても、記憶形
状の消失や破断等が起りにくいことが確認された。例え
ば、本発明者が先に特願昭59−256547号におい
て提案したパルス通電加熱法によりAf点を大きく越え
る温度にぜずに、(III)の工程で変形を与えた際の
力より小さな応力状態で使用すれば、通電加熱による2
X105回の繰り返し動作でも長さ変化がほとんどない
ことが実験的に分った。
Shape memory alloys that have been subjected to this shape memory property stabilization treatment are stable in shape from the beginning and can be subjected to relatively large deformations (4 to 7% in tension), as well as to severe conditions such as heating by electrical heating. It was confirmed that even if repeated operations were performed, the memorized shape was unlikely to disappear or break. For example, by using the pulse current heating method previously proposed by the present inventor in Japanese Patent Application No. 59-256547, a stress smaller than the force applied when deforming in step (III) can be applied without raising the temperature greatly exceeding the Af point. If used in this condition, 2
It was experimentally found that there was almost no change in length even after X105 repetitions.

本処理を行った形状記憶合金は、一般的な形状記憶処理
を行ったものと比較し、動作寿命以外の機械的な性質も
変化する。第3図の実線は、このような形状記憶合金の
応力−ひすみ線図である。
Shape memory alloys subjected to this treatment have different mechanical properties other than operating life compared to those subjected to general shape memory treatment. The solid line in FIG. 3 is a stress-strain diagram of such a shape memory alloy.

他方、同図の破線は、一般的な形状記憶処理を行った形
状記憶合金の応力−ひずみ線図を示す。加熱形状回復時
は、必まり変らないが、低温変形時は、著しく異なる。
On the other hand, the broken line in the figure shows a stress-strain diagram of a shape memory alloy that has been subjected to a general shape memory treatment. Although it does not necessarily change during heating shape recovery, it differs markedly during low temperature deformation.

本処理を行ったものは、非常に小さな応力で変形可能で
あり、従って小さなパイアスカで変形可能で、アクチュ
エータとして使用した場合、効率の向上も期待できる。
Products subjected to this treatment can be deformed with a very small stress, and therefore can be deformed with a small piascus, and can be expected to improve efficiency when used as an actuator.

これは(1)の工程で与える大きな塑性変形により素材
中に残菌した応力によって引き起こされる可逆形状記憶
効果が、パイアスカによる変形と同方向に有効に働くた
めと考えられる。
This is thought to be because the reversible shape memory effect caused by the stress remaining in the material due to the large plastic deformation imparted in step (1) effectively works in the same direction as the deformation caused by the Pyaska.

なお、処理しにくい特殊な形状、例えばコイル状等の形
状記憶合金を製作する場合でも、はじめに本安定化処理
を施したワイヤをコイル状にまいて固定し、回復再結晶
がかろうじて起る温度程度に短時間保持俊、急冷するこ
とで同様な耐久性のあるものを製作することができる。
In addition, even when manufacturing a shape memory alloy in a special shape that is difficult to process, such as a coil shape, first the stabilized wire is wound into a coil shape and fixed at a temperature at which recovery recrystallization barely occurs. By holding it for a short time and rapidly cooling it, you can create something with similar durability.

また、まだ詳しい研究は行われていないが、本処理を施
した形状記憶合金は、一定の入熱条件下において多数回
の変形−形状回復動作を極めて安定に行うことから、単
に上述のように記憶形状が安定するのみならず、変態点
も安定するように思われる。
In addition, although detailed research has not yet been conducted, shape memory alloys subjected to this treatment can undergo deformation and shape recovery operations extremely stably many times under certain heat input conditions, so it is possible to simply It appears that not only the memory shape is stabilized, but also the transformation point.

なお、前記(VI[)の工程を施せば、上述のような効
果をより良り1qられるが、この(VII )の工程を
省略してもある程度の効果を得ることができる。
Note that if step (VI[) is performed, the above-mentioned effect can be further improved by 1q, but even if step (VII) is omitted, a certain degree of effect can be obtained.

本発明の方法によれば、上述のように極めて優れた形状
記憶特性の安定化処理を行うことができるが、前記した
ように現段階では、何故そのような優れた効果を得られ
るかは、理論的にはまだ十分解明できていない。ここで
は、以下に、本発明者の推論を述べる。
According to the method of the present invention, it is possible to stabilize the extremely excellent shape memory properties as described above, but as mentioned above, at this stage, it is unclear why such excellent effects can be obtained. Theoretically, this has not yet been fully elucidated. Here, the inventor's reasoning will be described below.

まず、前記(III)の工程の持つ意味は、形状記憶合
金に転位を導入し、形状記憶合金の転位密度を高め、形
状記憶合金における内部的なすへり変形の出現を高応力
まで抑止することにある。
First, the meaning of step (III) is to introduce dislocations into the shape memory alloy, increase the dislocation density of the shape memory alloy, and suppress the appearance of internal shear deformation in the shape memory alloy even under high stress. be.

また、前記(IV)および(V)の工程の持つ意味は次
のように推測される。
Furthermore, the meaning of the steps (IV) and (V) is presumed as follows.

(III)の工程により転位密度が上昇すると、形状記
憶合金には加工硬化が生じてしまう。ここにおいて、こ
の加工硬化は、形状記憶合金の粒内における転位密度の
増大よりも粒界における転位密度の増大に起因している
ように思われる。そして、(IV)および(V)の工程
を行うと、粒界の方が粒内よりエネルギ状態が高いため
、粒界において選択的に応力除去焼なましに類似する現
象が生じ、粒界における転位が解消される一方、粒内に
おいては転位はそのまま残存し、粒内は転位密度が高い
状態に維持される。
When the dislocation density increases in step (III), work hardening occurs in the shape memory alloy. Here, this work hardening appears to be due to an increase in dislocation density at the grain boundaries rather than an increase in dislocation density within the grains of the shape memory alloy. Then, when steps (IV) and (V) are performed, a phenomenon similar to stress relief annealing occurs selectively at the grain boundaries because the energy state at the grain boundaries is higher than that inside the grains. While the dislocations are eliminated, the dislocations remain as they are within the grains, and the dislocation density within the grains is maintained in a high state.

ここにおいて、前記(I[I)における加熱操作は、前
記実施例のように通電加熱により行うことが好ましいと
考えられる。これは、形状記憶合金の粒界と粒内とでは
、粒界の方が電気抵抗が高いので、通電加熱により加熱
すれば、粒界の方がより高温に加熱され、粒界における
転位をより効率良く選択的に消失させることができると
考えられるからで必る。
Here, it is considered preferable that the heating operation in (I[I) is performed by electrical heating as in the above embodiment. This is because the grain boundaries have higher electrical resistance between the grain boundaries and inside the grains of shape memory alloys, so when heated by electrical current heating, the grain boundaries are heated to a higher temperature than the grain boundaries, and dislocations at the grain boundaries are more easily suppressed. This is necessary because it is thought that it can be efficiently and selectively eliminated.

そして、前記(III)、(IV )および(V)の操
作を数回繰り返すことにより、形状記憶合金は、粒内で
はますます転位密度が高く、粒界では転位密度が小ざい
状態となる。この結果、加工硬化を生じさせることなく
、内部的なすベリ変形の出現を高応力まで抑止すること
ができ、前述のような記憶形状の安定化等、優れた記憶
特性の安定化を得ることができるものと推測される。
By repeating the operations (III), (IV), and (V) several times, the shape memory alloy becomes in a state where the dislocation density becomes higher and higher within the grains, and the dislocation density becomes smaller at the grain boundaries. As a result, it is possible to suppress the appearance of internal slip deformation even under high stress without causing work hardening, and it is possible to obtain excellent stabilization of memory properties such as stabilization of the memory shape as described above. It is assumed that it is possible.

なあ、(IV)の工程において必まり温度を高くし過ぎ
ると、粒内においても回復再結晶が許容程度を越えて生
じ、粒内においても転位密度を低下させてしまう。また
、Md点より低い温度にまでしか加熱しないとすると、
残留応力がマルテンサイト相の形で残ってしまうという
不都合が生じる。
Incidentally, if the temperature is necessarily raised too high in the step (IV), recovery recrystallization will occur within the grains to an extent exceeding the allowable level, resulting in a decrease in dislocation density within the grains as well. Also, if we only heat it to a temperature lower than the Md point,
A disadvantage arises in that residual stress remains in the form of a martensitic phase.

また、前記(■)の工程は、従来の一般的な学習効果と
同様のメカニズムによりその効果が生じるもののように
思われるが、従来知られていた学習効果の場合よりはる
かに少ない繰り返し数で形状記憶特性が安定する。この
ため、疲労寿命に対する影響はない。
In addition, the process (■) above seems to produce its effect through the same mechanism as the conventional general learning effect, but it requires much fewer repetitions than the conventional learning effect to shape the shape. Memory properties become stable. Therefore, there is no effect on fatigue life.

発明の効果 以上のように本発明は、比較的に大きな変形を繰り返し
与え、かつ局部的加熱が生じやすい通電加熱により加熱
するような苛酷な使用条件下においても、記憶形状の消
失や破断の問題を生じにくく、形状記憶1セ1性が安定
しており、しかも疲労寿命の長いl’−1−Ni形状記
憶合金を非常に短時間のうちに得ることができるという
優れた効果を得られるものである。
Effects of the Invention As described above, the present invention solves the problems of loss of memorized shape and breakage even under harsh usage conditions such as repeated relatively large deformations and heating by electrical heating that tends to cause localized heating. It is possible to obtain an l'-1-Ni shape memory alloy in a very short period of time, which is less likely to cause oxidation, has stable shape memory properties, and has a long fatigue life. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTi−Ni形状記憶合金の応力−ひずみ線図、
第2図は本発明の一実施例において所定の工程を繰り返
す毎に形状記憶合金の形状が安定して行く様子を示ず繰
り返し数と形状記憶合金の伸びとの関係を示すグラフ、
第3図は前記実施例によって処理した形状記憶合金およ
び通常の熱処理を行った形状記憶合金の応力−ひすみ線
図、第4図は従来より知られているTi−Ni形状記憶
合金の学習効果を示す特性図である。
Figure 1 is a stress-strain diagram of Ti-Ni shape memory alloy,
FIG. 2 is a graph showing the relationship between the number of repetitions and the elongation of the shape memory alloy, which does not show that the shape of the shape memory alloy becomes stable each time a predetermined process is repeated in one embodiment of the present invention.
Figure 3 is a stress-strain diagram of the shape memory alloy treated according to the above example and the shape memory alloy subjected to ordinary heat treatment, and Figure 4 is the learning effect of the conventionally known Ti-Ni shape memory alloy. FIG.

Claims (1)

【特許請求の範囲】 次の工程を含んでなるTi−Ni形状記憶合金の形状記
憶特性安定化処理方法。 (a)形状記憶合金素材に所定の形状を記憶させる。 (b)前記素材に、塑性変形を生じるような大きな伸び
変形を与える。 (c)前記素材から負荷を取り除き、M_d点以上の高
い温度で、なおかつ回復再結晶が生じないかまたは回復
再結晶が生じてもそれが僅かとなるような温度にまで加
熱し、形状回復させる。 (d)前記素材を急冷する。 (e)回復時の形状が安定するまで前記(b)、(c)
および(d)の工程を繰り返す。
[Scope of Claim] A method for stabilizing the shape memory properties of a Ti-Ni shape memory alloy, comprising the following steps. (a) Memorize a predetermined shape in the shape memory alloy material. (b) Applying large elongation deformation to the material to cause plastic deformation. (c) Remove the load from the material and heat it to a high temperature above the M_d point, at which no recovery recrystallization occurs or only a small amount of recovery recrystallization occurs, to recover the shape. . (d) rapidly cooling the material; (e) The above (b) and (c) until the shape upon recovery is stabilized.
and repeating step (d).
JP20164785A 1985-09-13 1985-09-13 Method for stabilizing shape memory characteristic of shape memory ti-ni alloy Granted JPS6263657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20164785A JPS6263657A (en) 1985-09-13 1985-09-13 Method for stabilizing shape memory characteristic of shape memory ti-ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20164785A JPS6263657A (en) 1985-09-13 1985-09-13 Method for stabilizing shape memory characteristic of shape memory ti-ni alloy

Publications (2)

Publication Number Publication Date
JPS6263657A true JPS6263657A (en) 1987-03-20
JPH0530904B2 JPH0530904B2 (en) 1993-05-11

Family

ID=16444552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20164785A Granted JPS6263657A (en) 1985-09-13 1985-09-13 Method for stabilizing shape memory characteristic of shape memory ti-ni alloy

Country Status (1)

Country Link
JP (1) JPS6263657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533756A (en) * 2015-09-30 2018-11-15 ハッチンソン テクノロジー インコーポレイテッドHutchinson Technology Incorporated Thermo-mechanical stabilization of nitinol wire in optical image stabilized suspension

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533756A (en) * 2015-09-30 2018-11-15 ハッチンソン テクノロジー インコーポレイテッドHutchinson Technology Incorporated Thermo-mechanical stabilization of nitinol wire in optical image stabilized suspension

Also Published As

Publication number Publication date
JPH0530904B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
US6106642A (en) Process for the improved ductility of nitinol
US4919177A (en) Method of treating Ti-Ni shape memory alloy
CA1059797A (en) Alloys with repeatedly reversible shape memory effect
US4707196A (en) Ti-Ni alloy articles having a property of reversible shape memory and a method of making the same
JPS6343456B2 (en)
JP5535426B2 (en) Method for processing nickel-titanium shape memory alloy
US5102333A (en) Orthodontic process for straightening teeth
Xue et al. The effect of aging on the B2-R transformation behaviors in Ti-51at% Ni alloy
US4095999A (en) Heat-treating method
JPH0251976B2 (en)
JPS6263657A (en) Method for stabilizing shape memory characteristic of shape memory ti-ni alloy
CN103352194A (en) Method and equipment for improving shape memory alloy superelasticity
CN110358963A (en) A kind of FeMnAlNi marmem and preparation method thereof
JPS59179771A (en) Using method of functional alloy member
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
JPS61227141A (en) Niti shape memory alloy wire
JPH0128252B2 (en)
JPS6144150B2 (en)
JP2986823B2 (en) Ti-Ni-based reversible shape memory alloy and method for producing the same
JPS60155657A (en) Production of ti-ni superelastic alloy
JPS6157389B2 (en)
JP2691567B2 (en) Super elastic element
JP2732525B2 (en) Manufacturing method of shape memory alloy
Skalitzky et al. Machine Design for Multiscale Nitinol Annealment Process and End Product Performance Analysis
JPS6157388B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term