JPS6263430A - Method for detecting end point - Google Patents

Method for detecting end point

Info

Publication number
JPS6263430A
JPS6263430A JP20364785A JP20364785A JPS6263430A JP S6263430 A JPS6263430 A JP S6263430A JP 20364785 A JP20364785 A JP 20364785A JP 20364785 A JP20364785 A JP 20364785A JP S6263430 A JPS6263430 A JP S6263430A
Authority
JP
Japan
Prior art keywords
light
end point
spot
diameter
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20364785A
Other languages
Japanese (ja)
Inventor
Eiji Iri
井利 英二
Toshiaki Yoshida
敏明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP20364785A priority Critical patent/JPS6263430A/en
Publication of JPS6263430A publication Critical patent/JPS6263430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a waste of development work time by specifying the spot diameter of a laser beam applied, thereby enabling the end point of the development work in the process for fabricating semiconductor devices to be detected accurately. CONSTITUTION:The laser beam having exited from a laser transmitter portion 7 is applied through a projection fiber cord 3 to the surface of a photoresist film 1c with a spot of a 0.5mm-10mm diameter. If applied with a spot with a 0.5mm-10mm diameter, for instance, the spot ranges over a wide area, and even if the applied site deviates in either upward, downward, left or right direction, the proportion of the portion from which the photoresist is removed to the whole portion of be applied does not vary, and thus the level of change in the amount of the received light is constant. Moreover, the amount of the reflected light is sufficient for the analysis of change of the light strength for detecting the end point with a diameter of this range. With this, the accurate development end point can be detected with a spot of a 0.5mm-10mm diameter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は4半導体装置作成工程における回路パターンの
形成終点を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the formation end point of a circuit pattern in four semiconductor device manufacturing steps.

〔従来技術〕[Prior art]

集積回路等の半導体装置を作成する場合にはフォトリソ
グラフィ技術が用いられる。
Photolithography technology is used to create semiconductor devices such as integrated circuits.

これは基板上に食刻対象の物質の層を形成し、更にその
表層にフォトレジストを塗布して回路パターンを露光し
、これを現像してフォトレジスト層の感光した部分(ま
たは感光していない部分)を除去して回路パターンを形
成する。次にこれを腐食性液体に浸漬して表層のフォト
レジストが除去されている部分を食刻させてその下層の
物質の層面を露呈させ、最後に表層上のフォトレジスト
ーを除去して所定の回路パターンを形成するものである
This involves forming a layer of the material to be etched on the substrate, then coating the surface layer with photoresist, exposing the circuit pattern, and developing this to expose exposed areas (or unexposed areas) of the photoresist layer. portion) to form a circuit pattern. Next, this is immersed in a corrosive liquid to etch away the areas where the surface photoresist has been removed, exposing the layer of the underlying material.Finally, the photoresist on the surface layer is removed to form a predetermined area. It forms a circuit pattern.

そこで腐食性物質にて回路パターンを形成する際の現像
或いは腐食の進行状況、即ら現像或いは腐食が下層表面
まで完了したか否かの検出は作業管理上重要である。
Therefore, it is important for work management to detect the progress of development or corrosion when forming a circuit pattern using a corrosive substance, that is, whether or not development or corrosion has been completed to the underlying surface.

ところが従来、フォトレジスト現像終点を直接的に検出
する方法はなく、経験より割り出された時間だけ現像、
腐食を行っているにすぎなかった。
However, in the past, there was no way to directly detect the end point of photoresist development, and development was performed for a time determined from experience.
It was just corroding.

このため現像、腐食が完了していないのに、これらの作
業を打ち切ってしまうという誤った判断をしたり、逆に
現像、腐食が既に完了しているにも拘わらず作業をし続
けて時間効率が悪くなる等の欠点があった。そこで現像
終点検出に応用可能な終点検出方法が本願出願人より出
願されている(特願昭59−84053号)。この終点
検出方法を要約すると以下の通りである。
For this reason, it is possible to make the wrong decision to discontinue these operations even though development and corrosion have not yet been completed, or conversely, to continue working even though development and corrosion have already been completed, thereby reducing time efficiency. There were drawbacks such as poor performance. Therefore, an application for an end point detection method applicable to development end point detection has been filed by the applicant of the present invention (Japanese Patent Application No. 84053/1983). This end point detection method is summarized as follows.

可干渉光であるレーザ光を除去すべき膜に投射すると、
その表面からの反射光とその裏面からの反射光とが干渉
するが、現像、腐食の進行による表層の層厚の変化に伴
い、両度射光の干渉の度合、つまり反射光の光強度が経
時的に変化する。そして現像2腐食の進行により膜が完
全に除去された場合には、可干渉光の反射は下層の表面
からのみ行われるため反射光の光強度は一定となる。従
って反射光の光強度を経時的に検出し、その経時的光強
度データを解析することにより現像、腐食の終点を検出
することが可能である。第3図は反射光強度の経時変化
を示し、変化量不変が一定時間継続したところを終点と
している。
When laser light, which is coherent light, is projected onto the film to be removed,
The light reflected from the front surface and the light reflected from the back surface interfere, but as the thickness of the surface layer changes due to progress of development and corrosion, the degree of interference between the two emitted lights, that is, the light intensity of the reflected light, changes over time. change. When the film is completely removed due to the progression of development 2 corrosion, the intensity of the reflected light remains constant because the coherent light is reflected only from the surface of the underlying layer. Therefore, it is possible to detect the end point of development and corrosion by detecting the light intensity of the reflected light over time and analyzing the light intensity data over time. FIG. 3 shows the change over time in the reflected light intensity, and the end point is when the amount of change remains unchanged for a certain period of time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図は半導体装置の回路パターンを示す模式図であり
、図中実線で囲まれている部分はフォトレジストが残存
する部分(従って食刻対象層が残る部分)、また囲まれ
ていない部分はフォトレジストを除去する部分(従って
食刻対象層が除去される部分)を表す。
FIG. 4 is a schematic diagram showing the circuit pattern of a semiconductor device. In the figure, the parts surrounded by solid lines are the parts where the photoresist remains (therefore, the etching target layer remains), and the parts not surrounded are the parts surrounded by solid lines. It represents the portion where the photoresist is removed (therefore, the layer to be etched is removed).

いまフォトレジストを現像する場合について説明すると
、レーザ照射光のスポット径が小さいと第4図a、b、
cに示される如きスポットになる。
Now, to explain the case of developing a photoresist, if the spot diameter of the laser irradiation light is small, the results shown in Fig. 4 a, b,
The spot will be as shown in c.

ここでレーザ光が3の如くフォトレ・ンストを除去する
部分に照射されれば、フォトレジスト膜厚が経時変化す
るので、上述した理論に基づいて現像終点が検出できる
If the laser beam is irradiated onto the portion where the photoresist is to be removed as shown in 3, the photoresist film thickness will change over time, so the end point of development can be detected based on the above-mentioned theory.

ところが照射部位をいつもパターンの同じ位置に設定す
ることは実用上不可能であるので、bのようにフォトレ
ジストが残存する部分とフォトレジストを除去する部分
とにまたがったスポットになったり、またはCのように
フォトレジストが残存する部分にのみ照射するスポット
になったりすることがある。bの場合、照射部位によっ
て、照射部分全体に対するフォトレジストを除去する部
分の割合が異なるので、受光量の変化レベルが大きく変
動し、また干渉光がaに比べて少ないので、受光変化の
信号幅が小さくなり、正確な終点を検出できない。また
Cの場合、スポット全部が、フォトレジストが残存する
部分に属していてフォトレジスト膜厚が経時変化しない
ので、上述した理論は全く通用できず終点の検出は不可
能である。
However, it is practically impossible to always set the irradiation area at the same position on the pattern, so the spot may straddle the area where the photoresist remains and the area where the photoresist is removed, as shown in b, or the area where the photoresist is removed. This may result in a spot where only the remaining photoresist is irradiated. In case b, the ratio of the portion of the photoresist removed to the entire irradiated area differs depending on the irradiated area, so the level of change in the amount of received light fluctuates greatly, and since there is less interference light than in case a, the signal width of the change in received light varies. becomes small and the accurate end point cannot be detected. In the case of C, all the spots belong to the area where the photoresist remains and the photoresist film thickness does not change over time, so the above theory cannot be applied at all and it is impossible to detect the end point.

逆にレーザ照射光のスポット径が大きいと、照射部分に
おける単位面積あたりの照射光量が少なくなって反射光
量が減少し、反射光の光強度の経時変化が検出できない
という実用上の問題点がある。
On the other hand, if the spot diameter of the laser irradiation light is large, the amount of irradiation light per unit area of the irradiated area will decrease, resulting in a decrease in the amount of reflected light, which poses a practical problem in that changes over time in the intensity of the reflected light cannot be detected. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであり、その
目的とするところは、可干渉光を被膜上に直径0.5寵
〜10寵のスポットにて照射し、光の干渉作用を利用し
て、現像、Ws食など半導体装置の回路パターン形成の
終点が正確に検出可能な方法を提案することにある。
The present invention was made in view of the above circumstances, and its purpose is to irradiate coherent light onto a film at a spot with a diameter of 0.5 to 10 cm and utilize the interference effect of light. The purpose of this invention is to propose a method that can accurately detect the end point of circuit pattern formation of a semiconductor device, such as development or Ws etching.

本発明に係る終点検出方法は、被膜を部分的に腐食して
半導体装置の回路パターンを形成する工程の終了を検出
する終点検出方法において、可干渉光を被膜上に直径0
.5鰭〜10寵のスポットにて照射し、被膜表面からの
反射光と裏面からの反射光との相互干渉に伴う光強度変
化を検知することにより、残存被膜厚を検出することを
特徴とする。
An end point detection method according to the present invention is an end point detection method for detecting the end of a process of partially corroding a film to form a circuit pattern of a semiconductor device.
.. It is characterized by detecting the remaining coating thickness by irradiating 5 to 10 fin spots and detecting the change in light intensity due to mutual interference between the light reflected from the surface of the coating and the light reflected from the back surface. .

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて説明する
The present invention will be described below based on drawings showing embodiments thereof.

第1図は本発明に係る終点検出方法を実施するための装
置の構成概略図である。第1図においてlは製造過程に
おける半導体装置を示し、基板la上に食刻対象層1b
が被着され、その上層にフォトレジスB11eが形成さ
れている。半導体装置1は現像液(図示せず)内に浸漬
されている。
FIG. 1 is a schematic diagram of the configuration of an apparatus for implementing the end point detection method according to the present invention. In FIG. 1, l indicates a semiconductor device in the manufacturing process, and a layer 1b to be etched is formed on a substrate la.
is deposited, and a photoresist B11e is formed on top of it. The semiconductor device 1 is immersed in a developer (not shown).

半導体装置1の上方にその先端を有する光フアイバプロ
ーブ2はその内部に投光用ファイバコード3と受光用バ
ンドルファイバコード4とを具備しており、該投光用フ
ァイバコード3.該受光用バンドルフアイバコード4夫
々の先端面は前記光フアイバプローブ2の先端面に一致
している。投光用ファイバコード3の基端部は、その内
部にコリメータレンズ5とレーザ発信器6とを具備して
いるレーザ発信部7に連結されている。そしてレーザ発
信器6から発せられたレーザ光はコリメークレンズ5に
て適当な径に調節され、投光用ファイバコード3を介し
て、フォトレジスト膜IC表面に照射するようになって
いる。
The optical fiber probe 2 having its tip above the semiconductor device 1 is provided with a light emitting fiber cord 3 and a light receiving bundle fiber cord 4 therein. The tip end surface of each of the light-receiving bundle fiber cords 4 corresponds to the tip end surface of the optical fiber probe 2. The proximal end of the light projecting fiber cord 3 is connected to a laser transmitter 7 that includes a collimator lens 5 and a laser transmitter 6 therein. The laser beam emitted from the laser transmitter 6 is adjusted to an appropriate diameter by a collimating lens 5, and is irradiated onto the photoresist film IC surface via a light projection fiber cord 3.

また受光用バンドルファイバコード4は、その内部に光
検知器8、光強度演算器9及び終点表示器10を具備す
るレーザ受信部11に連結されている。
The light-receiving bundle fiber cord 4 is connected to a laser receiver 11 that includes a photodetector 8, a light intensity calculator 9, and an end point indicator 10 therein.

そしてフォトレジスト膜1c表面及び裏面からの反射光
が相互干渉され合成された光が、光検知器8に入り、そ
の強度が光強度演算器9にて経時的に記録され、その後
、後述する原理に基づいてその記録を演算処理すること
により現像終点が検出され、終点表示器lOに終点が表
示されるようになっている。
Then, the reflected light from the front and back surfaces of the photoresist film 1c mutually interfere with each other, and the combined light enters the photodetector 8, and its intensity is recorded over time by the light intensity calculator 9. The end point of development is detected by arithmetic processing of the record based on , and the end point is displayed on the end point display lO.

次にフォトレジスト膜1c表面及び裏面からの反射光の
相互干渉による光強度変化を検知することにより、フォ
トレジスト膜1cの膜厚を検出し、更には現像の終点を
検出できるとする原理について説明する。
Next, we will explain the principle that the thickness of the photoresist film 1c can be detected and the end point of development can be detected by detecting the change in light intensity due to mutual interference of the reflected light from the front and back surfaces of the photoresist film 1c. do.

2つの波ul =3. cos(kx−ωtL  ’f
:! =a2cos(kx −ωt )があって、異な
る光路Z、、a2を通って重ね合わせた場合、合成波を
Uとすると、u=ul+L12 −alcos (k (x+7!、 ) −ωt l+
82Co!i (k (x+62 ) −ωt )−a
 Ieos ((kx−ωt)+に!!、)+a2  
eos ((kx−ωt ) +kI12 )= (a
 (coskll l+a2coskj!2 )eos
 (kx−ωt)−(alsjnkj21 +32sj
nkl12 )sin(kx −ωt)よって合成波U
の振幅は 1u12− (aleosk!!1 +a2cosk1
2)2+ (a1sfnk!!1 +a2’5fnkj
!2 ) 2、=a、 2 +a22 +2ala2cos  (k/1−kI12)ここでa
宜−32=aとすると u2=2a2 (1+cosk(mm  J2))・=
(i)−刀先学的な光路差(j!2−I!+)はフォト
レジスト膜1cにおける光の屈折率をnとすると、第2
図(レーザ光のフォトレジスト膜1eにおける反射状態
を表す模式図)から 112−1!、1−n (AC+CA’) −ANここ
でAC−CA ’ −d /cos rAN= 2d 
tanr ・sinθ (但し、フォトレジスト膜IC表面及び裏面での反射角
を夫々γ、θ、フォトレジスト膜ICの膜厚をdとする
) フレネルの公式より sin (l      sinθ sin (π/2−γ)    cosγよって COS γ   COS γ nd = −−2nd sin T CO3γ ここでレーザ光はフォトレジスト膜IC面に対して垂直
に近い入射であるからγ−〇となり1! 2 1 I−
2nd           −(2)(2)を411
に代入すれば u2 =2a2 (1Ieos Znkd)即ち厚みd
がλ/2nだけ変化するごとにフォトレジスト膜表面か
らの反射光と膜裏面からの反射光とが合成された光の強
度は極大値をとることになる。従って光検知器8にて受
信される光の強度変化を分析することにより膜厚は検出
可能である。
Two waves ul =3. cos(kx-ωtL'f
:! =a2cos(kx -ωt), and if they are superimposed through different optical paths Z,, a2, then if the composite wave is U, then u=ul+L12 -alcos (k (x+7!, ) -ωt l+
82Co! i (k (x+62) -ωt)-a
Ieos ((kx-ωt)+!!,)+a2
eos ((kx-ωt) +kI12)=(a
(coskll l+a2coskj!2) eos
(kx-ωt)-(alsjnkj21 +32sj
nkl12) sin(kx −ωt), so the composite wave U
The amplitude of is 1u12- (aleosk!!1 +a2cosk1
2) 2+ (a1sfnk!!1 +a2'5fnkj
! 2) 2,=a, 2 +a22 +2ala2cos (k/1-kI12) where a
If y-32=a, then u2=2a2 (1+cosk(mm J2))・=
(i) - The optical path difference (j!2-I!+) is the second
From the figure (schematic diagram showing the state of reflection of laser light on the photoresist film 1e), 112-1! , 1-n (AC+CA') -AN where AC-CA' -d /cos rAN= 2d
tanr ・sinθ (However, the reflection angles on the front and back surfaces of the photoresist film IC are γ and θ, respectively, and the film thickness of the photoresist film IC is d.) From Fresnel's formula, sin (l sinθ sin (π/2−γ ) cos γ means COS γ COS γ nd = −−2nd sin T CO3γ Here, since the laser beam is incident almost perpendicularly to the photoresist film IC surface, γ−〇 becomes 1! 2 1 I−
2nd - (2) (2) to 411
If substituted into, u2 = 2a2 (1Ieos Znkd), that is, thickness d
The intensity of the combined light of the light reflected from the surface of the photoresist film and the light reflected from the back surface of the photoresist film reaches a maximum value every time the value changes by λ/2n. Therefore, the film thickness can be detected by analyzing changes in the intensity of light received by the photodetector 8.

第3図は光強度演算器9にて得られたレーザ受信部11
の光強度レベルの変化図である。現像が開始されると時
間の経過に伴って、第3図に示す如くフォトレジスト膜
1cの膜厚がλ/2n(n:IfU折率)だけ変化する
都度極大となるように、フォトレジスト膜1cが減る速
度に応じて光強度が変化する。つまり現像速度が速くな
れば極大−極大間の時間が短くなり、逆に遅くなれば極
大−極大間の時間が長くなる。そしてフォトレジスト膜
1cが無くなれば、つまり現像が完了すれば、干渉は生
じなくなり、光強度変化は起こらず光強度変化の傾きが
0になる(第3図a点)ので、この時点を現像終点とし
て検出する。
FIG. 3 shows the laser receiving section 11 obtained by the light intensity calculator 9.
It is a change diagram of the light intensity level of. When development is started, as time passes, the photoresist film 1c is changed so that the film thickness of the photoresist film 1c becomes maximum each time it changes by λ/2n (n: IfU refractive index) as shown in FIG. The light intensity changes depending on the speed at which 1c decreases. In other words, if the developing speed becomes faster, the time between maximum peaks becomes shorter, and conversely, if the developing speed becomes slower, the time between peaks becomes longer. When the photoresist film 1c disappears, that is, when development is completed, no interference occurs, no change in light intensity occurs, and the slope of the change in light intensity becomes 0 (point a in Figure 3), so this point is the development end point. Detected as.

次に本発明の要部である照射レーザのスポット径につい
て説明する。直(y4 sooμm未満のスポットで照
射した場合は、照射部位によって、照射部分全体に占め
るフォトレジストを除去する部分の割合が容易に変化す
るので(第4図a、b、c)、受光パターンが大きく異
なり、正確な終点の検出が困難である。また特に、スポ
ットが、フォトレジストが残存する部分に包含されてい
る部分に包含されている場合(第4図C)は終点の検出
が不可能である。逆に直径が10mmより大きいスポッ
ト径にて照射した場合は、照射部分における単位面積あ
たりの照射光量が減少し、反射光の光強度の経時変化が
検出できず、終点は検出不可能である。
Next, the spot diameter of the irradiation laser, which is the main part of the present invention, will be explained. When irradiating with a spot smaller than y4 sooμm, the proportion of the photoresist removed in the entire irradiated area easily changes depending on the irradiated area (Fig. 4 a, b, c), so the light receiving pattern It is difficult to accurately detect the end point, especially if the spot is contained in a region where the photoresist remains (Figure 4C). On the other hand, when irradiating with a spot diameter larger than 10 mm, the amount of irradiated light per unit area in the irradiated area decreases, and changes over time in the light intensity of reflected light cannot be detected, making it impossible to detect the end point. It is.

これに対して直径が0.5鶴〜10鶴のスポットで照射
した場合は、例えばスポットが第4図dの如く広域にま
たがった状態になり、照射部位が上下左右どの方向にず
れたとしても、照射部分全体に対するフォトレジストを
除去する部分の割合は変化せず、受光量の変化のレベル
は一定である。また反射光量は、この範囲の直径で終点
検出のための光強度変化分析には充分である。従って直
径0.5關〜10mmのスポットでは正確な現像終点を
検出することが可能である。
On the other hand, if the spot is irradiated with a diameter of 0.5 to 10, the spot will span a wide area as shown in Figure 4 (d), and even if the irradiated area is shifted in any direction, up, down, left, or right. , the ratio of the area where the photoresist is removed to the entire irradiated area does not change, and the level of change in the amount of light received is constant. Further, the amount of reflected light is sufficient for analysis of light intensity changes for detecting the end point with a diameter within this range. Therefore, it is possible to accurately detect the development end point with a spot having a diameter of 0.5 mm to 10 mm.

よって照射されるレーザ光のスポット径は、投光用ファ
イバコード3の先端面とフi−1−レジスト膜1cの表
面との距離の調節により直径0.5關〜10關に設定さ
れる。
Therefore, the spot diameter of the irradiated laser beam is set to a diameter of 0.5 to 10 degrees by adjusting the distance between the tip end surface of the light projecting fiber cord 3 and the surface of the fi-1 resist film 1c.

レーザ発信部7を出たレーザ光は投光用ファイバコード
3を介して、フォトレジストll*IC表面に直径0.
5mm〜10關のスポットにて照射される。
The laser light emitted from the laser transmitter 7 passes through the light emitting fiber cord 3 and is applied to the surface of the photoresist ll*IC with a diameter of 0.
Irradiation is performed at a spot of 5 mm to 10 mm.

そしてフォトレジスト膜IC表面からの反射光と裏面か
らの反射光との合成光は、受光用バンドルファイバコー
ド4を介して光検知器8にて検知され、その合成光の光
強度パターンが光強度演算器9に記録され、次に前述し
た原理に基づき、光強度パターンからフォトレジスト膜
厚が測定され、現像の終点が検出されて終点表示器10
にて現像終点が表示される。
The combined light of the reflected light from the front surface of the photoresist film IC and the reflected light from the back side is detected by the photodetector 8 via the light-receiving bundle fiber cord 4, and the light intensity pattern of the combined light is determined by the light intensity. The photoresist film thickness is then measured from the light intensity pattern based on the principle described above, the end point of development is detected, and the end point indicator 10 is recorded.
The development end point is displayed.

〔効果〕〔effect〕

以上詳述した如く、本発明に係る方法では、照射レーザ
光のスポット径を0.5mm〜10mmに設定すること
により、半導体装置作成工程における現像作業の終点が
正確に検出できるので現像作業時間に無駄がない。また
現像未完了状態のまま次の工程に進む危険が防止される
等本発明は優れた効果を奏する。
As detailed above, in the method according to the present invention, by setting the spot diameter of the irradiated laser beam to 0.5 mm to 10 mm, the end point of the developing operation in the semiconductor device manufacturing process can be accurately detected, so that the developing operation time can be reduced. There is no waste. Further, the present invention has excellent effects such as preventing the risk of proceeding to the next step with incomplete development.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る方法を実施するための装置の構成
概略図、第2図はフォトレジスト膜表面及び裏面におけ
るレーザ光の反射状態を示す模式図、第3図は受光強度
の経時変化を示すパターン図、第4図は半導体装置の回
路パターンを示す模式図である。 1c・・・フォトレジスト膜 2・・・光フアイバプロ
ーブ 3・・・投光用ファイバコード 4・・・受光用
バンドルファイバコード 5・・・コリメータレンズ7
・・・レーザ受信部 11・・・レーザ受信部特 許 
出願人  大日日本電線株式会社代理人 弁理士  河
  野  登  失笑 2 回 時間 婆 3 凹 X 4 国
Fig. 1 is a schematic diagram of the configuration of an apparatus for carrying out the method according to the present invention, Fig. 2 is a schematic diagram showing the state of reflection of laser light on the front and back surfaces of the photoresist film, and Fig. 3 is a temporal change in received light intensity. FIG. 4 is a schematic diagram showing a circuit pattern of a semiconductor device. 1c... Photoresist film 2... Optical fiber probe 3... Fiber cord for light emission 4... Bundle fiber cord for light reception 5... Collimator lens 7
...Laser receiving section 11...Laser receiving section patent
Applicant Dainichi Nippon Electric Cable Co., Ltd. Agent Patent Attorney Noboru Kono Smile 2 Times 3 Concave X 4 Country

Claims (1)

【特許請求の範囲】 1、被膜を部分的に腐食して半導体装置の回路パターン
を形成する工程の終了を検出する終点検出方法において
、 可干渉光を被膜上に直径0.5mm〜10mmのスポッ
トにて照射し、被膜表面からの反射光と裏面からの反射
光との相互干渉に伴う光強度変化を検知することにより
、残存被膜厚を検出することを特徴とする終点検出方法
[Claims] 1. An end point detection method for detecting the end of a process of partially corroding a film to form a circuit pattern of a semiconductor device, comprising: applying coherent light to a spot with a diameter of 0.5 mm to 10 mm on the film; An end point detection method characterized in that the remaining coating thickness is detected by detecting a change in light intensity due to mutual interference between light reflected from the surface of the coating and light reflected from the back surface.
JP20364785A 1985-09-13 1985-09-13 Method for detecting end point Pending JPS6263430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20364785A JPS6263430A (en) 1985-09-13 1985-09-13 Method for detecting end point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20364785A JPS6263430A (en) 1985-09-13 1985-09-13 Method for detecting end point

Publications (1)

Publication Number Publication Date
JPS6263430A true JPS6263430A (en) 1987-03-20

Family

ID=16477505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20364785A Pending JPS6263430A (en) 1985-09-13 1985-09-13 Method for detecting end point

Country Status (1)

Country Link
JP (1) JPS6263430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357304A (en) * 1992-03-25 1994-10-18 Sony Corporation Image development apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357304A (en) * 1992-03-25 1994-10-18 Sony Corporation Image development apparatus and method

Similar Documents

Publication Publication Date Title
EP1041418A2 (en) Optical wiring layer, optoelectric wiring substrate, mounted substrate, and methods for manufacturing the same
EP0636911A1 (en) Coupling structure between optical semiconductor and optical waveguide, and coupling method of the same
KR20000011897A (en) Semiconductor chip mounting board and method for inspecting the same
JP3492012B2 (en) Displacement information detection device
US10260868B2 (en) Interferometric method and system using variable fringe spacing for inspecting transparent wafers for electronics, optics or optoelectronics
EP0611996A2 (en) Phase shift mask and its inspection method
JP2022153599A (en) Optical sensor and analyzing device using the same
US6585908B2 (en) Shallow angle interference process and apparatus for determining real-time etching rate
JP2003166856A (en) Optical encoder
JPS6263430A (en) Method for detecting end point
US6562248B1 (en) Active control of phase shift mask etching process
US6721058B2 (en) Apparatus for and method of measuring thickness of materials using the focal length of a lensed fiber
JP2000097648A (en) Device and method for measuring difference in level
JP3391030B2 (en) Electronic device manufacturing method and pattern exposure method
JP2802177B2 (en) Method for measuring dissolution rate of photoresist surface
JPS62269036A (en) System for automatically measuring diffraction efficiency distribution of diffraction grating
JPS6263431A (en) Method for detecting end point
EP0509847A2 (en) Measuring the cross-sectional distribution of the refractive index of optical waveguides
JP2778231B2 (en) Position detection device
JPH0950176A (en) Toner density measuring device
JP3271221B2 (en) Method of detecting light emission position of light emitter and method of assembling optical parts using the same
JP2000111313A (en) Device and method for detecting etching starting point, and plasma etching processor
JP2565274B2 (en) Height measuring device
JPS61218929A (en) Crystal evaluating device
JPH09257697A (en) Surface plasmon resonance sensor apparatus