JPS6262557A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6262557A
JPS6262557A JP20205485A JP20205485A JPS6262557A JP S6262557 A JPS6262557 A JP S6262557A JP 20205485 A JP20205485 A JP 20205485A JP 20205485 A JP20205485 A JP 20205485A JP S6262557 A JPS6262557 A JP S6262557A
Authority
JP
Japan
Prior art keywords
emitter
center
segment
killer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20205485A
Other languages
Japanese (ja)
Inventor
Osamu Hashimoto
理 橋本
Fumiaki Kirihata
桐畑 文明
Saburo Tagami
田上 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20205485A priority Critical patent/JPS6262557A/en
Publication of JPS6262557A publication Critical patent/JPS6262557A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To readily electrically insulate between an n-type emitter and a p-type base by selectively implanting life time killer such as gold or platinum directly under the center of a segment to shorten the carrier lifetime directly under the center of the segment, and alleviating the current concentration at turning OFF time. CONSTITUTION:A window 12 of an oxide film is opened by photoetching an oxide film at the center of a rectangular n-type emitter 4, and life time killer such as gold or platinum is thermally diffused in high density through the window 12. In order to implant tthe killer from a p-type emitter 7 side, the oxide film of the emitter 7 is removed, and the gold or platinum is again implanted to optimize the turning OFF time or tail current of a GTO thyristor. The second implanting amount is sufficiently reduced as compared with the first implanting amount from the emitter 4 side. The lives of carriers are largely differentiated between the region 12 directly under the center of a rectangular cathode electrode and a region except the region 12 by differentiating the first and second killer implanting amounts.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体装置特にゲートターンオフサイリスタ
(以下GTOサイリスタと略す)、静電誘導サイリスタ
、トランジスタ等の電流をしゃ断する能力を有する半導
体装置の製造方法に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to semiconductor devices, particularly semiconductor devices having the ability to cut off current, such as gate turn-off thyristors (hereinafter abbreviated as GTO thyristors), static induction thyristors, and transistors. Regarding the manufacturing method.

〔従来技術とその問題点〕[Prior art and its problems]

この種の半導体装置としては、しゃ断電流及びしゃ断時
許容使用電圧の増大が要求される。GTOサイリスタの
定状導通状態における電流密度は、短冊形カソード電極
(以下セグメントと略す)について考える時、そのセグ
メント全体にわたって一様である。ゲートに負の電圧を
加えターンオフさせる場合、電流はゲート電極に近いセ
グメントの端の方から消えていき、セグメントの中央部
の狭い領域番と電流が集中する。この電流集中がきわめ
て大きくなれば、GTOサイリスクは熱的に破壊される
。このセグメント中央部への電流集中の大きさの程度が
、しゃ断電流や許容使用電圧の大きさを左右する。この
電流集中を低減させるには、セグメント中央部直下の領
域をGTOサイリスタの動作として不活性にすればよい
This type of semiconductor device is required to increase the cut-off current and the allowable operating voltage during cut-off. When considering a rectangular cathode electrode (hereinafter abbreviated as segment), the current density in the constant conduction state of the GTO thyristor is uniform over the entire segment. When a negative voltage is applied to the gate to turn it off, the current disappears from the end of the segment near the gate electrode, and the current is concentrated in a narrow area in the center of the segment. If this current concentration becomes extremely large, the GTO Cyrisk will be thermally destroyed. The degree of current concentration at the center of the segment determines the magnitude of the cutoff current and allowable operating voltage. In order to reduce this current concentration, the region immediately below the center of the segment can be made inactive as a GTO thyristor.

従来の七グメント中央部亘下領域の動作不活性化の方法
について、第2図、第3図、第4図に示すセグメント部
断面図を用いて説明する。
A conventional method of inactivating the operation of the area below the central portion of the seventh segment will be explained using sectional views of the segment shown in FIGS. 2, 3, and 4.

第2図で(ま、セグメント中央部にPベース領域5が絽
出し、nエミッタ4を2分することによって電流の集中
を低下ぎせる。この方式では露出したPイー25gnエ
ミッタ4の間の電気的絶縁が1雅になる欠点がある。
In Fig. 2, the P base region 5 is exposed at the center of the segment, dividing the N emitter 4 into two to reduce the concentration of current. There is a drawback that the isolation is only elegant.

瀉3図では、セグメント中央部のnエミッタ層4の厚さ
を薄くすることで、横方向の抵抗をふやし、しかもこの
nエミッタ凹部の位置と相対する位桁にアノードシート
孔9をもうけ蔵瀧の集中を低下させる。この方式ではn
エミッタ凹部とアノードショート孔9の位置合せに困難
が生ずる。
In Figure 3, the lateral resistance is increased by reducing the thickness of the n-emitter layer 4 at the center of the segment, and an anode sheet hole 9 is formed at the position opposite to the position of this n-emitter recess. decrease concentration. In this method, n
Difficulty arises in aligning the emitter recess and the anode short hole 9.

第4図では、セグメント中央部直下のPベース領域5の
一部lOの不純物濃度を高くしさらにその部分10のP
ベース層の厚さを他の部分より厚くすることによって、
セグメント中央部での電流集中を下げる方式である。
In FIG. 4, the impurity concentration of lO in a part of the P base region 5 directly under the center of the segment is increased, and the P base region 5 in that part 10 is further increased.
By making the base layer thicker than other parts,
This method reduces current concentration at the center of the segment.

この方式では、Pベース領域5に高濃度不純物領域10
もうけるために、拡散工程数が増えしかも高温長時間の
拡散になるため、特に大口径素子製造においては、半導
体基体の熱的ひずみの発生において不利益がある。
In this method, a high concentration impurity region 10 is provided in the P base region 5.
In order to make a profit, the number of diffusion steps is increased and the diffusion is performed at high temperatures and for a long time, which is disadvantageous in terms of thermal distortion of the semiconductor substrate, especially in the manufacture of large-diameter devices.

〔発明の目的〕[Purpose of the invention]

本発明は、GTOサイリスタ等の自己消弧機能を有する
半導体装置において、その基本構成要素であるセグメン
トの中央部でのターンオフ時の電流集中を緩和し、nエ
ミッタとpイー3間の電気的絶縁を容易にし、nエミッ
タに凹部がないためカソード接触電極板との熱的接触を
良好(ζし・、しかも半導体基体の熱的ひずみ発生を低
減させて、しゃ断′a、流及びターンオフ時の許容使用
電圧の増大が可能な半導体装置の製造方法を提供するこ
とを目的とする。
The present invention alleviates current concentration during turn-off at the center of a segment, which is a basic component, in a semiconductor device having a self-extinguishing function such as a GTO thyristor, and provides electrical insulation between an n emitter and a pE3. Since there is no recess in the n emitter, it has good thermal contact with the cathode contact electrode plate (ζ).It also reduces the occurrence of thermal strain on the semiconductor substrate and improves the tolerance during cut-off, flow and turn-off. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can increase the operating voltage.

〔発明の要点〕[Key points of the invention]

本発明は、セグメント中央部直下lこ金や白金等のライ
フタイムキラーを選択的に注入するか、あるいは電子線
やガンマ線等の放射線を照射することにより、セグメン
ト中央部直下のキャリヤ寿命を短か<L/、hエミッタ
・nベース・nベースで構成されるnpn )ランジス
タ部及びnベース・nベース・nエミッタで構成される
pnp I”ランジスタ部のそれぞれの電流増幅率α 
 及びαpnppn をともに小さくし、セグメント中央部直下の領域をGT
Oサイリスタとして不活性lこすることによって、ター
ンオフ時のセグメント中央部への電流集中を排除しよう
とするものである。
The present invention shortens the carrier life directly under the center of the segment by selectively injecting a lifetime killer such as gold or platinum directly under the center of the segment, or by irradiating radiation such as electron beams or gamma rays. <L/, h npn composed of emitter, n base, n base) current amplification factor α of each pnp transistor part and pnp I” transistor part composed of n base, n base, n emitter
and αpnppn are both made small, and the area directly under the center of the segment is set to GT.
By using an inactive thyristor as an O thyristor, it is intended to eliminate current concentration at the center of the segment during turn-off.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の実施例を示すもので、高抵抗n型半
、4 K基体6の両面にn型不純物を所定の11度及び
深さζこ熱拡散した後に、一方のp型導電領域5にさら
lこn型不純物を所定の濃度及び深さに熱拡散する。そ
の後ホトエツチング工程をへて短冊形カソード4を形成
し、アノード電臘、ゲート′!!極、及びカソード電極
がそれぞれ取り付けられるべきnエミッタ7、nベース
5.nエミッタ4に一時的に酸化膜11が熱酸化により
形成される。短冊形nエミッタ4の中央部の酸化膜番こ
ホトエツチングにより、第6図@1(01に示す短冊形
!1エミッタの平面図のように、短冊形nエミッタ4の
形状と相似形あるいは長方形に酸化膜の窓12を開ける
FIG. 1 shows an embodiment of the present invention, in which after thermally diffusing n-type impurities on both sides of a high-resistance n-type half-4K substrate 6 to a predetermined 11 degrees and depth ζ, one p-type Further, ln-type impurities are thermally diffused into the conductive region 5 to a predetermined concentration and depth. Thereafter, a photo-etching process is performed to form a rectangular cathode 4, an anode cap, a gate'! ! n-emitter 7, n-base 5. to which the pole and cathode electrodes are respectively attached. An oxide film 11 is temporarily formed on the n emitter 4 by thermal oxidation. By photo-etching the oxide film at the center of the rectangular n emitter 4, it is shaped into a shape similar to that of the rectangular n emitter 4 or rectangular, as shown in the plan view of the rectangular!1 emitter shown in Figure 6@1 (01). Open the oxide film window 12.

しかる前処理をした後に、第1図のようζここの窓12
を通して金や白金などのライフタイムキラーを高濃度l
こ熱拡散する。この際酸1ヒ膜11は、金や白金の半導
体基体中への拡散をさまたげる働きをするので、酸化膜
が除かれたnエミッタ4の窓からのみ金や白金が半導体
基体中に拡散される。
After such pre-processing, the window 12 here as shown in FIG.
High concentration of lifetime killers such as gold and platinum through
This heat spreads. At this time, the arsenic acid film 11 acts to prevent the diffusion of gold and platinum into the semiconductor substrate, so that gold and platinum are diffused into the semiconductor substrate only from the window of the n emitter 4 from which the oxide film is removed. .

nエミッタ側4から高a度のライフタイムキラーを注入
した後、nエミッタ7側からもライフタイムキラーを注
入するためnエミッタ7側の酸化膜3を除き、GTOサ
イリスタのターンオフ時間やティルミ流を最適の値にす
るように、金や白金を再び注入する。この第2回目のラ
イフタイムキラーの注入量は、nエミッタ側4からの第
1回目の注入量に比べて十分に少なくする。さもなけれ
ばオン電圧が異常に高くなってしまう。このように、第
1回目及び第2回目のライフタイムキラーの注入量を違
えることで、短冊形カソード゛x櫃中央部直下の領域1
2とそれ以外の領域との間で、キャリヤの寿命に大きな
差をつける。
After injecting a lifetime killer with a high degree of a degree from the n emitter side 4, the lifetime killer is also injected from the n emitter 7 side, so the oxide film 3 on the n emitter 7 side is removed, and the turn-off time and Tilmi flow of the GTO thyristor are adjusted. Gold or platinum is injected again to achieve the optimum value. This second injection amount of lifetime killer is made sufficiently smaller than the first injection amount from the n emitter side 4. Otherwise, the on-voltage will become abnormally high. In this way, by changing the injection amount of Lifetime Killer for the first and second injections, the area 1 directly under the center of the rectangular cathode
There is a large difference in carrier life between 2 and other areas.

上記第2回目のライフタイムキラーの注入は、行なわれ
なくてもよい。または、nエミッタ7にあらかじめ金や
白金等に対して強いゲッタ作用を持たせるべく例えばリ
ン原子等を不純物として追加拡散しておけば、pエミッ
タ側7(こ酸化膜をつけない状態で、カソード側4及び
アノードfl187から同時に合目的のライフタイムキ
ラーを注入でき・しかも上記第1回・8g2回の二重ラ
イフタイムキラー圧入と同様の効果を得ることができる
The second lifetime killer injection may not be performed. Alternatively, if the n emitter 7 is additionally diffused with impurities such as phosphorus atoms in order to have a strong getter effect on gold, platinum, etc. in advance, it is possible to A purposeful lifetime killer can be injected simultaneously from the side 4 and the anode fl187, and the same effect as the double lifetime killer press-in of the first and two 8g injections described above can be obtained.

第5図は、本発明の異なる実施列の一つである。FIG. 5 is one of the different implementations of the invention.

ここでは、1子線やガンマ線などの放射憩13をセグメ
ント中央部に黒射し、セグメント中央部直下に高濃度欠
陥領置15を生成して、キャリヤの寿命を他の照射しな
い領域に比べて垣かくする。
Here, a radiation diverter 13 such as a single-ray or gamma ray is irradiated into the center of the segment to generate a high concentration defect area 15 directly under the center of the segment, thereby increasing the carrier lifespan compared to other areas that are not irradiated. Hide.

この時放射、14蔽板14によりセグメント中央部以外
は放射線が当らないようにする。放射臓照射の場合、放
射線の透過能力が高いので、nエミッタ表面上全面1こ
酸化膜11があってもよい。使用する放射線の:FM 
7;’1やそのエネルギーは、少なくともその飛程がn
ペース5からnベース6にわたる範囲かあるいはそれ以
上であるべく選ばねばならない。このよう番こして、セ
グメント中央部直下をGTOサイリスクとしての動作を
不活性にすることができる。
At this time, radiation shielding plate 14 prevents radiation from hitting areas other than the center of the segment. In the case of radiation irradiation, since the radiation transmittance is high, there may be a single oxide film 11 on the entire surface of the n emitter. Radiation used: FM
7; '1 and its energy have at least a range of n
It must be chosen to range from pace 5 to n base 6 or more. In this way, the area directly below the center of the segment can be made inactive as a GTO cyrisk.

第6図は、本発明によるセグメント中央部へのライフタ
イムキラー注入領域12及び放射線照射領域15の実施
例である。GTOサイリスク動作不活性領域は、セグメ
ントと相似形かあるいは長方形をなし、その幅は50μ
m以上である。
FIG. 6 shows an embodiment of the lifetime killer injection region 12 and the radiation irradiation region 15 in the center of the segment according to the present invention. The GTO Sairisk operation inactive area has a similar shape to the segment or a rectangle, and its width is 50μ.
m or more.

第7図に示す本発明によるライフタイムキラー注入領域
12のA−AおよびB−B線に沿った深さ方向の濃度分
布を第8図に示す。横軸の深さ。
FIG. 8 shows the concentration distribution in the depth direction along lines AA and B-B of the lifetime killer injection region 12 according to the present invention shown in FIG. 7. Depth on horizontal axis.

縦軸の濃度分布を示すこの第8図からnペース5とnベ
ース領域6において、セグメント中央部直下とその周縁
部でライフタイムキラーの濃度に大きな違いがあること
が理解される。
From FIG. 8, which shows the concentration distribution on the vertical axis, it can be seen that in the n-pace 5 and n-base regions 6, there is a large difference in the concentration of the lifetime killer between just below the center of the segment and at its periphery.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セグメント中央部に金や白金等のライ
フタイムキラーによる高濃度注入及び放射線照射により
、セグメント中央部直下のキャリヤの寿命をセグメント
周縁部のそれに比べて著しく短かくすることができ、タ
ーンオフ時のセグメント中央部への電流の集中を排除で
き、GTOサイリスクのしゃ断電流や許容使用電圧の増
大をはかることができる。しかもセグメントを特別な形
にする必要もなく、nエミッタとnペースの電気的絶縁
やnエミッタとカソード接触板の熱的接触を容易にする
ことができる。さらには、ライフタイムキラーの熱拡散
の温度や時間は、電流集中を減じるための特殊な不純物
拡散プロフィルを構築するための熱拡散に比べて、比較
的低温で短時間で行なえるので、半導体基体の熱的ひず
みの発生が少なくて良質の半導体装置を作るのに適して
いる。また放射線照射によるセグメント中央部直下への
欠陥の導入は、熱的ひすみ発生の観点からも、さらには
欠陥の導入の深さの制御という観点からも従来の製造方
法よりもすぐれている。
According to the present invention, by injecting a lifetime killer such as gold or platinum into the center of the segment at a high concentration and irradiating it with radiation, the life of the carrier directly under the center of the segment can be significantly shortened compared to that at the periphery of the segment. , it is possible to eliminate the concentration of current in the center of the segment during turn-off, and it is possible to increase the cutoff current and allowable operating voltage of the GTO Cyrisk. Moreover, there is no need to make the segments into a special shape, and electrical insulation between the n-emitter and the n-pace and thermal contact between the n-emitter and the cathode contact plate can be facilitated. Furthermore, the lifetime killer thermal diffusion can be performed at a relatively low temperature and in a short time, compared to the thermal diffusion used to create a special impurity diffusion profile to reduce current concentration. It is suitable for making high-quality semiconductor devices because it generates little thermal distortion. Furthermore, the introduction of defects directly below the center of the segment by radiation irradiation is superior to conventional manufacturing methods both from the perspective of thermal strain generation and from the perspective of controlling the depth of defect introduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を説明するためのゲートター
ンオフサイリスタの断面図、第2図、第3図、第4図は
それぞれ従来の製造方法を説明するためのセグメント部
を含む断面図、第5図は、本発明の異なる製造方法を説
明するためのセグメント部を含む断面図、第6図は、本
発明の製造方法を説明するためのセグメント部平面図、
第7図は、本発明の製造方法を説明するためのライフタ
イムキラー注入領域を示す断面図、第8図は、本発明に
よる注入ライフタイムキラーの@度と深さの関係を示す
図である。 l・・・カソード電極、2・・・ゲート電極、3・・・
アノード電極、4・・・nエミッタ、5・・・pベース
、6・・・nベース、7・・・pエミッタ、8・・・絶
縁膜、9・・・アノードショート孔、10・・・高濃度
pベース領域、11・・・酸化膜、12・・・ライフタ
イムキラー高注入領域、13・・・放射線、14・・・
遮蔽板、15・・・高濃度欠陥生成領域。 tf ;P1  図 才S図 ′f′4(8) 才り区 カソードV不会η゛ら妃采S(イモ見ψイ肛)−才6(
2)
FIG. 1 is a cross-sectional view of a gate turn-off thyristor for explaining the manufacturing method of the present invention, and FIGS. 2, 3, and 4 are cross-sectional views including segment parts for explaining the conventional manufacturing method, respectively. FIG. 5 is a sectional view including a segment portion for explaining a different manufacturing method of the present invention, and FIG. 6 is a plan view of a segment portion for explaining a manufacturing method of the present invention.
FIG. 7 is a sectional view showing the lifetime killer injection region for explaining the manufacturing method of the present invention, and FIG. 8 is a diagram showing the relationship between degree and depth of the injection lifetime killer according to the present invention. . l... cathode electrode, 2... gate electrode, 3...
Anode electrode, 4...n emitter, 5...p base, 6...n base, 7...p emitter, 8...insulating film, 9...anode short hole, 10... High concentration p base region, 11... Oxide film, 12... Lifetime killer high implantation region, 13... Radiation, 14...
Shielding plate, 15...High concentration defect generation area. tf ;P1 Figure S figure 'f'4 (8) Sairi ward cathode V unseeing η゛rafei S (potato view ψ i anus) - Sai6 (
2)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の積層される4層が互いに導電型を異にして
おり、内側にベース層、外側にエミッタ層が設けられ、
一方の面上では第一エミッタ領域が複数の短冊形をして
それぞれベース領域に取り囲まれているものにおいて、
第一エミッタ領域上に設けられたカソード電極の中央部
直下の前記各層領域のライフタイムキラー濃度を前記電
極の周辺部直下のライフタイムキラー濃度より大きくし
たことを特徴とする半導体装置。
The four stacked layers of the semiconductor substrate have different conductivity types, with a base layer on the inside and an emitter layer on the outside.
On one side, the first emitter region has a plurality of rectangular shapes each surrounded by a base region,
A semiconductor device characterized in that a lifetime killer concentration in each of the layer regions immediately below a central portion of a cathode electrode provided on a first emitter region is greater than a lifetime killer concentration immediately below a peripheral portion of the electrode.
JP20205485A 1985-09-12 1985-09-12 Semiconductor device Pending JPS6262557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20205485A JPS6262557A (en) 1985-09-12 1985-09-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20205485A JPS6262557A (en) 1985-09-12 1985-09-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6262557A true JPS6262557A (en) 1987-03-19

Family

ID=16451171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20205485A Pending JPS6262557A (en) 1985-09-12 1985-09-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6262557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488440A2 (en) * 1990-11-29 1992-06-03 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Process of introduction and diffusion of platinum ions in a slice of silicon
CN110828548A (en) * 2019-10-25 2020-02-21 深圳市德芯半导体技术有限公司 Silicon controlled rectifier device and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136079A (en) * 1974-09-24 1976-03-26 Hitachi Ltd TAANOFUSA IRISUTA
JPS5267983A (en) * 1975-12-04 1977-06-06 Mitsubishi Electric Corp Semiconductor unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136079A (en) * 1974-09-24 1976-03-26 Hitachi Ltd TAANOFUSA IRISUTA
JPS5267983A (en) * 1975-12-04 1977-06-06 Mitsubishi Electric Corp Semiconductor unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488440A2 (en) * 1990-11-29 1992-06-03 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Process of introduction and diffusion of platinum ions in a slice of silicon
US5227315A (en) * 1990-11-29 1993-07-13 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Process of introduction and diffusion of platinum ions in a slice of silicon
CN110828548A (en) * 2019-10-25 2020-02-21 深圳市德芯半导体技术有限公司 Silicon controlled rectifier device and preparation method thereof

Similar Documents

Publication Publication Date Title
US5900652A (en) Apparatus for the localized reduction of the lifetime of charge carriers, particularly in integrated electronic devices
JP3081739B2 (en) Insulated gate semiconductor device and method of manufacturing the same
EP2215659B1 (en) Reverse-conducting insulated gate bipolar transistor and corresponding manufacturing method
US5075751A (en) Semiconductor device
US20070080407A1 (en) Insulated gate bipolar transistor
JP2984478B2 (en) Conductivity modulation type semiconductor device and method of manufacturing the same
JPH04229660A (en) Power transistor device provided with very deep concentration-added region
EP0424710B1 (en) Thyristor and method of manufacturing the same
US5025293A (en) Conductivity modulation type MOSFET
JPH0730105A (en) Semiconductor device
JPH0715011A (en) Insulated gate bipolar transistor with self-aligning cathode pattern and preparation thereof
US6762080B2 (en) Method of manufacturing a semiconductor device having a cathode and an anode from a wafer
KR0163875B1 (en) A semiconductor device and method for fabricating thereof
US6774407B2 (en) Semiconductor device with a suppressed increase in turned-on resistance and an improved turn-off response
US6091087A (en) Insulated gate thyristor
KR20010034362A (en) Semiconductor device and fabrication method therefor
JP3240896B2 (en) MOS type semiconductor device
JPS6262557A (en) Semiconductor device
JPH01162368A (en) Semiconductor device
JP2513640B2 (en) Conduction modulation type MOSFET
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JP2000260778A (en) Semiconductor device and manufacture
JP2561963B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JPH07321304A (en) Insulated gate bipolar transistor and its manufacture
JPH0982955A (en) Manufacture of semiconductor device