JPS626251B2 - - Google Patents

Info

Publication number
JPS626251B2
JPS626251B2 JP59033083A JP3308384A JPS626251B2 JP S626251 B2 JPS626251 B2 JP S626251B2 JP 59033083 A JP59033083 A JP 59033083A JP 3308384 A JP3308384 A JP 3308384A JP S626251 B2 JPS626251 B2 JP S626251B2
Authority
JP
Japan
Prior art keywords
magnetic
lines
detection
excitation
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59033083A
Other languages
Japanese (ja)
Other versions
JPS60176134A (en
Inventor
Yoshinori Taguchi
Tsugunari Yamanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakomu KK
Original Assignee
Wakomu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakomu KK filed Critical Wakomu KK
Priority to JP59033083A priority Critical patent/JPS60176134A/en
Priority to US06/704,223 priority patent/US4617515A/en
Priority to DE8585101978T priority patent/DE3566932D1/en
Priority to EP85101978A priority patent/EP0152961B1/en
Publication of JPS60176134A publication Critical patent/JPS60176134A/en
Publication of JPS626251B2 publication Critical patent/JPS626251B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は位置指定用磁気発生器により磁界を加
えられた磁性体の透磁率の変化に基づいて位置指
定用磁気発生器で指定された位置を検出する位置
検出装置に関するものである。
Detailed Description of the Invention (Technical Field) The present invention detects a position specified by a position specifying magnetic generator based on a change in magnetic permeability of a magnetic body to which a magnetic field is applied by the position specifying magnetic generator. The present invention relates to a position detection device.

(従来技術と問題点) 従来の位置検出装置としては、磁歪伝達媒体の
一端または位置指示ペンの先端に設けた駆動コイ
ルにパルス電流を印加して前記磁歪伝達媒体に磁
歪振動波を生起させた時点より、位置指示ペンの
先端または磁歪伝達媒体の一端に設けた検出コイ
ルに前記磁歪振動波に基づく誘導電圧を検出する
までの時間を処理器等で測定し、これより位置指
示ペンの指示位置を算出する如くなしたものがあ
つた。この装置では位置検出精度は比較的良好で
あるが、ペンと処理器等との間でタイミング信号
等を授受するため、ペンと装置との間にコードを
必要としその取扱いが著しく制限されると共に、
他の機器からの誘導を受けやすく誤動作したり、
また逆にノイズの発生源となる可能性もあり、更
にペンを磁歪伝達媒体に対して垂直に保持し、か
つかなり近接させて指示しなければならない等の
問題点があつた。
(Prior Art and Problems) Conventional position detection devices generate magnetostrictive vibration waves in the magnetostrictive transmission medium by applying a pulse current to a drive coil provided at one end of the magnetostrictive transmission medium or at the tip of a position indicating pen. From that point on, a processor or the like measures the time until an induced voltage based on the magnetostrictive oscillation waves is detected in a detection coil provided at the tip of the positioning pen or at one end of the magnetostrictive transmission medium, and from this time the indicated position of the positioning pen is determined. There was something that I did to calculate. Although this device has relatively good position detection accuracy, it requires a cord between the pen and the device in order to send and receive timing signals, etc. between the pen and the processor, which severely limits its handling. ,
It is susceptible to guidance from other devices, causing malfunctions,
On the other hand, there is a possibility that the pen may become a source of noise, and there are also other problems such as the need to hold the pen perpendicularly to the magnetostrictive transmission medium and to point it fairly close to it.

また、従来の他の位置検出装置としては、複数
の駆動線と検出線とを互いに直交して配置し、駆
動線に順次、電流を流すとともに検出線を順次選
択して誘導電圧を検出し、フエライトのような磁
性体を有する位置指示ペンで指定した位置を大き
な誘導電圧が誘起された検出線の位置より検出す
るようになしたものがあつた。この装置では位置
指示ペンをコードレスとすることができるが、座
標位置の分解能が線の間隔で決まり、分解能を上
げるために線の間隔を小さくするとSN比及び安
定度が悪くなり、従つて分解能を上げることが困
難であり、また駆動線と検出線の交点の真上の位
置検出が困難であり、更に位置指示ペンを線に極
く接近させなければならず入力面上に厚みのある
物を置いて使用できない等の問題点があつた。
In addition, as another conventional position detection device, a plurality of drive lines and detection lines are arranged perpendicularly to each other, and current is sequentially applied to the drive lines and detection lines are sequentially selected to detect induced voltage. There is a device in which a position specified by a position indicating pen made of a magnetic material such as ferrite is detected from the position of a detection line where a large induced voltage is induced. With this device, the positioning pen can be made cordless, but the resolution of the coordinate position is determined by the line spacing, and if you reduce the line spacing to increase the resolution, the signal-to-noise ratio and stability will deteriorate, and therefore the resolution will decrease. In addition, it is difficult to detect the position directly above the intersection of the drive line and the detection line, and the position indicator pen must be placed extremely close to the line, making it difficult to place thick objects on the input surface. There were some problems, such as not being able to use it by leaving it in place.

(発明の目的) 本発明はこのような従来の欠点を改善したもの
であり、位置指定用磁気発生器がどこにも接続さ
れず操作性が良く、また外部からの誘導に強く且
つノイズを放出することのない高精度な位置検出
装置を提供することを課題としている。
(Object of the Invention) The present invention improves these conventional drawbacks, and the magnetic generator for position designation is not connected anywhere, has good operability, is resistant to external guidance, and emits noise. Our goal is to provide a highly accurate position detection device that never fails.

(発明の実施例) 第1図は本発明の一実施例を示す一部切欠分解
斜視図である。同図において、10はX方向位置
検出部、20はY方向位置検出部、30は駆動電
流源、41,42は信号選択手段、例えばマルチ
プレクサ、50は位置指定用磁気発生器、例えば
棒磁石、60は処理装置である。
(Embodiment of the Invention) FIG. 1 is a partially cutaway exploded perspective view showing an embodiment of the invention. In the figure, 10 is an X-direction position detection section, 20 is a Y-direction position detection section, 30 is a drive current source, 41 and 42 are signal selection means, such as a multiplexer, and 50 is a position specifying magnetic generator, such as a bar magnet. 60 is a processing device.

X方向位置検出部10は長尺の磁性体11a〜
11eと励磁線12a〜12iと検出線13a〜
13hと絶縁シート14,15とからなつてい
る。各磁性体11a〜11eは絶縁シート14,
15間にその長手方向をX方向に沿う如く互いに
平行に取り付けられている。また磁性体11a〜
11eとしては磁石を接近させても磁化され難
く、即ち保持力が小さく且つ透磁率(μ)の高い
材料、例えばアモルフアス合金、パーマロイ合金
等が好ましい。アモルフアス合金としては、例え
ばFc79B16Si5(原子%)(保持力0.2Oe、透磁率μ
=14000)などが使用できる。また、磁性体11
a〜11eは細長い形状をしており、その断面は
長方形の薄帯状か円形の線状が望ましく、薄帯状
の場合は数mm程度、厚さは数μm〜数10μm程度
が製造も容易で且つ特性も良好である。アモルフ
アス合金は製造上、厚さが20〜50μmの薄いもの
を作れるので、これを切断して薄帯状としても良
く、また断面円形の線状のものも作れるので、こ
れをそのまま適用しても良い。
The X-direction position detection unit 10 includes a long magnetic body 11a~
11e, excitation lines 12a to 12i, and detection lines 13a to
13h and insulating sheets 14 and 15. Each magnetic body 11a to 11e has an insulating sheet 14,
15 are attached parallel to each other so that the longitudinal direction thereof runs along the X direction. Also, the magnetic body 11a~
The material 11e is preferably a material that is difficult to be magnetized even when a magnet is brought close to it, that is, has a small coercive force and has a high magnetic permeability (μ), such as an amorphous alloy or a permalloy alloy. As an amorphous alloy, for example, Fc 79 B 16 Si 5 (atomic %) (coercive force 0.2 Oe, magnetic permeability μ
= 14000) etc. can be used. In addition, the magnetic material 11
A to 11e have an elongated shape, and the cross section is preferably a rectangular thin strip or a circular linear shape, and in the case of a thin strip, it is about several mm, and the thickness is about several μm to several tens of μm, which is easy to manufacture. The characteristics are also good. Amorphous amorphous alloys can be manufactured into thin pieces with a thickness of 20 to 50 μm, so they can be cut into thin strips, and linear ones with circular cross sections can also be made, so they can be used as is. .

各励磁線12a〜12iは、絶縁シート14の
上面に配設された部分(以下、上半部と称す。)
と絶縁シート15の下面に配設された部分(以
下、下半部と称す。)とがそれらの一端でそれぞ
れ連続してなつており、励磁線12a〜12b,
12c,12d,12e,12f,12g,12
hの下半部の他端と、励磁線12b,12c,1
2d,12e,12f,12g,12h,12i
の上半部の他端とがそれぞれ接続され、即ち励磁
線12a〜12iは直列に接続され、励磁線12
aの上半部の他端と励磁線12iの下半部の他端
は駆動電流源30に接続される。また各励磁線1
2a〜12iは磁性体11a〜11eの長手方向
と直交する如く所定間隔をおいて互いに平行に配
置されている。
Each of the excitation wires 12a to 12i is a portion disposed on the upper surface of the insulating sheet 14 (hereinafter referred to as an upper half portion).
and a portion disposed on the lower surface of the insulating sheet 15 (hereinafter referred to as the lower half) are continuous at one end thereof, and excitation wires 12a to 12b,
12c, 12d, 12e, 12f, 12g, 12
the other end of the lower half of h and the excitation lines 12b, 12c, 1
2d, 12e, 12f, 12g, 12h, 12i
The other ends of the upper half are connected to each other, that is, the excitation wires 12a to 12i are connected in series, and the excitation wires 12a to 12i are connected in series.
The other end of the upper half of the excitation line 12i and the other end of the lower half of the excitation line 12i are connected to a drive current source 30. Also, each excitation line 1
2a to 12i are arranged parallel to each other at predetermined intervals so as to be orthogonal to the longitudinal direction of the magnetic bodies 11a to 11e.

各検出線13a〜13hは、絶縁シート14の
上面に配設された部分(以下、上半部と称す。)
と絶縁シート15の下面に配設された部分(以
下、下半部と称す。)とが一端でそれぞれ連続し
てなつており、検出線13a〜13hの上半部の
他端はそれぞれマルチプレクサ41に接続され、
検出線13a〜13hの下半部の他端は共通に接
地される。また各検出線13a〜13hはそれぞ
れ励磁線12a〜12iのそれぞれの間に互いに
平行に、且つ磁性体11a〜11eの長手方向と
直交する如く配置されている。
Each of the detection lines 13a to 13h is located on the upper surface of the insulating sheet 14 (hereinafter referred to as the upper half).
and a portion disposed on the lower surface of the insulating sheet 15 (hereinafter referred to as the lower half) are continuous at one end, and the other ends of the upper half of the detection lines 13a to 13h are connected to the multiplexer 41, respectively. connected to,
The other ends of the lower halves of the detection lines 13a to 13h are commonly grounded. The detection lines 13a to 13h are arranged parallel to each other between the excitation lines 12a to 12i, and perpendicular to the longitudinal direction of the magnetic bodies 11a to 11e.

Y方向位置検出部20は長尺の磁性体21a〜
21eと励磁線22a〜22iと検出線23a〜
23hと絶縁シート24,25とからなつてお
り、その細部の構造はX方向位置検出部10と同
様である。Y方向位置検出部20はX方向位置検
出部10の下部に、図示しない絶縁シート等を介
して、磁性体、励磁線並びに検出線が互いに直交
する如くできるだけ近接して重ね合わされる(但
し、図面では構造をわかりやすくするため、X方
向位置検出部10とY方向位置検出部20とは離
して描いている。)。また各励磁線22a〜22i
は駆動電流源30に接続され、各検出線23a〜
23hはマルチプレクサ42に接続される。
The Y-direction position detection section 20 includes a long magnetic body 21a~
21e, excitation lines 22a to 22i, and detection lines 23a to
23h and insulating sheets 24 and 25, and its detailed structure is the same as that of the X-direction position detection section 10. The Y-direction position detection section 20 is superimposed on the lower part of the X-direction position detection section 10 via an insulating sheet (not shown), etc., as close as possible so that the magnetic body, excitation line, and detection line are perpendicular to each other (however, as shown in the drawings, (In order to make the structure easier to understand, the X-direction position detection section 10 and the Y-direction position detection section 20 are drawn separately.) In addition, each excitation line 22a to 22i
are connected to the drive current source 30, and each detection line 23a~
23h is connected to multiplexer 42.

駆動電流源30は所定周期の交番電流(ここで
いう交番電流とは正弦波、矩形波、三角波等の全
てを含む)を常時、励磁線12a〜12i及び2
2a〜22iに送出する。また、マルチプレクサ
41,42は処理装置60からの制御信号に従つ
て検出線13a〜13h及び23a〜23hの出
力信号を処理装置60へ選択的に送出する如くな
つている。
The drive current source 30 constantly supplies an alternating current with a predetermined period (the alternating current here includes all of sine waves, rectangular waves, triangular waves, etc.) to the excitation lines 12a to 12i and 2.
2a to 22i. Further, the multiplexers 41 and 42 are configured to selectively send the output signals of the detection lines 13a to 13h and 23a to 23h to the processing device 60 in accordance with a control signal from the processing device 60.

また、43は測定開始等の指示を処理装置60
へ通知する為の超音波信号を発信する送波器、4
4はこの超音波信号を受信する受波器であり、こ
の実施例では発信・受信兼用の超音波セラミツク
マイクロホンを両者に使用している。なお、送波
器43、受波器44の使用例については後で詳細
に説明する。
Further, 43 is a processing device 60 that sends instructions to start measurement, etc.
a transmitter that transmits an ultrasonic signal to notify the
Reference numeral 4 denotes a receiver for receiving this ultrasonic signal, and in this embodiment, an ultrasonic ceramic microphone for both transmitting and receiving purposes is used for both. Note that an example of how the wave transmitter 43 and wave receiver 44 are used will be described in detail later.

このような構成において、検出線13a〜13
h及び23a〜23hには前記励磁線12a〜1
2i及び22a〜22iを流れる交番電流に基づ
く電磁誘導により誘導電圧が発生する。この電磁
誘導は磁性体11a〜11e及び21a〜21e
を介して行なわれるため、磁性体11a〜11e
及び21a〜21eの透磁率が大きい程、前記誘
導電圧の電圧値は大きくなる。ところで、磁性体
11a〜11e及び21a〜21eの透磁率は、
外部より加わる磁気バイアスによつて第2図に示
すように変化し、磁気バイアスが強くなると、該
透磁率は急激に小さくなる。従つて、磁性体11
a〜11e及び21a〜21eに磁気バイアスを
加えると、励磁線12a〜12i,22a〜22
iから検出線13a〜13h,23a〜23hへ
誘起する電圧も小さくなる。
In such a configuration, the detection lines 13a to 13
h and 23a to 23h are the excitation lines 12a to 1
An induced voltage is generated by electromagnetic induction based on the alternating current flowing through 2i and 22a to 22i. This electromagnetic induction
Since the magnetic materials 11a to 11e
The larger the magnetic permeability of 21a to 21e, the larger the voltage value of the induced voltage becomes. By the way, the magnetic permeability of the magnetic bodies 11a to 11e and 21a to 21e is as follows:
It changes as shown in FIG. 2 by a magnetic bias applied from the outside, and as the magnetic bias becomes stronger, the magnetic permeability decreases rapidly. Therefore, the magnetic material 11
When a magnetic bias is applied to a to 11e and 21a to 21e, the excitation lines 12a to 12i, 22a to 22
The voltage induced from i to the detection lines 13a to 13h, 23a to 23h also becomes smaller.

今、第1図において、位置指定用棒磁石50が
N極を下にして検出線13aからX方向の距離x
S及び検出線23aからY方向の距離ySだけ隔て
たX方向位置検出部10の位置A上にあり、透磁
率が小さくなる程度の磁気バイアスを磁性体11
b及び12dに加えているものとする。
Now, in FIG. 1, the position specifying bar magnet 50 is placed at a distance x in the X direction from the detection line 13a with its N pole facing down.
It is located on the position A of the X-direction position detection unit 10, which is separated from the detection line 23a by the distance y S in the Y direction, and applies a magnetic bias to the extent that the magnetic permeability is reduced to the magnetic body 11.
b and 12d.

この時、X方向の検出線13a〜13hには第
3図に示すような誘導電圧V1〜V8が発生する。
第3図において、横軸は検出線13a〜13hの
位置をそれぞれx1〜x8とするX方向の座標位置を
示し、縦軸は電圧値を示しているが、前記各電圧
V1〜V8は位置Aの両側で一旦減少しその後再度
増加して位置A直下では元の電圧とほぼ等しくな
つている。これは棒磁石50より磁性体11bに
入射する磁束が、該棒磁石50の真下では磁性体
11bとほぼ直交するため透磁率への影響が小さ
く、その両側では磁性体11bの長手方向に通る
磁束が増加し透磁率が減少するためである。前記
各電圧V1〜V8はマルチプレクサ41より得られ
るので、これらより誘起電圧が一旦減少し次にピ
ークとなるX座標値を処理装置60で演算して求
めれば、棒磁石50のX座標値XSを知ることが
できる。
At this time, induced voltages V1 to V8 as shown in FIG. 3 are generated in the detection lines 13a to 13h in the X direction.
In FIG. 3, the horizontal axis indicates coordinate positions in the X direction, where the positions of the detection lines 13a to 13h are x 1 to x 8 , respectively, and the vertical axis indicates voltage values.
V 1 to V 8 once decrease on both sides of position A, then increase again, and become almost equal to the original voltage just below position A. This is because the magnetic flux incident on the magnetic body 11b from the bar magnet 50 is almost orthogonal to the magnetic body 11b directly below the bar magnet 50, so the influence on magnetic permeability is small, and on both sides, the magnetic flux passing in the longitudinal direction of the magnetic body 11b. This is because the magnetic permeability decreases. Since each of the voltages V 1 to V 8 is obtained from the multiplexer 41, if the X-coordinate value at which the induced voltage once decreases and then reaches a peak is calculated by the processor 60, the X-coordinate value of the bar magnet 50 is obtained. You can know X S.

座標値xSを求める算出方法の一つとして、第
3図におけるピーク点付近の波形を適当な函数で
近似し、その函数のピーク点の座標を求める方法
がある。例えば、各検出線13a〜13hの間隔
をΔxとし、第3図において座標x3から座標x5
でを2次函数(図中、実線で示す)で近似する
と、次のようにして算出することができる。ま
ず、各検出線の電圧と座標値より V3=a(x3−xS+b ……(1) V4=a(x4−xS+b ……(2) V5=a(x5−xS+b ……(3) となる。ここで、a、bは定数(a<0)であ
る。また、 x4−x3=Δx ……(4) x5−x3=2Δx ……(5) となる。(4)、(5)式を(2)、(3)式に代入して整理する
と、 xS=x3+Δx/2(3V−4V+V/V
2V+V)……(6) となる。従つて、検出線13c,13d,13e
に誘起する電圧V3,V4,V5を処理装置60へ送
出し、(6)式の演算を行なうことにより、位置指定
用棒磁石50のX座標値を算出できる。また、棒
磁石50をY軸に沿つて動かしても同一のX座標
値が得られる。
One calculation method for determining the coordinate value x S is to approximate the waveform near the peak point in FIG. 3 by an appropriate function, and then determine the coordinates of the peak point of the function. For example, if the interval between each detection line 13a to 13h is Δx and the coordinates x 3 to x 5 in FIG. 3 are approximated by a quadratic function (indicated by a solid line in the figure), the calculation can be performed as follows. I can do it. First, from the voltage and coordinate values of each detection line, V 3 = a (x 3 - x S ) 2 + b ... (1) V 4 = a (x 4 - x S ) 2 + b ... (2) V 5 = a( x5 - xs ) 2 +b...(3). Here, a and b are constants (a<0). Also, x 4 −x 3 =Δx ……(4) x 5 −x 3 =2Δx ……(5). Substituting equations (4) and (5) into equations (2) and (3) and rearranging, x S = x 3 + Δx/2 (3V 3 -4V 4 +V 5 /V 3 -
2V 4 +V 5 )...(6). Therefore, the detection lines 13c, 13d, 13e
The X coordinate value of the position designating bar magnet 50 can be calculated by sending the voltages V 3 , V 4 , and V 5 induced by the voltages V 3 , V 4 , and V 5 to the processing device 60 and calculating the equation (6). Further, even if the bar magnet 50 is moved along the Y axis, the same X coordinate value can be obtained.

また、Y方向の検出線23a〜23hにも第3
図と同様な誘導電圧が得られ、前記同様の演算処
理によつてY座標値ySを求めることができる。
Also, a third
An induced voltage similar to that shown in the figure is obtained, and the Y coordinate value y S can be determined by the same calculation process as described above.

位置指定用棒磁石50の先端から発せられる磁
界は、第4図に示すように該棒磁石50の中心線
の延長上の一点rから発する如く近似される。従
つて磁性体11a〜11e及び21a〜21eよ
り前記点rまでの距離に相当する位置に入力面1
00を形成すれば、棒磁石50が磁性体11a〜
11e及び21a〜21eに対して傾いても(但
し、図示例では二点鎖線で示す磁性体11aを基
準として棒磁石50が傾いた状態にあることを示
している。)磁性体の同一位置に対する磁界の方
向は変わらず、その検出位置も変わらず、従つ
て、棒磁石50の傾きに影響されず位置指定が可
能となる。なお、実験では傾きが±30゜以内で、
誤差±0.5mm以下を達成している(入力面の高さ
12mm)。
The magnetic field emitted from the tip of the position specifying bar magnet 50 is approximated to be emitted from a point r on the extension of the center line of the bar magnet 50, as shown in FIG. Therefore, the input surface 1 is located at a position corresponding to the distance from the magnetic bodies 11a to 11e and 21a to 21e to the point r.
00, the bar magnet 50 becomes the magnetic body 11a~
11e and 21a to 21e (however, the illustrated example shows that the bar magnet 50 is in a tilted state with reference to the magnetic body 11a indicated by the two-dot chain line). The direction of the magnetic field does not change and its detection position also does not change, so the position can be specified without being affected by the inclination of the bar magnet 50. In addition, in experiments, the slope was within ±30°,
Achieved error of ±0.5mm or less (height of input surface
12mm).

第5図は駆動電流源30の具体例を示すもので
ある。同図において、31はフアンクシヨンジエ
ネレータ、例えばインターシル製IC、8038であ
り、コンデンサCと抵抗Rの値まで定まる所定の
周波数の正弦波信号を出力する。また32はパワ
ードライバであり、オペアンプと差動増幅器とか
らなつており、前記正弦波信号を電流増幅して励
磁線12a〜12i,22a〜22iへ送出す
る。
FIG. 5 shows a specific example of the drive current source 30. In the figure, numeral 31 is a function generator, for example, Intersil IC 8038, which outputs a sine wave signal of a predetermined frequency determined up to the values of capacitor C and resistor R. Further, 32 is a power driver, which is composed of an operational amplifier and a differential amplifier, and current-amplifies the sine wave signal and sends it to the excitation lines 12a to 12i and 22a to 22i.

第6図は位置指定用磁気発生器50の具体例を
示す断面図、第7図はその電気回路図である。同
図において、51は合成樹脂等からなるペン状の
容器であり、その一端には先端先細状の棒磁石5
2が軸方向に摺動自在に収容されている。また、
53は操作スイツチで、棒磁石52の他端に対向
して取り付けられている。また、54は超音波信
号の送信機、55は電池で、送波器43とともに
容器51内の適所に収納されている。前記容器5
1を保持しゴムカバー56を取り付けた棒磁石5
2の先端を入力面に押し当てれば、該棒磁石52
がスライドしてスイツチ53がオンし、これによ
つて送信機54内の発振回路54a及び増幅器5
4bが動作し、送波器43より測定開始を示す信
号、例えば所定周波数の連続パルス信号を超音波
信号に変えて発信する。
FIG. 6 is a sectional view showing a specific example of the position designating magnetic generator 50, and FIG. 7 is an electric circuit diagram thereof. In the figure, 51 is a pen-shaped container made of synthetic resin, etc., and a bar magnet 5 with a tapered tip is attached to one end of the pen-shaped container.
2 is accommodated so as to be slidable in the axial direction. Also,
Reference numeral 53 denotes an operation switch, which is attached opposite to the other end of the bar magnet 52. Further, 54 is a transmitter for ultrasonic signals, and 55 is a battery, which is housed in a proper place in the container 51 together with the wave transmitter 43. Said container 5
A bar magnet 5 that holds 1 and has a rubber cover 56 attached.
When the tip of the bar magnet 52 is pressed against the input surface, the bar magnet 52
slides to turn on the switch 53, which causes the oscillation circuit 54a in the transmitter 54 and the amplifier 5 to turn on.
4b is activated, and the transmitter 43 converts a signal indicating the start of measurement, for example, a continuous pulse signal of a predetermined frequency, into an ultrasonic signal and transmits it.

第8図は処理装置60の具体的構成を示す回路
ブロツク図である。同図において、前述した送波
器43より測定開始を示す超音波信号が送出され
ると、該超音波信号は受波器44で受波され、更
に受信器61で増幅・波形整形され、元の信号、
例えば所定周期の連続パルス信号に戻され、入力
バツフア62に送出される。演算処理装置63は
入力バツフア62より前記連続パルス信号を読み
取り測定開始を認識すると、出力バツフア64を
介して切換回路65及びマルチプレクサ41へ制
御信号を送り、X方向の検出線13a〜13hの
誘導電圧を増幅器66へ順次入力する。前記各誘
導電圧は増幅器66で増幅され検波器67で整流
されて直流電圧に変換され、更にアナログ−デイ
ジタル(A/D)変換器68にてデイジタル値に
変換され入力バツフア62を介して演算処理装置
63に送出される。演算処理装置63では前記各
誘導電圧(デイジタル値)をメモリ69に一時記
憶し、これらの中よりピーク付近の電圧値を検出
する。この検出方法としては、例えば各誘導電圧
の大小を順次比較し、ある電圧、仮りにVkが直
前の電圧Vk-1より大きく、かつ次の電圧Vk+1
りも大きい時Vk-1<Vk>Vk+1)に電圧Vkをピ
ーク電圧として検出することができる。演算処理
装置63は前記電圧Vk-1,Vk,Vk+1を取り出
し、これらをそれぞれ前記(6)式における電圧
V3,V4,V5として(6)式の演算処理を行ない、X
座標値を求める。
FIG. 8 is a circuit block diagram showing a specific configuration of the processing device 60. In the figure, when an ultrasonic signal indicating the start of measurement is sent out from the above-mentioned transmitter 43, the ultrasonic signal is received by a receiver 44, further amplified and waveform-shaped by a receiver 61, and then signal,
For example, it is returned to a continuous pulse signal with a predetermined period and sent to the input buffer 62. When the arithmetic processing unit 63 reads the continuous pulse signal from the input buffer 62 and recognizes the start of measurement, it sends a control signal to the switching circuit 65 and the multiplexer 41 via the output buffer 64 to adjust the induced voltage of the detection lines 13a to 13h in the X direction. are sequentially input to the amplifier 66. Each of the induced voltages is amplified by an amplifier 66, rectified by a detector 67 and converted into a DC voltage, further converted into a digital value by an analog-digital (A/D) converter 68, and processed through an input buffer 62. It is sent to device 63. The arithmetic processing unit 63 temporarily stores each of the induced voltages (digital values) in a memory 69, and detects a voltage value near the peak from among them. As this detection method, for example, the magnitude of each induced voltage is compared sequentially, and if a certain voltage, Vk , is larger than the previous voltage Vk -1 and larger than the next voltage Vk +1 , then Vk- 1 <V k >V k+1 ), the voltage V k can be detected as a peak voltage. The arithmetic processing unit 63 takes out the voltages V k-1 , V k , V k+1 and converts them into voltages in the equation (6), respectively.
Perform the arithmetic processing of equation (6) as V 3 , V 4 , and V 5 , and
Find the coordinate values.

次に演算処理装置63は出力バツフア64を介
して切換回路65及びマルチプレクサ42に制御
信号を送り、Y方向の検出線23a〜23hの誘
導電圧を順次入力し、前述と同様の処理を行ない
Y座標値を求める。このようにして求められたデ
イジタル値のX及びY座標値は出力バツフア70
を介してデイジタル表示器(図示せず)に送出さ
れ表示され、またはコンピユータ(図示せず)に
送出され処理されたり、あるいはデイジタル−ア
ナログ(D/A)変換器71を介してアナログ信
号に変換され処理される。
Next, the arithmetic processing unit 63 sends a control signal to the switching circuit 65 and the multiplexer 42 via the output buffer 64, sequentially inputs the induced voltages of the detection lines 23a to 23h in the Y direction, performs the same processing as described above, and Find the value. The X and Y coordinate values of the digital values obtained in this way are output to the output buffer 70.
is sent to a digital display (not shown) for display, or sent to a computer (not shown) for processing, or converted to an analog signal via a digital-to-analog (D/A) converter 71. and processed.

第9図は本発明の別の実施例を示す斜視図であ
り、ここではX方向位置検出部のみを示す。同図
において、80はX方向位置検出部であり、長尺
の磁性体81a〜81fと励磁線82a〜82j
と検出線83a〜83gとからなつている。各磁
性体81a〜81fはその長手方向をX方向に沿
う如く互いに平行に配置されている。なお、磁性
体81a〜81fの材質等は前記実施例の場合と
同様である。各励磁線82a〜82jは磁性体8
1a〜81fの周囲にその長手方向と直交する如
く所定間隔をおいて互いに平行に配設されている
が、励磁線82a,82b間及び82i,82j
間の間隔は他の間隔より小さく設定されている。
また、各励磁線82a〜82jは各磁性体81a
〜81fにそれぞれ対応する各部分が隣接する部
分毎に逆方向に配設され、更にまた磁性体81
a,81fに対応する前記部分は他の部分より小
さく、即ち磁性体に近接して取り付けられてい
る。また各励磁線82a〜82jは電流を流した
時に各磁性体81a〜81fに生起する磁束が同
一となるように直列に接続され、その両端は駆動
電流源30に接続している。
FIG. 9 is a perspective view showing another embodiment of the present invention, in which only the X-direction position detection section is shown. In the figure, 80 is an X-direction position detection unit, which includes long magnetic bodies 81a to 81f and excitation lines 82a to 82j.
and detection lines 83a to 83g. The magnetic bodies 81a to 81f are arranged parallel to each other so that their longitudinal directions extend along the X direction. Note that the materials of the magnetic bodies 81a to 81f are the same as in the previous embodiment. Each excitation line 82a to 82j is a magnetic body 8
Excitation lines 1a to 81f are arranged parallel to each other at predetermined intervals so as to be perpendicular to their longitudinal directions, but between excitation lines 82a and 82b and between 82i and 82j.
The interval between them is set smaller than the other intervals.
Moreover, each excitation line 82a to 82j is connected to each magnetic body 81a.
Each part corresponding to 81f is arranged in the opposite direction for each adjacent part, and furthermore, the magnetic body 81
The portions corresponding to a and 81f are smaller than the other portions, that is, they are attached closer to the magnetic body. The excitation lines 82a to 82j are connected in series so that the same magnetic flux is generated in each of the magnetic bodies 81a to 81f when current is applied, and both ends of the excitation lines 82a to 82j are connected to the drive current source 30.

各検出線83a〜83gはそれぞれ励磁線82
b〜82iのそれぞれの間に互いに平行に、且つ
磁性体81a〜81fの長手方向と直交する如く
該磁性体81a〜81fの周囲に配設されてい
る。また、各検出線83a〜83gは各磁性体8
1a〜81fにそれぞれ対応する各部分が隣接す
る部分毎に逆方向に配設され、更にまた磁性体8
1a,81fに対応する前記部分は他の部分より
小さく、即ち磁性体に近接して取り付けられてい
る。また各検出線83a〜83gの一端はマルチ
プレクサ41に接続され、他端は共通に接地され
ている。
Each detection line 83a to 83g is an excitation line 82.
They are arranged around the magnetic bodies 81a to 81f so as to be parallel to each other and perpendicular to the longitudinal direction of the magnetic bodies 81a to 81f between the magnetic bodies 81a to 82i. In addition, each detection line 83a to 83g corresponds to each magnetic body 8.
Each part corresponding to 1a to 81f is arranged in the opposite direction for each adjacent part, and furthermore, the magnetic body 8
The portions corresponding to 1a and 81f are smaller than the other portions, ie, are attached closer to the magnetic body. Further, one end of each of the detection lines 83a to 83g is connected to the multiplexer 41, and the other end is commonly grounded.

上記構成によれば、励磁線82a〜82jに駆
動電流を流した時に前記各部分に生起する磁束が
磁性体毎に逆方向となるため、互いに打ち消し合
つて外部へ発する誘導やノイズが弱められ、また
検出線83a〜83gに一方向の磁束が加わつた
時に各部分より生起される電流が互いに逆方向と
なるため、外部からの誘導やノイズが互いに打ち
消し合つて弱められ、SN比の良い誘導電圧を取
り出すことができる。また磁性体81a〜81f
の長手方向の両端に当たる部分ではその励磁線の
本数が他の部分より多いため、検出電圧が低下す
ることがない。また、複数並設した磁性体のうち
の両端の磁性体、即ち81aと81fに対する励
磁線及び検出線が他の磁性体より近接して配設さ
れているため電磁結合が密となり、この部分にお
ける検出電圧も低下することがない。
According to the above configuration, when a driving current is applied to the excitation lines 82a to 82j, the magnetic fluxes generated in each of the parts are in opposite directions for each magnetic body, so that they cancel each other out and the induction and noise emitted to the outside are weakened. In addition, when magnetic flux is applied in one direction to the detection lines 83a to 83g, the currents generated from each part are in opposite directions, so external induction and noise cancel each other out and are weakened, resulting in an induced voltage with a good S/N ratio. can be taken out. In addition, magnetic bodies 81a to 81f
Since the number of excitation lines is greater in the portions corresponding to both ends in the longitudinal direction than in other portions, the detected voltage does not drop. In addition, because the excitation lines and detection lines for the magnetic bodies at both ends of the plurality of magnetic bodies arranged in parallel, that is, 81a and 81f, are arranged closer to each other than the other magnetic bodies, the electromagnetic coupling becomes dense, and in this part The detection voltage also does not drop.

なお、この実施例では各磁性体毎に磁束や電流
の向きが逆方向となるよう励磁線及び検出線を設
けているが、隣接する2本またはそれ以上の磁性
体毎に逆方向となるようにしても良い。
In this example, the excitation line and the detection line are provided so that the directions of magnetic flux and current are opposite to each other for each magnetic body, but the excitation line and the detection line are provided so that the directions of magnetic flux and current are opposite to each other for two or more adjacent magnetic bodies. You can also do it.

なお、実施例中の磁性体、励磁線及び検出線の
本数は一例であり、これに限定されないことはい
うまでもない。また検出線の間隔は2〜6mm程度
であれば比較的精度良く位置検出ができることが
実験により確かめられている。また、位置指定用
磁気発生器も棒磁石に限定されることはなく、
板、リング、角体等でもよく、あるいは電磁石で
もよい。
Note that the numbers of magnetic bodies, excitation lines, and detection lines in the examples are merely examples, and it goes without saying that the numbers are not limited thereto. Furthermore, it has been confirmed through experiments that position detection can be performed with relatively high accuracy if the distance between the detection lines is approximately 2 to 6 mm. In addition, the magnetic generator for position specification is not limited to bar magnets,
It may be a plate, ring, square body, etc., or it may be an electromagnet.

(発明の効果) 以上説明したように本発明によれば、互いにほ
ぼ平行に配列された複数の長尺の磁性体にそれら
の長手方向と直交する如く励磁線と検出線とを交
互に並設してなるX方向位置検出部と、該X方向
位置検出部と同様の構造を有しかつこれと重ね合
わされたY方向位置検出部と、前記X方向及びY
方向の各励磁線に所定周期の交番電流を加える駆
動電流源と、前記X方向及びY方向の各磁性体に
局部的な磁気バイアスを加える位置指定用磁気発
生器と、前記X方向及びY方向の各検出線にそれ
ぞれ接続されたX方向及びY方向の信号選択手段
と、該X方向及びY方向の信号選択手段より取り
出される各誘導電圧から前記位置指定用磁気発生
器の指示座標を算出する処理装置とを具備したの
で、励磁線と検出線との間の磁束変化が磁性体内
でのみ行なわれ、その結合が密で検出電圧が大き
くSN比が良く、また、外部からの誘導を受けに
くくかつ外部への誘導ノイズの発生が少ない。ま
た、磁性体にわずかの磁気バイアスを加えるのみ
で位置指定できるため、位置指定用磁気発生器を
磁性体に近接させる必要がなく、有効読取り高さ
を大きくとることができ、また、強磁性体以外の
金属の間に挾むこともできる。更に、タイミング
検出等の信号を必要とせず位置指定用磁気発生器
をコードレスとすることもでき、操作性が良い等
の利点がある。
(Effects of the Invention) As explained above, according to the present invention, excitation lines and detection lines are alternately arranged in parallel to a plurality of long magnetic bodies arranged substantially parallel to each other so as to be perpendicular to their longitudinal directions. a Y-direction position detecting section having a similar structure to the X-direction position detecting section and overlaid thereon;
a drive current source that applies an alternating current with a predetermined period to each excitation line in the X direction, a position specifying magnetic generator that applies a local magnetic bias to each magnetic body in the X direction and Y direction, and The indicated coordinates of the position specifying magnetic generator are calculated from X-direction and Y-direction signal selection means connected to each detection line, respectively, and each induced voltage taken out from the X-direction and Y-direction signal selection means. Since it is equipped with a processing device, the magnetic flux change between the excitation line and the detection line occurs only within the magnetic body, and the coupling is tight, the detection voltage is large, the signal-to-noise ratio is good, and it is not susceptible to external induction. In addition, less induced noise is generated to the outside. In addition, since the position can be specified by simply applying a slight magnetic bias to the magnetic material, there is no need to bring the positioning magnetic generator close to the magnetic material, and the effective reading height can be increased. It can also be sandwiched between other metals. Furthermore, the magnetic generator for position designation can be made cordless without requiring signals such as timing detection, and there are advantages such as good operability.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の説明に供するもので、第1図は
本発明の一実施例を示す一部切欠分解斜視図、第
2図は磁気バイアス対透磁率の特性図、第3図は
X方向の各検出線に発生する誘導電圧の一例を示
すグラフ、第4図は位置指定用棒磁石より磁性体
に印加される磁束のようすを示す説明図、第5図
は駆動電流源の具体例を示す電気回路図、第6図
は位置指定用磁気発生器の具体例を示す断面図、
第7図はその電気回路図、第8図は処理装置の具
体的構成を示す回路ブロツク図、第9図は本発明
の別の実施例におけるX方向位置検出部の斜視図
である。 10……X方向位置検出部、20……Y方向位
置検出部、30……駆動電流源、41,42……
マルチプレクサ、50……位置指定用磁気発生
器、60……処理装置、11a〜11e,21a
〜21e……磁性体、12a〜12i,22a〜
22i……励磁線、13a〜13h,23a〜2
3h……検出線。
The drawings are for explaining the present invention, and FIG. 1 is a partially cutaway exploded perspective view showing an embodiment of the present invention, FIG. 2 is a characteristic diagram of magnetic bias versus magnetic permeability, and FIG. 3 is a diagram showing characteristics of magnetic bias in the X direction. A graph showing an example of the induced voltage generated in each detection line, Fig. 4 is an explanatory diagram showing the magnetic flux applied to the magnetic material from the position specifying bar magnet, and Fig. 5 shows a specific example of the drive current source. Electric circuit diagram, FIG. 6 is a sectional view showing a specific example of a magnetic generator for position designation,
FIG. 7 is an electric circuit diagram thereof, FIG. 8 is a circuit block diagram showing a specific configuration of the processing device, and FIG. 9 is a perspective view of an X-direction position detecting section in another embodiment of the present invention. 10...X-direction position detection section, 20...Y-direction position detection section, 30... Drive current source, 41, 42...
Multiplexer, 50... Magnetic generator for position specification, 60... Processing device, 11a to 11e, 21a
~21e...Magnetic material, 12a~12i, 22a~
22i...excitation line, 13a-13h, 23a-2
3h...detection line.

Claims (1)

【特許請求の範囲】 1 互いにほぼ平行に配列された複数の長尺の磁
性体にそれらの長手方向と直交する如く励磁線と
検出線とを交互に並設してなるX方向位置検出部
と、該X方向位置検出部と同様の構造を有しかつ
これと重ね合わされたY方向位置検出部と、前記
X方向及びY方向の各励磁線に所定周期の交番電
流を加える駆動電流源と、前記X方向及びY方向
の各磁性体に局部的な磁気バイアスを加える位置
指定用磁気発生器と、前記X方向及びY方向の各
検出線にそれぞれ接続されたX方向及びY方向の
信号選択手段と、該X方向及びY方向の信号選択
手段より取り出される各誘導電圧から前記位置指
定用磁気発生器の指示座標を算出する処理装置と
を具備したことを特徴とする位置検出装置。 2 X方向及びY方向の励磁線より生起される磁
束またはX方向及びY方向の励磁線に生起する電
流の方向が、各磁性体毎或いは隣接する2以上の
磁性体毎に逆方向となるようにX方向及びY方向
の励磁線を構成したことを特徴とする特許請求の
範囲第1項記載の位置検出装置。 3 X方向及びY方向の検出線より生起される磁
束またはX方向及びY方向の検出線に生起する電
流の方向が、各磁性体毎或いは隣接する2以上の
磁性体毎に逆方向となるようにX方向及びY方向
の検出線を構成したことを特徴とする特許請求の
範囲第1項または第2項記載の位置検出装置。 4 互いにほぼ平行に配列された複数のX方向及
びY方向の磁性体のうちの両端の磁性体に対応す
るX方向及びY方向の励磁線またはX方向及びY
方向の検出線のいずれか一方或いはX方向及びY
方向の励磁線及びX方向及びY方向の検出線を該
磁性体に対してより密接して配設したことを特徴
とする特許請求の範囲第1項乃至第3項いずれか
1項記載の位置検出装置。 5 X方向及びY方向の磁性体の長手方向の両端
に配設された励磁線の数を他の部分に配設された
励磁線より多く配設したことを特徴とする特許請
求の範囲第1項乃至第4項いずれか1項記載の位
置検出装置。
[Scope of Claims] 1. An X-direction position detection unit comprising a plurality of elongated magnetic bodies arranged substantially parallel to each other, and excitation lines and detection lines arranged side by side alternately so as to be orthogonal to their longitudinal directions. , a Y-direction position detecting section having the same structure as the X-direction position detecting section and superimposed thereon, and a driving current source applying an alternating current with a predetermined period to each of the excitation lines in the X-direction and the Y-direction; a position specifying magnetic generator that applies a local magnetic bias to each of the magnetic bodies in the X direction and the Y direction; and signal selection means in the X direction and Y direction connected to each of the detection lines in the X direction and Y direction, respectively. and a processing device that calculates indicated coordinates of the position specifying magnetic generator from each induced voltage taken out from the signal selection means in the X direction and the Y direction. 2. So that the direction of the magnetic flux generated by the excitation lines in the X and Y directions or the direction of the current generated in the excitation lines in the X and Y directions is opposite for each magnetic body or for each two or more adjacent magnetic bodies. 2. The position detection device according to claim 1, further comprising excitation lines in the X direction and the Y direction. 3. So that the direction of the magnetic flux generated by the detection lines in the X and Y directions or the direction of the current generated in the detection lines in the X and Y directions is opposite for each magnetic body or for each two or more adjacent magnetic bodies. 3. The position detection device according to claim 1, further comprising detection lines in the X direction and the Y direction. 4 Excitation lines in the X and Y directions or excitation lines in the X and Y directions corresponding to the magnetic bodies at both ends of the plurality of magnetic bodies in the X and Y directions arranged substantially parallel to each other.
Either one of the direction detection lines or X direction and Y direction
The position according to any one of claims 1 to 3, characterized in that the excitation line in the direction and the detection line in the X direction and the Y direction are arranged closer to the magnetic body. Detection device. 5. Claim 1, characterized in that the number of excitation lines disposed at both longitudinal ends of the magnetic body in the X direction and Y direction is greater than the number of excitation lines disposed in other parts. The position detection device according to any one of Items 4 to 4.
JP59033083A 1984-02-22 1984-02-23 Position detector Granted JPS60176134A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59033083A JPS60176134A (en) 1984-02-23 1984-02-23 Position detector
US06/704,223 US4617515A (en) 1984-02-22 1985-02-22 Position detecting apparatus
DE8585101978T DE3566932D1 (en) 1984-02-22 1985-02-22 Position detecting apparatus
EP85101978A EP0152961B1 (en) 1984-02-22 1985-02-22 Position detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033083A JPS60176134A (en) 1984-02-23 1984-02-23 Position detector

Publications (2)

Publication Number Publication Date
JPS60176134A JPS60176134A (en) 1985-09-10
JPS626251B2 true JPS626251B2 (en) 1987-02-09

Family

ID=12376797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033083A Granted JPS60176134A (en) 1984-02-22 1984-02-23 Position detector

Country Status (1)

Country Link
JP (1) JPS60176134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453061U (en) * 1987-09-28 1989-03-31
JPH01294451A (en) * 1988-05-09 1989-11-28 Fukai Kogyo Kk Pour out plug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453061U (en) * 1987-09-28 1989-03-31
JPH01294451A (en) * 1988-05-09 1989-11-28 Fukai Kogyo Kk Pour out plug

Also Published As

Publication number Publication date
JPS60176134A (en) 1985-09-10

Similar Documents

Publication Publication Date Title
US4617515A (en) Position detecting apparatus
US4709209A (en) Magnetostrictive vibration wave position detecting apparatus with variable threshold detecting valves
JPH0214724B2 (en)
JPS60186924A (en) Coordinate input device with display
US4678870A (en) Position detecting device
US5280239A (en) Position sensor utilizing primary and secondary coils wound on a toroidal core with flux concentrators
JPS5856912B2 (en) 2D magnetic scale device
EP0146947B1 (en) Coordinate input device with display
JPS626251B2 (en)
JPS6175420A (en) Position detecting device
JPH0210443B2 (en)
JPS626250B2 (en)
JPH0210444B2 (en)
JPH0210968B2 (en)
JPS61141026A (en) Position detector
JP2639582B2 (en) 3D coordinate input device
JPH0368407B2 (en)
JPS6247727A (en) Position detector
JPS61153724A (en) Position detecting device
JPS63247817A (en) Position detecting device
JPS61180321A (en) Position detector
JPH0215804B2 (en)
JPS6247730A (en) Position detecting device
JPS6247729A (en) Position detecting device
JPS61157926A (en) Position detector