JPH0215804B2 - - Google Patents

Info

Publication number
JPH0215804B2
JPH0215804B2 JP58238532A JP23853283A JPH0215804B2 JP H0215804 B2 JPH0215804 B2 JP H0215804B2 JP 58238532 A JP58238532 A JP 58238532A JP 23853283 A JP23853283 A JP 23853283A JP H0215804 B2 JPH0215804 B2 JP H0215804B2
Authority
JP
Japan
Prior art keywords
electromagnetic transducer
magnetostrictive
coil
magnetostrictive transmission
transmission media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58238532A
Other languages
Japanese (ja)
Other versions
JPS60129616A (en
Inventor
Azuma Murakami
Yoshinori Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakomu KK
Original Assignee
Wakomu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakomu KK filed Critical Wakomu KK
Priority to JP23853283A priority Critical patent/JPS60129616A/en
Publication of JPS60129616A publication Critical patent/JPS60129616A/en
Publication of JPH0215804B2 publication Critical patent/JPH0215804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は位置指示器で指定された位置を検出す
る装置に関し、特に磁歪効果を有する磁歪伝達媒
体を伝搬する磁歪振動波を利用して位置指示器で
指定された位置を検出する位置検出装置に関する
ものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a device for detecting a position specified by a position indicator, and more particularly, the present invention relates to a device for detecting a position specified by a position indicator, and in particular, a device for detecting a position specified by a position indicator by using magnetostrictive vibration waves propagating through a magnetostrictive transmission medium having a magnetostrictive effect. The present invention relates to a position detection device that detects a specified position.

(従来技術と問題点) 従来のこの種装置は、例えば特公昭56−32668
号公報に見られるように、位置指示器で瞬時的磁
場変動を発生させた時から、この瞬時的磁場変動
により磁歪伝達媒体中に生起した磁歪振動波が該
磁歪伝達媒体を伝搬し磁歪伝達媒体の端部に設け
た検出コイルで検出されるまでの時間を処理装置
で算出し、この算出値から位置指示器で指定され
た位置を検出するのが一般的である。しかしなが
ら、このような構成では、位置指示器で瞬時的磁
場変動を発生させたタイミングを処理装置側へ通
知する必要性から、位置指示器を信号線により処
理装置に接続しておく必要があり、位置指示器の
移動範囲、取扱いが著しく制限される欠点がある
と共に、その応用範囲も狭かつた。特に、位置検
出面が平面状の場合、位置指示器の動き得る範囲
も広くなるので長い信号線が必要となり、操作性
が悪化する欠点があつた。
(Prior art and problems) Conventional devices of this type include, for example, the Japanese Patent Publication No. 56-32668.
As seen in the publication, from the time when an instantaneous magnetic field fluctuation is generated by a position indicator, magnetostrictive vibration waves generated in the magnetostrictive transmission medium due to this instantaneous magnetic field fluctuation propagate through the magnetostrictive transmission medium. Generally, a processing device calculates the time required for detection by a detection coil provided at the end of the sensor, and the position specified by the position indicator is detected from this calculated value. However, in such a configuration, it is necessary to connect the position indicator to the processing device by a signal line because it is necessary to notify the processing device of the timing at which the instantaneous magnetic field fluctuation is generated by the position indicator. This method has the disadvantage that the movement range and handling of the position indicator are severely restricted, and its application range is also narrow. In particular, when the position detection surface is planar, the range in which the position indicator can move becomes wider, requiring a longer signal line, which has the disadvantage of deteriorating operability.

(発明の目的) 本発明はこのような従来の欠点を改善したもの
であり、位置指示器がどこにも接続されず、しか
も精度の高い位置検出が可能で応用範囲の広い位
置検出装置を提供することを課題としている。
(Objective of the Invention) The present invention improves these conventional drawbacks, and provides a position detection device that does not have a position indicator connected anywhere, is capable of highly accurate position detection, and has a wide range of applications. This is the issue.

(発明の原理) 磁歪伝達媒体中を磁歪振動波が伝搬する際、磁
歪振動波が存在する部位において機械的振動エネ
ルギーの一部が磁気的エネルギーに変換され、局
部的に磁場変動が発生する。そして、この磁場変
動の大きさは機械的エネルギーから電気的エネル
ギー(又は電気的エネルギーから機械的エネルギ
ー)への変換効率を示す係数(以下電気機械結合
係数という)が大きくなる程大きくなり、電気機
械結合係数はあるバイアス磁界付近で最大とな
る。従つて、電磁変換器、例えばコイルを配設し
た磁歪伝達媒体のある部位に、局部的な電気機械
結合係数を大きくする程度の定常的な磁気を発生
する手段を備えかつどこにも接続されていない位
置指示器(以下、位置指定用磁気発生器と称す。)
により磁気を加えると、磁歪伝達媒体を伝搬して
きた磁歪振動波がその位置に到達したとき大きな
磁場変動が生じることになり、そのときコイルに
大きな誘導起電力(磁歪振動波による誘導電圧)
が発生する。従つて、この大きな誘導起電力の発
生タイミングを検出すれば、磁歪振動波が位置指
定用磁気発生器で指定された位置まで到達するの
に要した時間を知ることができ、この時間から指
定された位置を検出することが可能となる。
(Principle of the Invention) When a magnetostrictive vibration wave propagates in a magnetostrictive transmission medium, a part of the mechanical vibration energy is converted into magnetic energy in a region where the magnetostriction vibration wave exists, and a local magnetic field fluctuation occurs. The magnitude of this magnetic field fluctuation increases as the coefficient (hereinafter referred to as electromechanical coupling coefficient) indicating the conversion efficiency from mechanical energy to electrical energy (or from electrical energy to mechanical energy) increases, and The coupling coefficient becomes maximum near a certain bias magnetic field. Therefore, an electromagnetic transducer, for example, a magnetostrictive transmission medium in which a coil is arranged, is provided with means for generating steady magnetism to the extent of increasing the local electromechanical coupling coefficient, and is not connected anywhere. Position indicator (hereinafter referred to as position designation magnetic generator)
When magnetism is applied, a large magnetic field fluctuation occurs when the magnetostrictive vibration waves that have propagated through the magnetostrictive transmission medium reach that position, and at that time, a large induced electromotive force (induced voltage due to the magnetostrictive vibration waves) is generated in the coil.
occurs. Therefore, by detecting the timing of generation of this large induced electromotive force, it is possible to know the time required for the magnetostrictive vibration wave to reach the position specified by the position specifying magnetic generator, and from this time it is possible to determine the specified position. This makes it possible to detect the position of the user.

また、磁歪伝達媒体に瞬時的変動磁場を印加し
て発生させた磁歪振動波の大きさも、電気機械結
合係数が大きくなる程大きくなる。従つて、電磁
変換器、例えばコイルを配設した磁歪伝達媒体の
ある部位のみに位置指定用磁気発生器から電気機
械結合係数が大きくなる程度の磁気が加わつてい
ると、そのコイルにパルス電圧を印加した場合、
指定された部位でのみ大きな磁歪振動波が発生す
る。そこで、磁歪伝達媒体の端部に設けた別の電
磁変換器(コイル)で磁歪振動波を検出すれば、
大きな磁歪振動波がそのコイルに到達したとき誘
導起電力(磁歪振動波による誘導電圧)は大きく
なり、このタイミングを検出することで、先と同
様に指定された位置を検出することが可能とな
る。
Furthermore, the magnitude of the magnetostrictive vibration waves generated by applying an instantaneous varying magnetic field to the magnetostrictive transmission medium also increases as the electromechanical coupling coefficient increases. Therefore, if magnetism is applied from a position specifying magnetic generator to a certain portion of an electromagnetic transducer, such as a magnetostrictive transmission medium in which a coil is disposed, to an extent that increases the electromechanical coupling coefficient, it is possible to apply a pulse voltage to the coil. If applied,
Large magnetostrictive vibration waves are generated only in designated areas. Therefore, if the magnetostrictive vibration waves are detected with another electromagnetic transducer (coil) installed at the end of the magnetostrictive transmission medium,
When a large magnetostrictive vibration wave reaches the coil, the induced electromotive force (induced voltage due to the magnetostriction vibration wave) increases, and by detecting this timing, it is possible to detect the specified position as before. .

本発明は以上のような原理に基づき位置指定用
磁気発生器で指定された位置を検出するものであ
り、以下図面に基づいて実施例を説明する。
The present invention detects a position specified by a position specifying magnetic generator based on the above principle, and embodiments will be described below with reference to the drawings.

(発明の実施例) 第1図は本発明の一実施例に於けるX方向位置
検出部の構成説明図である。同図において、1a
〜1dは磁歪効果を有する材料で作られた磁歪伝
達媒体であり、X方向に沿つて互にほぼ平行に配
置される。磁歪伝達媒体1a〜1dは、強磁性体
であればどのようなものでも使用できるが、強い
磁歪振動波を発生させる為に磁歪効果の大きな材
料たとえば鉄を多量に含むアモルフアス合金が特
に望ましい。又、磁石を接近させても磁化され難
い保持力の小さな材料が好ましい。アモルフアス
合金としては、例えばFe67Co18B14Si1(原子%)、
Fe81B13.5Si3.5C2(原子%)等が使用できる。磁歪
伝達媒体1a〜1dは細長い形状をしており、そ
の断面は長方形の薄帯状か円形の線状が望まし
く、薄帯状の場合幅は数mm程度、厚さは数μm〜
数10μm程度が製造も容易で且つ特性も良好であ
る。アモルフアス合金は製造上、厚さが20〜50μ
mの薄いものが作れるので、これを薄板状或は線
状に切断すれば良い。本実施例では、Fe81B13.5
Si3.5C2(原子%)から成る幅2mm、厚さ0.02mmの
磁歪伝達媒体を使用している。
(Embodiment of the Invention) FIG. 1 is an explanatory diagram of the configuration of an X-direction position detection section in an embodiment of the invention. In the same figure, 1a
~1d are magnetostrictive transmission media made of a material having a magnetostrictive effect, and are arranged substantially parallel to each other along the X direction. Any ferromagnetic material can be used as the magnetostrictive transmission media 1a to 1d, but a material with a large magnetostrictive effect, such as an amorphous alloy containing a large amount of iron, is particularly desirable in order to generate strong magnetostrictive vibration waves. Further, it is preferable to use a material with a small coercive force that is difficult to magnetize even when a magnet is brought close to the material. Examples of amorphous alloys include Fe 67 Co 18 B 14 Si 1 (atomic%),
Fe 81 B 13.5 Si 3.5 C 2 (atomic %), etc. can be used. The magnetostrictive transmission media 1a to 1d have an elongated shape, and the cross section is preferably a rectangular thin strip or a circular linear shape, and in the case of a thin strip, the width is about several mm and the thickness is about several μm.
A thickness of about several tens of micrometers is easy to manufacture and has good characteristics. Amorphous alloys have a thickness of 20 to 50μ due to manufacturing.
Since a thin piece of m can be made, it is sufficient to cut it into a thin plate or a line. In this example, Fe 81 B 13.5
A magnetostrictive transmission medium made of Si 3.5 C 2 (atomic %) with a width of 2 mm and a thickness of 0.02 mm is used.

2は磁歪伝達媒体1a〜1dの一端に配設され
たX方向第1電磁変換器、例えばX方向第1コイ
ルである。各磁歪伝達媒体1a〜1dにそれぞれ
対応するX方向第1コイル2の各部分(以下、こ
れも単にコイルと称する。)2a〜2dは隣接す
るコイル同士で逆方向に巻回されており、コイル
2に電流を流した時に各コイル2a〜2dより生
起される磁束、又はコイル2に一方向の磁束が加
わつた時に各コイル2a〜2dより生起される電
圧が逆方向となる如くしてある。このため、コイ
ル2にパルス電流を流した時に発生するパルス雑
音や外部からの誘導等が隣接するコイル2a〜2
d間で互いに打ち消し合つて弱められる。なお巻
回数は図示例では1回であるが、2回以上にして
も良い。このX方向第1コイル2は瞬時的磁場変
動をコイル面に垂直に発生させて磁歪伝達媒体1
a〜1d各々の巻回部位に磁歪振動波を生起させ
る為のものであり、コイル2の一端は、磁歪振動
波を発生させるに足るパルス電流を発生するパル
ス電流発生器3の+端子に接続され、その他端は
その一端子に接続される。
Reference numeral 2 denotes a first electromagnetic transducer in the X direction, such as a first coil in the X direction, disposed at one end of the magnetostrictive transmission media 1a to 1d. Each portion of the first coil 2 in the X direction (hereinafter also simply referred to as a coil) corresponding to each of the magnetostrictive transmission media 1a to 1d, respectively, is a coil that is wound in the opposite direction between adjacent coils. The magnetic flux generated by each of the coils 2a to 2d when a current is passed through the coil 2, or the voltage generated by each of the coils 2a to 2d when a magnetic flux in one direction is applied to the coil 2, is in the opposite direction. For this reason, pulse noise generated when a pulse current is passed through the coil 2, external induction, etc.
d and are weakened by canceling each other out. Although the number of windings is one in the illustrated example, it may be wound two or more times. This X-direction first coil 2 generates an instantaneous magnetic field fluctuation perpendicular to the coil surface, and the magnetostrictive transmission medium 1
It is used to generate magnetostrictive vibration waves in each of the winding parts a to 1d, and one end of the coil 2 is connected to the + terminal of a pulse current generator 3 that generates a pulse current sufficient to generate the magnetostriction vibration waves. and the other end is connected to that one terminal.

4はバイアス用磁性体であり、磁歪伝達媒体1
a〜1dのX方向第1コイル2の巻回部分に磁歪
伝達媒体1a〜1dの長手方向に平行なバイアス
磁界を加える為のものである。このようにバイア
ス磁界を印加するのは、少ない電流で大きな磁歪
振動波の発生を可能にする為である。即ち、磁歪
伝達媒体1a〜1dの電気機械結合係数は例えば
第2図に示すようにあるバイアス磁界のとき最大
となるから、このような磁気バイアスを第1のコ
イル2の巻回部分に印加しておくことにより効率
良く磁歪振動波を発生することができる。
4 is a magnetic material for bias, and magnetostrictive transmission medium 1
This is for applying a bias magnetic field parallel to the longitudinal direction of the magnetostrictive transmission media 1a to 1d to the winding portions of the first coil 2 in the X direction a to 1d. The reason why a bias magnetic field is applied in this way is to enable generation of large magnetostrictive vibration waves with a small amount of current. That is, since the electromechanical coupling coefficients of the magnetostrictive transmission media 1a to 1d are maximum at a certain bias magnetic field as shown in FIG. By doing so, magnetostrictive vibration waves can be generated efficiently.

又第1図において、5は磁歪伝達媒体1a〜1
dの広い範囲にわたつて配設されたX方向第2電
磁変換器、例えばX方向第2コイルであり、各磁
歪伝達媒体1a〜1dにそれぞれ対応して巻回さ
れたコイル5a〜5dより成つている。各コイル
5a〜5dの巻き方向は全て同一(この実施例で
は左巻き)であり、コイル5a,5bの巻き終り
間、コイル5b,5cの巻き始め間、コイル5
c,5dの巻き終り間は互いに接続され、即ちコ
イル5a〜5dは直列に接続され、コイル5a,
5dの巻き始めは処理器6のX方向用入力端子に
それぞれ接続される。従つてコイル5a〜5dは
隣接するコイル同士で接続の極性が逆になつてお
り、コイル5に一方向の磁束が加わつた時に各コ
イル5a〜5dより生起される電圧、又はコイル
5に電流を流した時に各コイル5a〜5dより生
起される磁束が逆方向となる如くしてある。この
ため、X方向第1コイル2と同様に、外部からの
誘導や雑音が隣接するコイル5a〜5d間で互い
に打ち消し合つて弱められる。
Further, in FIG. 1, 5 indicates magnetostrictive transmission media 1a to 1.
A second electromagnetic transducer in the X direction, for example, a second coil in the X direction, is arranged over a wide range of d, and is composed of coils 5a to 5d wound in correspondence with the magnetostrictive transmission media 1a to 1d, respectively. It's on. The winding direction of each coil 5a to 5d is the same (in this embodiment, left-handed winding).
The winding ends of coils 5a and 5d are connected to each other, that is, the coils 5a to 5d are connected in series, and the coils 5a and 5d are connected in series.
The beginnings of winding 5d are connected to the X-direction input terminals of the processor 6, respectively. Therefore, the adjacent coils 5a to 5d are connected in opposite polarities, and when a magnetic flux in one direction is applied to the coil 5, the voltage generated by each coil 5a to 5d or the current applied to the coil 5 is The magnetic fluxes generated from each coil 5a to 5d are arranged in opposite directions when flowing. Therefore, similar to the X-direction first coil 2, external induction and noise are canceled out and weakened between the adjacent coils 5a to 5d.

各コイル5a〜5dの巻きピツチはX方向第1
コイル2に近接している側の一端より反対側の他
端に向つて徐々に密に巻回されており、磁歪振動
波の減衰により誘導電圧が小さくなるのを補なつ
ている。一般的に誘導起電力を高める為には巻き
ピツチは大きい方が好ましい。このX方向第2コ
イル5は磁歪伝達媒体1a〜1dを伝搬する磁歪
振動波による誘導電圧を検出する為のものであ
り、巻回された領域が位置検出領域となる。又7
は位置指定用磁気発生器を構成する磁性体であ
り、この実施例では直径3mm、長さ50mmの棒磁石
を使用しているが、形状は板、リング、角等でも
よく、又電磁石でもよい。第1図ではこの棒磁石
7で指定されたX方向の位置を検出しようとする
ものである。
The winding pitch of each coil 5a to 5d is the first in the X direction.
It is wound gradually more densely from one end on the side close to the coil 2 toward the other end on the opposite side to compensate for the reduction in induced voltage due to attenuation of the magnetostrictive vibration waves. Generally, in order to increase the induced electromotive force, it is preferable to have a larger winding pitch. This X-direction second coil 5 is for detecting induced voltage due to magnetostrictive vibration waves propagating through the magnetostrictive transmission media 1a to 1d, and the area where it is wound serves as a position detection area. Again 7
is a magnetic body constituting the position specifying magnetic generator, and in this example a bar magnet with a diameter of 3 mm and a length of 50 mm is used, but the shape may be a plate, ring, corner, etc., or it may be an electromagnet. . In FIG. 1, an attempt is made to detect a specified position in the X direction using this bar magnet 7.

今、第1図において、位置指定用棒磁石7がN
極を下にしてX方向第1コイル2のコイル面中心
からX軸方向の距離lの磁歪伝達媒体1a上にあ
り、電気機械結合係数が大きくなる程度の磁気を
真下の磁歪伝達媒体1aの一部に加えているもの
とする。
Now, in FIG. 1, the position designating bar magnet 7 is
It is placed on the magnetostrictive transmission medium 1a at a distance l in the X-axis direction from the center of the coil surface of the first coil 2 in the X direction with the pole facing down. It is assumed that it has been added to the section.

このような状態において、X方向パルス電流発
生器3からパルス電流がX方向第1コイル2に印
加されると、X方向第1コイル2で瞬時的磁場変
動が発生し、これが原因で磁歪伝達媒体1a〜1
dのX方向第1コイル2の巻回部分で磁歪振動波
が生起する。この磁歪振動波は磁歪伝達媒体1a
〜1d固有の伝搬速度(約5000m/秒)で磁歪伝
達媒体1a〜1dを長手方向に沿つて伝搬する。
そして、この伝搬中において、磁歪振動波が存在
する磁歪伝達媒体1a〜1dの部位でその部位の
電気機械結合係数の大きさに応じて機械的エネル
ギーから磁気的エネルギーへの変換が行なわれ、
その為X方向第2コイル5に誘導起電力が発生す
る。
In such a state, when a pulse current is applied from the X-direction pulse current generator 3 to the X-direction first coil 2, an instantaneous magnetic field fluctuation occurs in the X-direction first coil 2, which causes the magnetostrictive transmission medium to 1a-1
A magnetostrictive vibration wave is generated at the winding portion of the first coil 2 in the X direction of d. This magnetostrictive vibration wave is generated by the magnetostrictive transmission medium 1a.
It propagates along the longitudinal direction of the magnetostrictive transmission media 1a to 1d at a propagation speed specific to ~1d (approximately 5000 m/sec).
During this propagation, conversion from mechanical energy to magnetic energy is performed at a portion of the magnetostrictive transmission medium 1a to 1d where the magnetostrictive vibration wave exists, depending on the magnitude of the electromechanical coupling coefficient at that portion.
Therefore, an induced electromotive force is generated in the second coil 5 in the X direction.

第3図はX方向第2コイル5に発生する誘導起
電力の時間的変化の一例をX方向第1コイル2に
パルス電流を印加した時刻をt=0として図示し
たものである。同図に示すように、誘導起電力の
振幅は時刻t=0直後と時刻t0からt1〜t2秒経過
したあたりで大きくなり、他の時刻では小さくな
る。時刻t=0直後で誘導起電力の振幅が大きく
なるのは、X方向第1コイル2とX方向第2コイ
ル5間の電磁誘導作用によるものであり、時刻t
=t1〜t2において1サイクルの誘導起電力(磁歪
振動波による誘導電圧)の振幅が大きくなるの
は、X方向第1コイル2の巻回部分で発生した磁
歪振動波が磁歪伝達媒体1aを伝搬して位置指定
用棒磁石7の直下付近に到達し、その部分で電気
機械結合係数が大きくなつた為である。位置指定
用棒磁石7を磁歪伝達媒体の長手方向X方向に沿
つて移動させると磁歪振動波による誘導電圧もそ
れに応じて時間軸上を移動する。従つて、時刻t0
からt1〜t2までの時間を測定することにより位置
指定用棒磁石7で指定されたX方向の位置、即ち
距離lを算出することができる。位置を算出する
為の伝搬時間としては、例えば第3図に示すよう
に磁歪振動による誘導電圧の振幅が閾値−E1
り小さくなつた時点t3、閾値E1より大きくなつた
時点t4を使用しても良く、又、ゼロクロス点t5
使用しても良い。
FIG. 3 shows an example of a temporal change in the induced electromotive force generated in the second coil 5 in the X direction, with the time t=0 when a pulse current is applied to the first coil 2 in the X direction. As shown in the figure, the amplitude of the induced electromotive force becomes large immediately after time t=0 and around t1 to t2 seconds after time t0 , and becomes small at other times. The reason why the amplitude of the induced electromotive force becomes large immediately after time t = 0 is due to the electromagnetic induction effect between the first X-direction coil 2 and the second X-direction coil 5.
The reason why the amplitude of one cycle of induced electromotive force (induced voltage due to magnetostrictive oscillating waves) becomes large from t 1 to t 2 is because the magnetostrictive oscillating waves generated in the winding portion of the first coil 2 in the X direction are transferred to the magnetostrictive transmission medium 1a. This is because the electromechanical coupling coefficient becomes large at that point as it propagates to the vicinity directly below the position specifying bar magnet 7. When the position specifying bar magnet 7 is moved along the longitudinal direction X of the magnetostrictive transmission medium, the induced voltage due to the magnetostrictive vibration wave also moves on the time axis accordingly. Therefore, time t 0
By measuring the time from t 1 to t 2 , it is possible to calculate the position in the X direction designated by the position designating bar magnet 7, that is, the distance l. As the propagation time for calculating the position, for example, as shown in Fig. 3, the time t 3 when the amplitude of the induced voltage due to magnetostrictive vibration becomes smaller than the threshold value -E 1 and the time t 4 when it becomes larger than the threshold value E 1 are used. Alternatively, the zero cross point t5 may be used.

また、第1図において、位置指定用棒磁石7を
磁歪伝達媒体1a〜1dの長手方向に垂直な方向
(Y方向)に平行移動させ、位置指定用棒磁石7
のN極が磁歪伝達媒体1b〜1dの上に位置した
ときも、第3図と同様の誘導電圧が得られる。こ
れは、コイル5a,5cとコイル5b,5dの接
続極性が逆であるが、コイル2a,2cとコイル
2b,2cの巻回方向を反対にしてあることによ
る。従つて、常に同一極性の磁歪振動による誘導
電圧を取り出すことができ、検出精度を高めるこ
とが可能となる。また、コイル2a,2cとコイ
ル2b,2dの巻回方向を逆にしているので、コ
イルにより発生する誘導電圧は互いに打ち消し合
つて小さくなり、X方向第1コイル2からX方向
第2コイル5に直接誘導される第3図のt0の直後
の誘導電圧も小さくなる。従つて、X方向第1コ
イル2とX方向第2コイル5の間隔を狭くするこ
とができ、その分位置検出領域を拡大することが
可能となる。一般に、X方向第1コイル部分の巻
回方向又は接続極性を隣接するコイル同士で逆に
すればこの効果は得られる。
In addition, in FIG. 1, the bar magnet 7 for position designation is moved in parallel in the direction (Y direction) perpendicular to the longitudinal direction of the magnetostrictive transmission media 1a to 1d, and the bar magnet 7 for position designation is
When the N pole of is located above the magnetostrictive transmission media 1b to 1d, an induced voltage similar to that shown in FIG. 3 is obtained. This is because the connection polarities of the coils 5a, 5c and the coils 5b, 5d are opposite, but the winding directions of the coils 2a, 2c and the coils 2b, 2c are opposite. Therefore, it is possible to always extract the induced voltage due to the magnetostrictive vibration of the same polarity, and it is possible to improve the detection accuracy. In addition, since the winding directions of the coils 2a, 2c and the coils 2b, 2d are reversed, the induced voltages generated by the coils cancel each other out and become smaller, so that the voltages induced by the coils cancel each other out and become smaller, and the voltages are transferred from the first coil 2 in the X direction to the second coil 5 in the X direction. The directly induced induced voltage immediately after t 0 in FIG. 3 also becomes smaller. Therefore, the distance between the first X-direction coil 2 and the second X-direction coil 5 can be narrowed, and the position detection area can be expanded accordingly. Generally, this effect can be obtained by reversing the winding direction or connection polarity of the first coil portion in the X direction between adjacent coils.

なお、第1図の構成において、位置指定用棒磁
石7が磁歪伝達媒体1aの上にある場合、位置指
定用棒磁石7の極性或はバイアス用磁性体4の極
性を図示と逆にした場合、X方向第1コイル2a
或はコイル5aの巻き方向を逆向きにした場合、
及びX方向第1コイル2a或はコイル5aの接続
を逆極性にした場合、いずれも磁歪振動波による
誘導電圧の極性が反転することが実験により確め
られている。
In addition, in the configuration shown in FIG. 1, when the position specifying bar magnet 7 is placed on the magnetostrictive transmission medium 1a, when the polarity of the position specifying bar magnet 7 or the polarity of the bias magnetic body 4 is reversed from that shown in the figure. , X-direction first coil 2a
Or, if the winding direction of the coil 5a is reversed,
It has been experimentally confirmed that when the first coil 2a or the coil 5a is connected in the opposite polarity in the X direction, the polarity of the voltage induced by the magnetostrictive vibration wave is reversed.

従つて、第1図においてコイル5b,5dの巻
き方を反対にした場合には、コイル2b,2dの
巻き方を逆にすれば、常に同一極性の磁歪振動に
よる誘導電圧を取り出すことができる。第1図に
おいてコイル5a〜5dは直列に接続している
が、誘導起電力は小さくなるがコイル5a〜5d
を並列に接続する構成としても良い。
Therefore, when the coils 5b and 5d are wound in the opposite manner in FIG. 1, by reversing the winding of the coils 2b and 2d, it is possible to always extract the induced voltage due to the magnetostrictive vibration of the same polarity. In Fig. 1, the coils 5a to 5d are connected in series, and although the induced electromotive force is small, the coils 5a to 5d
It is also possible to have a configuration in which these are connected in parallel.

第4図は第1図のX方向位置検出部を組合せて
使用するY方向位置検出部の構成説明図であり、
11a〜11dはY方向に沿つて互いにほぼ平行
に配列された磁歪伝達媒体、12は磁歪伝達媒体
11a〜11dの一端に配設されたY方向第1電
磁変換器、例えばY方向第1コイル、13はY方
向第1コイル12にパルス電流を印加して各磁歪
伝達媒体11a〜11dに同時に磁歪振動波を生
起させるY方向用パルス電流発生器、14は磁歪
伝達媒体11a〜11dのY方向第1コイル12
の巻回部分にバイアス磁界を加えるバイアス用磁
性体、15は磁歪伝達媒体11a〜11dの広い
範囲にわたつて配設されたY方向第2電磁変換
器、例えばY方向第2コイルである。前記Y方向
第1コイル12はコイル12a〜12dより構成
され、これらは隣接するコイル同士で逆方向に巻
回されている。又前記Y方向第2コイル15はコ
イル15a〜15dより構成され、各コイル15
a〜15dの巻き方向は全て同一(この実施例で
は左巻き)であり、コイル15a,15bの巻き
終り間、コイル15b,15cの巻き始め間、コ
イル15c,15dの巻き終り間は互いに接続さ
れ、即ちコイル15a〜15dは直列に接続さ
れ、コイル15a,15dの巻き始めは処理器6
のY方向用入力端子に接続される。又各コイル1
5a〜15dの巻きピツチはY方向第1コイル1
2に近接している側の一端より反対側の他端に向
つて徐々に密に巻回されている。
FIG. 4 is a configuration explanatory diagram of a Y-direction position detecting section used in combination with the X-direction position detecting section of FIG.
11a-11d are magnetostrictive transmission media arranged substantially parallel to each other along the Y direction; 12 is a Y-direction first electromagnetic transducer disposed at one end of the magnetostrictive transmission media 11a-11d; for example, a Y-direction first coil; 13 is a Y-direction pulse current generator that applies a pulse current to the Y-direction first coil 12 to simultaneously generate magnetostrictive vibration waves in each of the magnetostrictive transmission media 11a to 11d; 14 is a Y-direction pulse current generator that applies a pulse current to the Y-direction first coil 12; 1 coil 12
15 is a Y-direction second electromagnetic transducer, for example, a Y-direction second coil, which is disposed over a wide range of the magnetostrictive transmission media 11a to 11d. The Y-direction first coil 12 is composed of coils 12a to 12d, and adjacent coils are wound in opposite directions. Further, the Y-direction second coil 15 is composed of coils 15a to 15d, and each coil 15
The winding directions of a to 15d are all the same (in this example, left-handed winding), and the ends of coils 15a and 15b, the beginnings of winding of coils 15b and 15c, and the ends of windings of coils 15c and 15d are connected to each other, That is, the coils 15a to 15d are connected in series, and the beginning of winding of the coils 15a and 15d is at the processor 6.
is connected to the Y-direction input terminal. Also, each coil 1
The winding pitch of 5a to 15d is the first coil 1 in the Y direction.
It is wound gradually more densely from one end on the side close to 2 toward the other end on the opposite side.

第4図におけるY方向第1コイル12及びY方
向第2コイル15が巻回された磁歪伝達媒体11
a〜11dは、後で詳細するように、第1図にお
けるX方向第1コイル2及びX方向第2コイル5
が巻回された磁歪伝達媒体1a〜1dにできるだ
け近接するように重ね合わされ、位置指定用磁気
発生器7で指定されたY方向の位置を検出する為
のものである。なお、各部の構造及び作用は第1
図と同様であるから、その説明は省略する。
Magnetostrictive transmission medium 11 around which the first coil 12 in the Y direction and the second coil 15 in the Y direction in FIG. 4 are wound.
a to 11d are the first coil 2 in the X direction and the second coil 5 in the X direction in FIG. 1, as will be detailed later.
is superimposed on the wound magnetostrictive transmission media 1a to 1d so as to be as close as possible to the magnetostrictive transmission media 1a to 1d, and is used to detect the position in the Y direction designated by the position designating magnetic generator 7. The structure and function of each part are as follows.
Since it is similar to the figure, its explanation will be omitted.

第5図は座標位置検出装置の検出部の構造例を
示す平面図、第6図は第5図A−A′線に沿う断
面図である。同図に示すように磁歪伝達媒体1は
補強材8内に収容され、X方向第1コイル2及び
X方向第2コイル5は該補強材8の周囲に巻回さ
れ、これらは非磁性の金属ケース100の内部底
面に設けた窪みに挿入され、又磁歪伝達媒体11
は補強材18内に収容され、Y方向第1コイル1
2及びY方向第2コイル15は該補強材18の周
囲に巻回され、これらは前記X方向の検出部の上
に重ね合わされ、必要に応じて接着剤等で固定さ
れる。
FIG. 5 is a plan view showing an example of the structure of the detecting section of the coordinate position detecting device, and FIG. 6 is a sectional view taken along the line A-A' in FIG. As shown in the figure, the magnetostrictive transmission medium 1 is housed in a reinforcing member 8, and the first X-direction coil 2 and the second X-direction coil 5 are wound around the reinforcing member 8, and these are made of non-magnetic metal. The magnetostrictive transmission medium 11 is inserted into a recess provided on the internal bottom surface of the case 100.
is housed in the reinforcing member 18, and the first coil 1 in the Y direction
2 and the Y-direction second coil 15 are wound around the reinforcing member 18, and these are superimposed on the X-direction detection section and fixed with an adhesive or the like as necessary.

X方向第1コイル2、Y方向第1コイル12の
一端は接地され、他端は導線で外部に取り出され
てX方向パルス電流発生器3、Y方向パルス電流
発生器13に接続される。また、X方向第2コイ
ル5、Y方向第2コイル15の一端は接地され、
他端は導線で外部に取り出されて処理器6に接続
される。バイアス用磁性体4,14は磁歪伝達媒
体1,11の端部に対向するように金属ケース1
00の内部底面に固定されているが、磁歪伝達媒
体1,11の上方、下方、側方に並例に配置して
も良い。金属ケース100には非磁性体の金属よ
り成る蓋101が被せられており、この蓋101
の上で位置指定用棒磁石7を移動させるものであ
る。
One end of the first X-direction coil 2 and the first Y-direction coil 12 is grounded, and the other end is taken out to the outside via a conductive wire and connected to the X-direction pulse current generator 3 and the Y-direction pulse current generator 13. Further, one end of the second coil 5 in the X direction and the second coil 15 in the Y direction is grounded,
The other end is taken out to the outside through a conductor and connected to the processor 6. The bias magnetic bodies 4 and 14 are arranged in the metal case 1 so as to face the ends of the magnetostrictive transmission media 1 and 11.
Although they are fixed to the internal bottom surface of the magnetostrictive transmission medium 1, 11, they may be arranged above, below, or to the sides of the magnetostrictive transmission medium 1, 11. The metal case 100 is covered with a lid 101 made of non-magnetic metal.
The position specifying bar magnet 7 is moved above the .

第7図は処理器6の実施例を示す要部ブロツク
図である。同図において、まずコンピユータ60
は図示しないスイツチ等より測定開始を示す信号
を受け、入力バツフア回路61を介して測定準備
パルスを出力し、カウンタ62をクリアする。次
にコンピユータ60はX方向スタートパルスを出
力し、X方向パルス電流発生器3をトリガしてX
方向第1コイル2にパルス電流を印加すると共
に、オア回路63を介してDフリツプフロツプ6
4の出力を“1”にし、更にアナログスイツチ
回路65をオンする。前記出力はアンド回路6
6を開き、カウンタ62はクロツクパルス発生器
67の出力パルス(パルス繰返し周波数は例えば
100MHz)のカウントを開始する。
FIG. 7 is a main part block diagram showing an embodiment of the processor 6. As shown in FIG. In the figure, first the computer 60
receives a signal indicating the start of measurement from a switch or the like (not shown), outputs a measurement preparation pulse via the input buffer circuit 61, and clears the counter 62. Next, the computer 60 outputs an X-direction start pulse, triggers the X-direction pulse current generator 3, and
A pulse current is applied to the first coil 2 in the direction, and the D flip-flop 6 is applied via the OR circuit 63.
4 is set to "1", and the analog switch circuit 65 is turned on. The output is an AND circuit 6
6 is opened, and the counter 62 receives the output pulse of the clock pulse generator 67 (the pulse repetition frequency is, for example,
100MHz).

X方向第2コイル5で発生する誘導起電力は信
号増幅器68で増幅され、比較器69の(+)入
力端子に入力される。比較器69の(−)入力端
子には例えば第3図の閾値E1に相当する電圧Er
が印加されており、比較器69は信号増幅器68
の出力が電圧Erより大きい間、即ち磁歪振動波
による誘導電圧の正極性部分を検出したときにそ
の出力をハイレベルとする。
The induced electromotive force generated in the second coil 5 in the X direction is amplified by a signal amplifier 68 and input to the (+) input terminal of a comparator 69. For example, the (-) input terminal of the comparator 69 receives a voltage Er corresponding to the threshold value E1 in FIG.
is applied, and the comparator 69 is connected to the signal amplifier 68
While the output of is greater than the voltage Er, that is, when the positive polarity portion of the voltage induced by the magnetostrictive oscillation wave is detected, the output is set to a high level.

さて、比較器69の出力はアンド回路70を介
してDフリツプフロツプ64をセツトするので、
その出力によつてアンド回路66は閉ざされ、
カウンタ62はカウント動作を停止する。このよ
うに、X方向第2コイル5に磁歪振動波による誘
導電圧が現われるとカウンタ62はカウント動作
を停止するので、X方向スタートパルスが出てか
らの経過時間をカウンタのデイジタル値として知
ることができる。また、この値は磁歪振動波が毎
秒約5000mの速さで進むことにより、X方向第1
コイル2から位置指定用磁性体7までのX方向の
距離に対応したものとなる。このようにしてデイ
ジタル値として得られたX方向位置データは、出
力バツフア回路71を介してデイジタル数字表示
器72に入力され表示されたり、コンピユータ6
0に入力されて処理されることになる。
Now, since the output of the comparator 69 sets the D flip-flop 64 via the AND circuit 70,
The output closes the AND circuit 66,
The counter 62 stops counting. In this way, when the induced voltage due to the magnetostrictive oscillation wave appears in the second coil 5 in the X direction, the counter 62 stops the counting operation, so the elapsed time from the output of the X direction start pulse can be known as the digital value of the counter. can. In addition, this value is determined by the fact that the magnetostrictive vibration waves travel at a speed of approximately 5000 m/s.
This corresponds to the distance in the X direction from the coil 2 to the position specifying magnetic body 7. The X-direction position data thus obtained as a digital value is input to the digital number display 72 via the output buffer circuit 71 and displayed, or is input to the computer 6.
It will be input to 0 and processed.

ついでコンピユータ60は再度、測定準備パル
スを出力しカウンタ62をクリアし、Y方向スタ
ートパルスをY方向パルス電流発生器13、Dフ
リツプフロツプ64、及びアナログスイツチ回路
73に出力し、前記同様にしてY方向位置データ
を得る。
Then, the computer 60 again outputs a measurement preparation pulse to clear the counter 62, and outputs a Y-direction start pulse to the Y-direction pulse current generator 13, D flip-flop 64, and analog switch circuit 73. Get location data.

第8図は本発明の別の実施例におけるX方向位
置検出部の構成説明図である。同図において、2
a′〜2d′は磁歪伝達媒体1a〜1dの一端の所定
範囲にわたつて配設されたX方向第1電磁変換
器、例えばX方向第1コイルであり、各コイル2
a′〜2d′は巻き方向が全て同一(この実施例では
左巻き)であるが、隣接するコイル同士で接続の
極性が逆になつており、第1図のコイル2a〜2
dと同様に、コイル2a′〜2d′にパルス電流を流
した時にコイルから発生する電圧は互いに打ち消
し合つて小さくなる。このコイル2a′〜2d′は瞬
時的磁場変動を発生させて磁歪伝達媒体1a〜1
dに磁歪振動波を発生させるためのものであり、
磁歪伝達媒体1a〜1dに巻回された領域が磁歪
振動波の発生領域となる。
FIG. 8 is an explanatory diagram of the configuration of an X-direction position detection section in another embodiment of the present invention. In the same figure, 2
a' to 2d' are first electromagnetic transducers in the X direction, for example, first coils in the X direction, which are disposed over a predetermined range at one end of the magnetostrictive transmission media 1a to 1d, and each coil 2
The winding directions of coils a' to 2d' are all the same (left-handed in this example), but the polarity of the connection is reversed between adjacent coils, and coils 2a to 2 in FIG.
Similarly to d, when a pulse current is passed through the coils 2a' to 2d', the voltages generated from the coils cancel each other out and become smaller. These coils 2a' to 2d' generate instantaneous magnetic field fluctuations to generate magnetostrictive transmission media 1a to 1.
d to generate magnetostrictive vibration waves,
The region wound around the magnetostrictive transmission media 1a to 1d becomes the region where magnetostrictive vibration waves are generated.

又9はバイアス用磁性体4の代りに使用する基
準位置指定用磁気発生器であり、磁歪伝達媒体1
a〜1dに局部的に長手方向に平行なバイアス磁
界を加えて磁歪伝達媒体1a〜1dに発生させる
磁歪振動波の発生位置を指定するものである。
Reference numeral 9 denotes a reference position specifying magnetic generator used in place of the biasing magnetic body 4, and is used in place of the magnetostrictive transmission medium 1.
A bias magnetic field parallel to the longitudinal direction is locally applied to a to 1d to specify the generation position of magnetostrictive vibration waves generated in the magnetostrictive transmission media 1a to 1d.

上記X方向位置検出部は、これと同様なY方向
第1コイル及び基準位置指定用磁気発生器を有す
るY方向位置検出部(図示せず)と組合わせて使
用され、位置指定用磁気発生器7で指定された位
置と基準位置指定用磁気発生器で指定する位置と
の間のX方向及びY方向の座標値が検出される。
なお、その他の構成・効果は前記第1図乃至第7
図における実施例と同様である。
The X-direction position detecting section is used in combination with a Y-direction position detecting section (not shown) having a similar first Y-direction coil and a magnetic generator for specifying a reference position. The coordinate values in the X direction and Y direction between the position specified in step 7 and the position specified by the reference position specifying magnetic generator are detected.
Other configurations and effects are shown in Figures 1 to 7 above.
This is similar to the embodiment shown in the figure.

また上記実施例ではX方向第1コイル2a′〜2
d′の巻きピツチを同一としているが、X方向第2
コイル5a〜5dに近接する側より他側に向けて
徐々に密となるように巻回しても良く、この場合
にも磁歪振動波の減衰により誘導起電力が小さく
なるのを補なうことができる。
Further, in the above embodiment, the first coils 2a' to 2 in the X direction
The winding pitch of d′ is the same, but the second
The coils 5a to 5d may be wound gradually closer to each other from the side closer to the other side, and in this case as well, it is possible to compensate for the decrease in the induced electromotive force due to the attenuation of the magnetostrictive vibration waves. can.

以上の実施例では第1のコイル(電磁変換器)
を磁歪振動波の発生用に使用し、第2のコイルを
磁歪振動波の検知用として使用したが、発明の原
理の項で述べたように、第2のコイルを磁歪振動
波の発生用としてパルス電流発生器3,13に接
続し、第1のコイルを磁歪振動波の検知用として
処理器6に接続する構成にすることもできる。
In the above embodiment, the first coil (electromagnetic converter)
was used to generate magnetostrictive vibration waves, and the second coil was used to detect magnetostrictive vibration waves. It is also possible to connect the first coil to the pulse current generators 3 and 13, and connect the first coil to the processor 6 for detecting magnetostrictive vibration waves.

なお、磁場(磁束)変動を電圧、電流等の変化
に変換し、又は電圧、電流等の変化を磁場変動に
変換する素子、装置を本発明では電磁変換器と呼
ぶものとする。実施例では電磁変換器としてコイ
ルを用いたが、これに限られることはなく、特に
第1の電磁変換器として磁気ヘツドを用いれば外
部に漏れる磁束が極めて少なくなり、より高精度
な座標位置の検出が可能となる。
Note that an element or device that converts magnetic field (magnetic flux) fluctuations into changes in voltage, current, etc., or converts changes in voltage, current, etc. into magnetic field fluctuations is referred to as an electromagnetic converter in the present invention. In the embodiment, a coil was used as the electromagnetic transducer, but it is not limited to this. In particular, if a magnetic head is used as the first electromagnetic transducer, the magnetic flux leaking to the outside will be extremely small, and it will be possible to determine the coordinate position with higher precision. Detection becomes possible.

(発明の効果) 以上説明したように互いにほぼ平行に配列され
た複数の磁歪伝達媒体をX方向、Y方向にほぼ垂
直に交叉するよう重ね合わせ、これに第1の電磁
変換器と第2の電磁変換器を配設し、この第1の
電磁変換器又は第2の電磁変換器の一方にパルス
電流を加えてから他方の電磁変換器に磁歪振動波
による誘導電圧が現われるまでの時間を検知して
位置検出を行なうようになしたため、位置指示器
は装置のどの部分とも接続されず取扱いが容易と
なり、また磁歪伝達媒体の電気機械結合係数をあ
る部分のみ数Oe程度変化させて位置指定するた
め、位置指示器を検出面に必ずしも近接させる必
要はなく、数cm以上の間隔をあけてもよく、また
磁性体以外の物体を介在させてもよく、これらの
場合でも非常に高い分解能で位置検出でき、ま
た、第1又は第2の電磁変換器により生起される
磁束或いは第1又は第2の電磁変換器に生起する
電流が、各磁歪伝達媒体毎或いは隣接する2個以
上の磁歪伝達媒体毎に逆方向となる如くなしたた
め、該第1又は第2の電磁変換器にパルス電流を
流した際に発生するパルス性の雑音や外部から混
入するノイズ等が互いに打消しあつて小さくな
り、より正確な位置検出をなし得る等の利点があ
る。
(Effects of the Invention) As explained above, a plurality of magnetostrictive transmission media arranged substantially parallel to each other are superimposed so as to intersect substantially perpendicularly to the X direction and the Y direction, and the first electromagnetic transducer and the second An electromagnetic transducer is provided, and the time from when a pulse current is applied to one of the first electromagnetic transducer or the second electromagnetic transducer until an induced voltage due to magnetostrictive vibration waves appears in the other electromagnetic transducer is detected. Since the position is detected by using a magnet, the position indicator is not connected to any part of the device and is easy to handle, and the electromechanical coupling coefficient of the magnetostrictive transmission medium can be changed by several Oe only in a certain part to specify the position. Therefore, the position indicator does not necessarily need to be close to the detection surface, it may be spaced a few centimeters or more apart, or an object other than a magnetic material may be interposed, and even in these cases, the position indicator can be determined with extremely high resolution. The magnetic flux generated by the first or second electromagnetic transducer or the current generated in the first or second electromagnetic transducer can be detected for each magnetostrictive transmission medium or for two or more adjacent magnetostrictive transmission media. Since the pulse current is made to flow in the opposite direction each time, pulse noise generated when a pulse current is passed through the first or second electromagnetic transducer, noise mixed from the outside, etc. cancel each other out and become smaller. There are advantages such as more accurate position detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるX方向位置
検出部の構成説明図、第2図は磁気バイアス対電
気機械結合係数の特性図、第3図はX方向第2コ
イル5に発生する誘導起電力の時間的変化の一例
を示す線図、第4図は第1図のX方向位置検出部
と組合せて使用するY方向位置検出部の構成説明
図、第5図は位置検出装置の検出部の構成例を示
す平面図、第6図は第5図A−A′線に沿う断面
図、第7図は処理器6の実施例を示す要部ブロツ
ク図、第8図は本発明の別の実施例におけるX方
向位置検出部の構成説明図である。 1a〜1d……X方向の磁歪伝達媒体、2……
X方向第1コイル、3……X方向のパルス電流発
生器、5……X方向第2コイル、6……処理器、
7……位置指定用磁気発生器、11a〜11d…
…Y方向の磁歪伝達媒体、12……Y方向第1コ
イル、15……Y方向第2コイル、13……Y方
向のパルス電流発生器。
FIG. 1 is an explanatory diagram of the configuration of the X-direction position detection section in an embodiment of the present invention, FIG. 2 is a characteristic diagram of magnetic bias versus electromechanical coupling coefficient, and FIG. 3 is an induction generated in the second coil 5 in the X-direction. A line diagram showing an example of a temporal change in electromotive force. FIG. 4 is a configuration explanatory diagram of a Y-direction position detecting section used in combination with the X-direction position detecting section of FIG. 1. FIG. 5 is a diagram showing the detection of the position detecting device. 6 is a sectional view taken along the line A-A' in FIG. 5, FIG. 7 is a block diagram of main parts showing an embodiment of the processor 6, and FIG. FIG. 7 is an explanatory diagram of the configuration of an X-direction position detection section in another embodiment. 1a to 1d... magnetostrictive transmission medium in the X direction, 2...
X-direction first coil, 3...X-direction pulse current generator, 5...X-direction second coil, 6...processor,
7...Magnetic generator for position designation, 11a to 11d...
...Magnetostrictive transmission medium in the Y direction, 12...First coil in the Y direction, 15...Second coil in the Y direction, 13...Pulse current generator in the Y direction.

Claims (1)

【特許請求の範囲】 1 手持ち支持される位置指示器にて指定された
位置の座標値をデイジタル値として出力する座標
位置検出装置において、互いにほぼ平行に配列さ
れた複数のX方向の磁歪伝達媒体と、互いにほぼ
平行に配列された複数のY方向の磁歪伝達媒体と
が互いにほぼ垂直に交叉するように重ね合わされ
た構成を有し、且つ、前記複数のX方向の磁歪伝
達媒体の一端に配設されたX方向第1電磁変換器
と前記複数のY方向の磁歪伝達媒体の一端に配設
されたY方向第1電磁変換器とから成る第1の電
磁変換器と、前記複数のX方向の磁歪伝達媒体の
広い範囲にわたつて配設されたX方向第2電磁変
換器と前記複数のY方向の磁歪伝達媒体の広い範
囲にわたつて配設されたY方向第2電磁変換器と
から成る第2の電磁変換器と、前記磁歪伝達媒体
の局部的な電気機械結合係数を大きくする程度の
定常的な磁気を発生する手段を備えかつどこにも
接続されていない位置指示器と、前記第1の電磁
変換器又は第2の電磁変換器の一方にパルス電流
を印加して前記各磁歪伝達媒体に磁歪振動波を生
起させるパルス電流発生器と、磁歪振動波が生起
した時点より該磁歪振動波が磁歪伝達媒体の前記
位置指示器による指定位置に到達し前記第1の電
磁変換器又は第2の電磁変換器の他方に誘導電圧
が発生するまでの時間を検知し前記指定位置の座
標値をデイジタル値として出力する処理器とを具
備し、前記第1の電磁変換器により生起される磁
束又は第1の電磁変換器に生起する電流の方向、
並びに前記第2の電磁変換器に生起する電流又は
第2の電磁変換器により生起される磁束の方向
が、各磁歪伝達媒体毎或いは隣接する2個以上の
磁歪伝達媒体毎に逆方向となるように第1及び第
2の電磁変換器を構成したことを特徴とする座標
位置検出装置。 2 第1の電磁変換器又は第2の電磁変換器のど
ちらか一方或いは第1の電磁変換器及び第2の電
磁変換器を、互いに近接している一側から他側に
向つて徐々に磁歪伝達媒体との電磁結合が密とな
るように構成したことを特徴とする特許請求の範
囲第1項記載の座標位置検出装置。 3 磁歪伝達媒体を収容するスペースを有する補
強材を備えたことを特徴とする特許請求の範囲第
1項又は第2項記載の座標位置検出装置。 4 磁歪伝達媒体と第1及び第2の電磁変換器を
非磁性体の金属ケースに収容したことを特徴とす
る特許請求の範囲第1項乃至第3項いずれか1項
記載の座標位置検出装置。 5 第1の電磁変換器に近接して配置された基準
位置指定用磁気発生器を備えたことを特徴とする
特許請求の範囲第1項乃至第4項いずれか1項記
載の座標位置検出装置。
[Scope of Claims] 1. In a coordinate position detection device that outputs the coordinate values of a position designated by a hand-held position indicator as digital values, a plurality of X-direction magnetostrictive transmission media arranged substantially parallel to each other. and a plurality of Y-direction magnetostrictive transmission media arranged substantially parallel to each other and stacked so as to intersect each other substantially perpendicularly, and arranged at one end of the plurality of X-direction magnetostriction transmission media. a first electromagnetic transducer arranged in the X direction and a first electromagnetic transducer in the Y direction arranged at one end of the plurality of Y direction magnetostrictive transmission media; a second X-direction electromagnetic transducer disposed over a wide range of the magnetostrictive transmission media; and a Y-direction second electromagnetic transducer disposed over a wide range of the plurality of Y-direction magnetostrictive transmission media. a second electromagnetic transducer comprising: a second electromagnetic transducer; a position indicator which is not connected to any other means and which is provided with means for generating steady magnetism to an extent that increases the local electromechanical coupling coefficient of the magnetostrictive transmission medium; a pulse current generator that applies a pulse current to one of the first electromagnetic transducer or the second electromagnetic transducer to generate magnetostrictive vibration waves in each of the magnetostrictive transmission media; Detecting the time it takes for the wave to reach the position specified by the position indicator of the magnetostrictive transmission medium until an induced voltage is generated in the other of the first electromagnetic transducer or the second electromagnetic transducer, and detecting the coordinate value of the specified position. a processor that outputs as a digital value, the direction of the magnetic flux generated by the first electromagnetic transducer or the current generated in the first electromagnetic transducer;
and the direction of the current generated in the second electromagnetic transducer or the magnetic flux generated by the second electromagnetic transducer is opposite for each magnetostrictive transmission medium or for each two or more adjacent magnetostrictive transmission media. 1. A coordinate position detection device comprising first and second electromagnetic transducers. 2. Either one of the first electromagnetic transducer or the second electromagnetic transducer, or the first electromagnetic transducer and the second electromagnetic transducer, is gradually magnetostricted from one side that is close to each other toward the other side. 2. The coordinate position detection device according to claim 1, wherein the coordinate position detection device is configured to have a tight electromagnetic coupling with a transmission medium. 3. The coordinate position detection device according to claim 1 or 2, further comprising a reinforcing member having a space for accommodating a magnetostrictive transmission medium. 4. The coordinate position detection device according to any one of claims 1 to 3, characterized in that the magnetostrictive transmission medium and the first and second electromagnetic transducers are housed in a non-magnetic metal case. . 5. The coordinate position detection device according to any one of claims 1 to 4, comprising a reference position designating magnetic generator disposed close to the first electromagnetic transducer. .
JP23853283A 1983-12-17 1983-12-17 Coordinate position detector Granted JPS60129616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23853283A JPS60129616A (en) 1983-12-17 1983-12-17 Coordinate position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23853283A JPS60129616A (en) 1983-12-17 1983-12-17 Coordinate position detector

Publications (2)

Publication Number Publication Date
JPS60129616A JPS60129616A (en) 1985-07-10
JPH0215804B2 true JPH0215804B2 (en) 1990-04-13

Family

ID=17031647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23853283A Granted JPS60129616A (en) 1983-12-17 1983-12-17 Coordinate position detector

Country Status (1)

Country Link
JP (1) JPS60129616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869754B2 (en) * 1990-12-18 1999-03-10 ケンナメタル インコーポレイテッド Ceramic cutting tool with chip control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578884A (en) * 1980-06-20 1982-01-18 Sony Corp Position detecting device
JPS5722512A (en) * 1980-07-16 1982-02-05 Copal Co Ltd Position detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578884A (en) * 1980-06-20 1982-01-18 Sony Corp Position detecting device
JPS5722512A (en) * 1980-07-16 1982-02-05 Copal Co Ltd Position detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869754B2 (en) * 1990-12-18 1999-03-10 ケンナメタル インコーポレイテッド Ceramic cutting tool with chip control

Also Published As

Publication number Publication date
JPS60129616A (en) 1985-07-10

Similar Documents

Publication Publication Date Title
US4709209A (en) Magnetostrictive vibration wave position detecting apparatus with variable threshold detecting valves
Mohri Review on recent advances in the field of amorphous-metal sensors and transducers
US4832144A (en) Position detector
JPS6231374B2 (en)
JPH0210970B2 (en)
US4709210A (en) Magnetoacoustic proximity sensor
JP3177700B2 (en) Measuring device using magnetostrictive wire
JPS6259329B2 (en)
JPH0215804B2 (en)
JPS60164214A (en) Position detector
JPS60135819A (en) Detecting device of positions of coordinates
JPH0368407B2 (en)
RU214164U1 (en) Measuring element for magnetostrictive linear encoder
JPS6231373B2 (en)
JPS60125519A (en) Position detector
RU2298154C1 (en) Ultrasound level meter
JPS608709A (en) Position detector
JPS62126427A (en) Position detector
SU1129490A1 (en) Method of touch-free measuring of displacements
JPH0210973B2 (en)
JPH02183117A (en) Displacement detector
SU1442950A1 (en) Instrument converter of local ferritometer
RU2080559C1 (en) Magnetostriction motion-to-code transducer
JPS6078318A (en) Magnetostriction potentiometer
JPS63295901A (en) Winding structure of coil of position detecting apparatus