JPS6262072A - Method of controlling temperature of poppet valve - Google Patents

Method of controlling temperature of poppet valve

Info

Publication number
JPS6262072A
JPS6262072A JP19782285A JP19782285A JPS6262072A JP S6262072 A JPS6262072 A JP S6262072A JP 19782285 A JP19782285 A JP 19782285A JP 19782285 A JP19782285 A JP 19782285A JP S6262072 A JPS6262072 A JP S6262072A
Authority
JP
Japan
Prior art keywords
poppet valve
hollow chamber
temperature
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19782285A
Other languages
Japanese (ja)
Other versions
JPH0743054B2 (en
Inventor
Yoshiharu Yonekubo
米窪 義春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60197822A priority Critical patent/JPH0743054B2/en
Publication of JPS6262072A publication Critical patent/JPS6262072A/en
Publication of JPH0743054B2 publication Critical patent/JPH0743054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Temperature-Responsive Valves (AREA)
  • Details Of Valves (AREA)

Abstract

PURPOSE:To easily adjust the temperature of a poppet valve by sealing a cooling refrigerant in a hollow chamber of the poppet valve, and controlling the pressure in the hollow chamber to vary the vaporizable temperature of the sealed-in refrigerant. CONSTITUTION:A hollow chamber 4 in which a refrigerant is sealed is formed in the interior of a poppet 1, and a condenser is connected to the hollow chamber 4. An air supply pipe 13 and an air discharge pipe 15 are connected to the condenser 10 through solenoid valves 12, 14, and both solenoid valves 12, 14 are controlled to open and close, whereby the pressure in the condenser 10 and the hollow chamber 4 can be adjusted. If the solenoid valves 12, 14 are controlled to open and close by a control device 24 for detecting a thermal load, and the pressure in the condenser 10 and the hollow chamber 4 is controlled, the temperature of the poppet valve 1 can be easily adjusted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関の排気部や高温配管の絞り部などに
使用されるポペット弁に係り、特にポペット弁に中空室
を形成し、その中空室内に冷媒を封入してポペット弁を
冷却するにおいて、そのポペット弁への入熱変化に応じ
てポペット弁の温度を制御できるポペット弁の温度制御
方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a poppet valve used in the exhaust section of an internal combustion engine or a throttle section of high-temperature piping, and particularly relates to a poppet valve in which a hollow chamber is formed in the poppet valve. The present invention relates to a temperature control method for a poppet valve that can control the temperature of the poppet valve according to changes in heat input to the poppet valve when the poppet valve is cooled by sealing a refrigerant in a hollow chamber.

[従来の技術] 従来ヒートサイホン式ポペット弁は、そのポペット弁内
に中空室を形成し、その中空室内に冷媒を封入したもの
で、ポペット弁への入熱を冷媒の蒸発熱で回収し、その
蒸発冷媒をポペット弁に接続した凝縮器で冷却して凝縮
させ、その凝縮冷媒を中空室の入熱部に戻してポペット
弁を冷却するようにしたものである。
[Prior Art] Conventional heat siphon poppet valves have a hollow chamber formed within the poppet valve and a refrigerant sealed in the hollow chamber.The heat input to the poppet valve is recovered by the heat of evaporation of the refrigerant. The evaporated refrigerant is cooled and condensed in a condenser connected to the poppet valve, and the condensed refrigerant is returned to the heat input part of the hollow chamber to cool the poppet valve.

このポペット弁の温度制御は、凝縮器へ供給する冷却水
の供給量や温度を制御したり、或は凝縮器の冷却水ヘッ
ダの水位を調節して冷却水の通る凝縮管本数すなわち冷
却水ぬれ面積を調節して温度調節を行っている。
The temperature control of this poppet valve is performed by controlling the amount and temperature of the cooling water supplied to the condenser, or by adjusting the water level of the cooling water header of the condenser to control the number of condensing pipes through which the cooling water passes, that is, the wettability of the cooling water. Temperature is controlled by adjusting the area.

[発明が解決しようとする問題点] しかしながら、冷却水を制御して冷媒の凝縮量を制御し
ても制御mが大きい割に冷媒の温度変化が小さく、ポペ
ット弁への入熱負荷変動に対してその温度を適正に保つ
ことが難しく、低温によるポペット弁の硫酸腐食や熱応
力変・化による疲労を生じやすくなる問題がある。
[Problems to be solved by the invention] However, even if the amount of condensation of the refrigerant is controlled by controlling the cooling water, the temperature change of the refrigerant is small despite the large control m, and it is difficult to respond to changes in the heat input load to the poppet valve. It is difficult to maintain the temperature at an appropriate temperature, and there is a problem in that the poppet valve is susceptible to sulfuric acid corrosion due to low temperatures and fatigue due to changes in thermal stress.

[発明の目的コ 本発明は、上記事情を考慮してなされたもので、入熱負
荷変動に対してポペット弁を略一定の温度に保つことが
できるポペット弁の温度制御方法を提供することを目的
とする。
[Object of the Invention] The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a temperature control method for a poppet valve that can maintain the poppet valve at a substantially constant temperature despite heat input load fluctuations. purpose.

[発明の概要] 本発明は、上記の目的を達成するために、ポペット弁の
中空室に冷媒を封入し、そのポペット弁に、中空室で蒸
発した冷媒を凝縮させて中空室に戻す凝縮器を設けたポ
ペット弁の温度制御方法において、上記ポペット弁への
入熱負荷に応じて中空室内の圧力を制御するもので、中
空室内の圧力を制御することで冷媒の蒸発温度(凝縮温
度)を変えることでポペット弁の温度を一定蛯囲に制御
するものである。
[Summary of the Invention] In order to achieve the above object, the present invention provides a condenser in which a refrigerant is sealed in a hollow chamber of a poppet valve, and the refrigerant evaporated in the hollow chamber is condensed and returned to the hollow chamber. In this method, the pressure inside the hollow chamber is controlled according to the heat input load to the poppet valve, and the evaporation temperature (condensation temperature) of the refrigerant is controlled by controlling the pressure inside the hollow chamber. By changing the temperature, the temperature of the poppet valve is controlled to a constant temperature.

[実施例] 以下本発明に係るポペット弁の温度制御方法の好適一実
施例を添付図面に基づいて説明する。
[Embodiment] A preferred embodiment of the poppet valve temperature control method according to the present invention will be described below with reference to the accompanying drawings.

添付図面において、1は内燃機関の排気口を開閉するポ
ペット弁で、図には示していないがロッカーアームで揺
動される。
In the accompanying drawings, reference numeral 1 designates a poppet valve that opens and closes an exhaust port of an internal combustion engine, and is swung by a rocker arm (not shown).

ポペット弁1内は、その弁傘部2から弁軸3にかけて中
空v4が形成され、その中空室4内に水。
Inside the poppet valve 1, a hollow v4 is formed from the valve head portion 2 to the valve stem 3, and water is contained in the hollow chamber 4.

油、シリコン油、ダンサムAなどの冷媒5が封入される
A refrigerant 5 such as oil, silicone oil, Dansom A, etc. is sealed.

弁軸3の上部には中空室4と連通ずるテレスコ管6が接
続され、その外周にシールリング7が設けられる。
A telescopic tube 6 communicating with the hollow chamber 4 is connected to the upper part of the valve shaft 3, and a seal ring 7 is provided around the outer circumference of the telescopic tube 6.

テレスコ管6の上部には分岐管8が接続され、その分岐
管8に水平管9を介して中空室4内で生じた蒸発冷媒を
冷却して凝縮する凝縮器10が接続される。
A branch pipe 8 is connected to the upper part of the telescopic pipe 6, and a condenser 10 for cooling and condensing the evaporative refrigerant generated in the hollow chamber 4 is connected to the branch pipe 8 via a horizontal pipe 9.

この凝縮器10は、水平管9から導入された蒸発冷媒を
冷却すべく多数の凝縮管(図示せず)を有し、その凝縮
管内に冷却水が供給され、凝縮管で冷却された凝縮冷媒
を水平管9より分岐管8を介して中空室4内に戻す。
This condenser 10 has a large number of condensing pipes (not shown) to cool the evaporative refrigerant introduced from the horizontal pipe 9. Cooling water is supplied into the condensing pipes, and the condensed refrigerant is cooled by the condensing pipes. is returned into the hollow chamber 4 from the horizontal pipe 9 via the branch pipe 8.

凝縮器10の上部には気液分離器11が設けられ、その
気液分離器11に、加圧電磁弁12を介して空気供給管
13が接続されると共に減圧電磁弁14を介して排出管
15が接続され、また凝縮器10の下部には封入冷媒補
充弁16を介して冷媒補充管17が接続される。
A gas-liquid separator 11 is provided in the upper part of the condenser 10, and an air supply pipe 13 is connected to the gas-liquid separator 11 via a pressurizing solenoid valve 12, and a discharge pipe is connected via a pressure reducing solenoid valve 14. 15 is connected to the condenser 10, and a refrigerant replenishment pipe 17 is connected to the lower part of the condenser 10 via an enclosed refrigerant replenishment valve 16.

中空室4には、その冷媒温度を検出する熱雷対などの温
度センサ18が設けられ、また中空室4内の圧力を検出
する圧力センサ(図示せず)が設けられる。温度センサ
18は図示の中空室4内の他に、弁傘部2やその弁フエ
ース部19に設けてもよい。
The hollow chamber 4 is provided with a temperature sensor 18 such as a thermal lightning pair for detecting the temperature of the refrigerant, and a pressure sensor (not shown) for detecting the pressure inside the hollow chamber 4. The temperature sensor 18 may be provided not only in the illustrated hollow chamber 4 but also in the valve head portion 2 or the valve face portion 19 thereof.

温度センサ18及び圧力センサの検出出力は、分岐管8
の上端に設けたターミナル20.21よりリード線22
.23を介して制御装置24に入力され、その制御装置
24により加圧電磁弁12及び減圧電磁弁14が制御さ
れる。
The detection outputs of the temperature sensor 18 and pressure sensor are transmitted through the branch pipe 8.
Lead wire 22 from terminal 20.21 provided at the upper end of
.. 23 to a control device 24, and the control device 24 controls the pressurizing solenoid valve 12 and the pressure reducing solenoid valve 14.

次に本発明のポペット弁の温度制御方法を説明する。Next, a method of controlling the temperature of a poppet valve according to the present invention will be explained.

先ず弁傘部2より入熱により中空室4内の冷媒5は蒸発
し、矢印25のように上昇し、テレスフ管6より分岐管
8.水平管9を介して凝縮器10内に流入し、そこで冷
却水の通る凝縮管(図示せず)で凝縮され、その凝縮液
が゛水平管91分岐管8を介してテレスコ管6より中空
室4内に液滴26とし′て滴下されて戻される。
First, the refrigerant 5 in the hollow chamber 4 evaporates due to heat input from the valve head portion 2, rises as shown by the arrow 25, and flows from the Telesph pipe 6 to the branch pipe 8. It flows into the condenser 10 through the horizontal pipe 9, where it is condensed in a condensing pipe (not shown) through which cooling water passes, and the condensed liquid is sent to the hollow chamber from the telescopic pipe 6 via the horizontal pipe 91 and the branch pipe 8. 4 as droplets 26' and returned.

この場合中空室4内(又は凝縮器10内)の圧力を圧力
センサで、また中空室4又はポペット弁1の温度を温度
センサ18で検出し、その各検出出力を制御I装置24
に入力する。制御装置24は、その入力された信号を演
算処理してその検出温度及び圧力と予め記憶させておい
た温度及び圧力とを比較し、それに応じて加圧電磁弁1
2及び減圧電磁弁14を開閉して凝縮器10及び中空室
4内へ空気やアルゴンガスなどを加圧電磁弁12より供
給してその圧力を高めたり或は気液分離器11より冷媒
を分離した空気を減圧電磁弁14から排気して圧力を低
くし、その凝縮器10及び中空室4内の圧力を変え、そ
の内の冷媒の蒸発温度(凝縮温度)を変えてポペット弁
1の温度を制御する。
In this case, the pressure inside the hollow chamber 4 (or inside the condenser 10) is detected by a pressure sensor, and the temperature of the hollow chamber 4 or the poppet valve 1 is detected by a temperature sensor 18, and the respective detection outputs are sent to the control I device 24.
Enter. The control device 24 performs arithmetic processing on the input signal, compares the detected temperature and pressure with a pre-stored temperature and pressure, and adjusts the pressurizing solenoid valve 1 accordingly.
2 and the pressure reducing solenoid valve 14 are opened and closed to supply air, argon gas, etc. into the condenser 10 and the hollow chamber 4 from the pressurizing solenoid valve 12 to increase the pressure, or to separate the refrigerant from the gas-liquid separator 11. The air is exhausted from the decompression solenoid valve 14 to lower the pressure, and the pressure inside the condenser 10 and the hollow chamber 4 is changed, and the evaporation temperature (condensation temperature) of the refrigerant therein is changed to adjust the temperature of the poppet valve 1. Control.

すなわち、ポペット弁1の温度が設定より低い場合、中
空室4内の圧力を高めることで冷媒5の飽和蒸気圧が高
くなり、蒸発温度が高くなるのでその分ポペット弁1へ
の入熱が蓄積され、ポペット弁1の温度を高くできる。
In other words, when the temperature of the poppet valve 1 is lower than the setting, the saturated vapor pressure of the refrigerant 5 increases by increasing the pressure in the hollow chamber 4, and the evaporation temperature increases, so the heat input to the poppet valve 1 accumulates accordingly. The temperature of the poppet valve 1 can be increased.

また逆にポペット弁1の温度が設定より上昇した場合に
は、減圧電磁弁14を開いて空気のみを放出することで
中空室4内の圧力が下がり、飽和蒸気圧が下がり蒸発温
度が低くなるため、冷媒の蒸発量が増え、従ってポペッ
ト弁1は冷却され、その温度を低くすることができる。
Conversely, if the temperature of the poppet valve 1 rises above the setting, the pressure reducing solenoid valve 14 is opened to release only air, thereby lowering the pressure inside the hollow chamber 4, lowering the saturated vapor pressure, and lowering the evaporation temperature. Therefore, the amount of evaporation of the refrigerant increases, and therefore the poppet valve 1 is cooled, and its temperature can be lowered.

また中空室4及び凝縮器10内の封入冷媒は適宜補充弁
16を開いて供給し、入熱に見合った冷媒1とする。こ
の補充弁16は制御装@24により開閉制御される。
Further, the refrigerant sealed in the hollow chamber 4 and the condenser 10 is supplied by opening the replenishment valve 16 as appropriate, and the refrigerant 1 is adjusted to match the heat input. This replenishment valve 16 is controlled to open and close by a control device @24.

制御装置24は、ポペット弁1が内燃機関に使用される
場合、その内燃機関の燃料ラック位置(燃料供給量)及
び回転数とポペット弁1の温度とが比例するため、これ
ら値を入力させ、燃料供給量と回転数でポペット弁1の
温度を制御するようにしてもよい。
When the poppet valve 1 is used in an internal combustion engine, the control device 24 inputs these values because the temperature of the poppet valve 1 is proportional to the fuel rack position (fuel supply amount) and rotation speed of the internal combustion engine. The temperature of the poppet valve 1 may be controlled by the fuel supply amount and rotation speed.

[発明の効果] 以上詳述してきたことから明らかなように本発明によれ
ば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the detailed description above, the present invention exhibits the following excellent effects.

(1)  ポペット弁の中空室内の圧力を制御すること
で・、従来凝縮器の冷却水温度や水量を制御するよりも
、そのポペット弁温度制御が容易であり、かつ圧力と中
空室内の冷媒の温度とはほぼ直線的に比例するため入熱
負荷に対してその制御を極めて敏感に行える。
(1) By controlling the pressure inside the hollow chamber of the poppet valve, it is easier to control the poppet valve temperature than conventionally controlling the cooling water temperature and water volume of the condenser, and the pressure and refrigerant inside the hollow chamber can be controlled more easily. Since it is almost linearly proportional to temperature, it can be controlled extremely sensitively to heat input load.

(お 冷媒の蒸発温度を制御できるのでポペット弁の過
冷却による低温腐蝕、例えば内燃機関で250℃以下で
サルファアタックを受けて腐食し易くなるが、このよう
な低温腐食を防ぐことができる。
(Since the evaporation temperature of the refrigerant can be controlled, it is possible to prevent low-temperature corrosion due to overcooling of the poppet valve, which is susceptible to corrosion due to sulfur attack at temperatures below 250°C in internal combustion engines, for example, in internal combustion engines.)

(3)  冷媒の蒸発温度を゛制御することでポペット
弁の熱応力を大巾に低くすることができ、ポペット弁の
長寿命化を達成することができる。
(3) By controlling the evaporation temperature of the refrigerant, the thermal stress of the poppet valve can be greatly reduced, and the life of the poppet valve can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明のポペット弁の湿度制御方法を実施す
る装置の一例を示す図である。 図中、1はポペット弁、4は中空室、5は冷媒、10は
凝縮器、24は制御装置である。
The accompanying drawings are diagrams showing an example of an apparatus for implementing the poppet valve humidity control method of the present invention. In the figure, 1 is a poppet valve, 4 is a hollow chamber, 5 is a refrigerant, 10 is a condenser, and 24 is a control device.

Claims (1)

【特許請求の範囲】[Claims] ポペット弁の中空室に冷媒を封入し、そのポペット弁に
、中空室で蒸発した冷媒を凝縮させて中空室に戻す凝縮
器を設けたポペット弁の温度制御方法において、上記ポ
ペット弁への入熱負荷に応じて中空室内の圧力を制御す
ることを特徴とするポペット弁の温度制御方法。
In a temperature control method for a poppet valve, in which a refrigerant is sealed in a hollow chamber of the poppet valve, and the poppet valve is provided with a condenser that condenses the refrigerant evaporated in the hollow chamber and returns it to the hollow chamber, heat input to the poppet valve is performed. A method for controlling the temperature of a poppet valve, characterized by controlling the pressure inside a hollow chamber according to the load.
JP60197822A 1985-09-09 1985-09-09 Poppet valve temperature control method Expired - Lifetime JPH0743054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197822A JPH0743054B2 (en) 1985-09-09 1985-09-09 Poppet valve temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197822A JPH0743054B2 (en) 1985-09-09 1985-09-09 Poppet valve temperature control method

Publications (2)

Publication Number Publication Date
JPS6262072A true JPS6262072A (en) 1987-03-18
JPH0743054B2 JPH0743054B2 (en) 1995-05-15

Family

ID=16380913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197822A Expired - Lifetime JPH0743054B2 (en) 1985-09-09 1985-09-09 Poppet valve temperature control method

Country Status (1)

Country Link
JP (1) JPH0743054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415588A (en) * 1987-07-09 1989-01-19 Kyushu Nippon Electric Mass flow controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108813A (en) * 1982-12-14 1984-06-23 Ishikawajima Harima Heavy Ind Co Ltd Exhaust valve device of internal-combustion engine
JPS59108810A (en) * 1982-12-14 1984-06-23 Ishikawajima Harima Heavy Ind Co Ltd Exhaust valve device of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108813A (en) * 1982-12-14 1984-06-23 Ishikawajima Harima Heavy Ind Co Ltd Exhaust valve device of internal-combustion engine
JPS59108810A (en) * 1982-12-14 1984-06-23 Ishikawajima Harima Heavy Ind Co Ltd Exhaust valve device of internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415588A (en) * 1987-07-09 1989-01-19 Kyushu Nippon Electric Mass flow controller
JPH0542591B2 (en) * 1987-07-09 1993-06-29 Kyushu Nippon Electric

Also Published As

Publication number Publication date
JPH0743054B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
JPS6262073A (en) Device for controlling temperature of poppet valve
JPH0311268A (en) Cooling device for motor
CN113457752A (en) Control method of alternating damp-heat test chamber and alternating damp-heat test chamber
JPS6262072A (en) Method of controlling temperature of poppet valve
US2981278A (en) Vaporizing valve
JP2522241B2 (en) Temperature control device for poppet type valve
JPS60243321A (en) Boiling cooling device for internal-combustion engine
KR20010074933A (en) Absorption refrigeration machine
CN108155401A (en) Big flow cryogenic gas Temperature and Humidity Control equipment
JPS6183426A (en) Evaporative cooling apparatus for internal-combustion engine
JP2751337B2 (en) Internal combustion engine cooling system
CN207938720U (en) Big flow cryogenic gas Temperature and Humidity Control equipment
KR100416348B1 (en) System for maintaining Constant temperature and humidity
JPS60132009A (en) Exhaust valve temperature controlling method of internal combustion engine
JPS6249455B2 (en)
CN218188004U (en) Double-temperature cold trap device
JPH0424623B2 (en)
JPH0330787Y2 (en)
JPS6071002A (en) Vacuum cold trap
JPS63117192A (en) Cooling device for rotary compressor
JPS6334292B2 (en)
JPH06174194A (en) Lpg evaporator
JP2657865B2 (en) Method and apparatus for controlling refrigerant in absorption chiller / heater
JPS627979Y2 (en)
JPH0712476A (en) Cooling structure for sealing part of high temperature vessel