JPS60132009A - Exhaust valve temperature controlling method of internal combustion engine - Google Patents
Exhaust valve temperature controlling method of internal combustion engineInfo
- Publication number
- JPS60132009A JPS60132009A JP24067283A JP24067283A JPS60132009A JP S60132009 A JPS60132009 A JP S60132009A JP 24067283 A JP24067283 A JP 24067283A JP 24067283 A JP24067283 A JP 24067283A JP S60132009 A JPS60132009 A JP S60132009A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust valve
- valve
- temperature
- heat
- cooling material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/12—Cooling of valves
- F01L3/16—Cooling of valves by means of a fluid flowing through or along valve, e.g. air
- F01L3/18—Liquid cooling of valve
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
この発明は内燃機関の排気弁装置に係り、特に熱負荷の
変動に関わらず高温に晒される弁傘部を冷却しその湿度
を最適に制御し得るようにしたものに関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an exhaust valve device for an internal combustion engine, and in particular to an exhaust valve device for an internal combustion engine that cools a valve head portion exposed to high temperatures regardless of changes in heat load and optimally controls its humidity. It's about what you're trying to get.
[発明の技術的背景及びその問題点]
内燃機関用排気弁の冷却方式どしては、密閉形の熱サイ
ホンの原理を応用したものと、排気弁を水で強制冷却す
るものとがある。[Technical Background of the Invention and Problems Therewith] There are two methods of cooling exhaust valves for internal combustion engines: one that applies the principle of a closed thermosiphon, and the other that uses water to forcefully cool the exhaust valve.
前者の場合、問題はいかにして蒸気の熱を外部に取り出
すかであった。従来は弁軸部室内筒壁と弁軸部との間欠
的な接触運動により放熱していたが、熱負荷の上昇に放
熱が追従できずスティックを起すため実用化することが
できなかった。In the former case, the problem was how to extract the heat from the steam to the outside. Conventionally, heat was dissipated by intermittent contact movement between the cylindrical wall of the valve stem chamber and the valve stem, but this method could not be put to practical use because the heat dissipation could not keep up with the increase in heat load and caused sticking.
後者にあっては、所望の高温で維持することができず常
に過冷却となり、このため低温腐食を起したり、局部的
な熱応力の増大による破損を生じたりしてその信頼性と
寿命とが低かった。In the latter case, it is not possible to maintain the desired high temperature and the product is constantly overcooled, resulting in low-temperature corrosion or damage due to increased local thermal stress, reducing its reliability and service life. was low.
ところで、排気弁の損傷は、単に^熱化の度合が強いと
いうだけでなく弁座面に異物などが付着する、所謂噛み
込み現象などによって惹起される場合も比較的多い。こ
の異物の付着はある温度以上では特に著しいことがわか
っている。よって、この温度以下で維持することが重要
であり、そのためには冷却(ることと温度を監視するこ
ととの2つの要件を満たさなければならない。ところが
上記いずれの方式もこの2つの要件を満すことができな
かったので問題であった。Incidentally, damage to exhaust valves is relatively often caused not only by a high degree of heat generation, but also by the so-called jamming phenomenon, in which foreign matter adheres to the valve seat surface. It is known that this foreign matter adhesion is particularly significant at temperatures above a certain level. Therefore, it is important to maintain the temperature below this temperature, and to do so, two requirements must be met: cooling and monitoring the temperature.However, none of the above methods can satisfy these two requirements. This was a problem because I was unable to do so.
[発明の目的]
この発明は上記問題点に鑑みてなされたちのぐ、その目
的はヒートサイホンの原理を応用しながら排気弁の冷却
とその温度監視とを行なうことによって内燃機関の熱負
荷変動にかかわらず、排気弁を最適温度に制御して内燃
機関を安全に運転することができる内燃機関の排気弁調
度制御方法を得ることである。[Purpose of the Invention] This invention was made in view of the above-mentioned problems.The purpose of this invention is to cool the exhaust valve and monitor its temperature while applying the principle of heat syphon, thereby reducing the thermal load fluctuations of the internal combustion engine. An object of the present invention is to obtain an exhaust valve adjustment control method for an internal combustion engine that can control the exhaust valve to an optimum temperature and safely operate the internal combustion engine.
[発明の概要]
上記目的を達成すべくこの発明は、密閉形熱リイホンパ
イプを有する内燃機関の排気弁において、排気弁内部に
一次冷却材を溜めて、その内部より導出した気化−次冷
却材を二次冷却材と間接熱交換させて凝縮し、この凝縮
−次冷却材を再び上記排気弁に戻すに際し、内燃機関の
熱負荷変動を検出し、該検出値に応じて二次冷却材の気
化−次冷NI材に対する熱交換面積を増減させて排気弁
の温度を制御するようにしたことを特徴とJる。これに
より温度を監視しつつ排気弁を冷却できるにうにし過冷
却や冷却不足が生じないようにしたものである。[Summary of the Invention] In order to achieve the above object, the present invention provides an exhaust valve for an internal combustion engine having a closed heat exchanger pipe, in which a primary coolant is stored inside the exhaust valve, and the vaporized secondary coolant is drawn out from the inside of the exhaust valve. The secondary coolant is condensed through indirect heat exchange, and when the condensed coolant is returned to the exhaust valve, the heat load fluctuation of the internal combustion engine is detected, and the secondary coolant is vaporized according to the detected value. -The temperature of the exhaust valve is controlled by increasing or decreasing the heat exchange area for the sub-cooled NI material. This allows the exhaust valve to be cooled while monitoring the temperature, thereby preventing overcooling or insufficient cooling.
[発明の実施例]
以下、この発明に係る内燃機関の排気弁温度制御方法の
好適一実施例を添付図面に従って説明する。[Embodiments of the Invention] Hereinafter, a preferred embodiment of the exhaust valve temperature control method for an internal combustion engine according to the present invention will be described with reference to the accompanying drawings.
第1図は本発明方法を説明J′る1cめの内燃機関の排
気弁装置の一例を示す概略縦断面図である。FIG. 1 is a schematic longitudinal sectional view showing an example of an exhaust valve device for an internal combustion engine, which is the first step in explaining the method of the present invention.
冷却方式としては予め弁傘部1内に一次冷却材Pを封入
しておき、この気化−次冷却材PGを排気弁本体2から
導出して外部で二次冷却USど熱交換させて放熱・凝縮
さゼ、その凝縮二次冷却材P1を再び弁傘部1内に戻し
て弁傘部1を間接冷却するヒートサイホンの原理を応用
している。一方、熱交換器3の構造を簡略化するととも
に、エンジンの熱負荷の変化に応じて弁傘部1の調度を
最適状態に維持ずべく熱交換器3の熱交換面積を迅速に
制御できる機構としである。As for the cooling method, a primary coolant P is sealed in the valve head part 1 in advance, and this vaporized coolant PG is led out from the exhaust valve body 2 and heat exchanged with the secondary cooling US outside to dissipate the heat. The heat syphon principle is applied to indirectly cool the valve head part 1 by returning the condensed secondary coolant P1 into the valve head part 1. On the other hand, a mechanism that simplifies the structure of the heat exchanger 3 and can quickly control the heat exchange area of the heat exchanger 3 in order to maintain the adjustment of the valve head section 1 in an optimal state according to changes in the heat load of the engine. It's Toshide.
同図に示す如く、2はエンジンのシリンダヘッドにその
Jノと気[1をFJil閉すべく設けられた排気弁本体
であり、この排気弁本体2は弁軸部4と、その一端に一
体形成された弁傘部1とからなっている。As shown in the figure, reference numeral 2 is an exhaust valve body provided in the cylinder head of the engine to close the exhaust valve 1, and the exhaust valve body 2 is integrally formed with a valve shaft 4 at one end thereof. It consists of a valve head part 1.
排気弁本体2の内部は外形に沿って中空に形成され、弁
傘部1内には一次冷却材たる冷却水Pを充填するための
冷却材室5が形成されている。また、弁軸部4内には上
端が外部に開放され且つ下端が上記冷却材室5に連通さ
れた冷却材気化室6が形成され、加熱された冷却材室5
から上昇した気化冷却材(蒸気)PGを収容づるように
なっている。高湿雰囲気に晒された弁傘部1は、冷却材
室5内の冷却水が気化するときに奪う気化熱によって冷
却されるのであり、この気化冷却材たる蒸気は後述する
如く排気弁本体2外へ導出されて二次冷却材Sとの熱交
換により凝縮液化され、再び冷却材室5に戻り流れるよ
うになっている。The inside of the exhaust valve main body 2 is formed hollow along the outer shape, and a coolant chamber 5 is formed in the valve head portion 1 to be filled with cooling water P serving as a primary coolant. Further, a coolant vaporizing chamber 6 is formed in the valve shaft portion 4 and has an upper end open to the outside and a lower end communicating with the coolant chamber 5.
It is designed to accommodate the vaporized coolant (steam) PG rising from the pipe. The valve head portion 1 exposed to a high humidity atmosphere is cooled by the heat of vaporization taken away when the cooling water in the coolant chamber 5 vaporizes, and the vaporized coolant is transferred to the exhaust valve body 2 as described later. It is led out, condensed and liquefied by heat exchange with the secondary coolant S, and returns to the coolant chamber 5 to flow again.
弁軸部4には、図示していないが、排気弁本体2を上方
へ付勢するための空気バネと、これの付勢力に抗して押
し下げる油圧タペットが設(プられ、これらの連動によ
って排気弁本体2は排気口を開5−
閉すべく昇降駆動されるようになっている。Although not shown, the valve stem 4 is provided with an air spring for urging the exhaust valve body 2 upward and a hydraulic tappet for pushing down against the urging force of the air spring. The exhaust valve main body 2 is driven up and down to open and close the exhaust port.
そして、冷却材気化室6内の蒸気を外部へ導出して凝縮
する手段として、冷却材気化室6内にはその上端開放ロ
アを閉塞しつつ固定側より気化冷却材案内管8が挿入さ
れている。この案内管8はその一端が開放され@端がこ
れより直角に延びる連結管9に連通接続されており、そ
の開放端10が冷却材気化室6内に挿入されている。排
気弁本体2の昇降動と、着座時の密着性向上をはかるた
めの回転とを許容しつつ冷却材気化室6の開放ロアと案
内管8との間をシールするために、開放ロアの内壁に多
硬質ゴム製のシールリング11が設けられている。As a means for guiding the vapor in the coolant vaporizing chamber 6 to the outside and condensing it, a vaporized coolant guide pipe 8 is inserted into the coolant vaporizing chamber 6 from the fixed side while closing the lower open upper end of the coolant vaporizing chamber 6. There is. This guide pipe 8 has one end open and the @ end connected to a connecting pipe 9 extending perpendicularly thereto, and the open end 10 thereof is inserted into the coolant vaporization chamber 6 . In order to seal between the open lower part of the coolant vaporization chamber 6 and the guide pipe 8 while allowing the vertical movement of the exhaust valve body 2 and the rotation for improving the tightness when seated, the inner wall of the open lower part is used. A seal ring 11 made of polyhard rubber is provided.
上記連結管9は図示しないシリンダヘッドに固定され、
直角に延びたその端部には蒸気を二次冷却材たる冷却水
Sと間接熱交換させて凝縮させる熱交換器3がエンジン
振動を吸収するためのベローズ継手12を介して連結さ
れている。この熱交換器3は、上端が上部へラダ13に
開放され下端が連結管に通じる下部へラダ14に開放さ
れて起6一
立した枚数の被凝縮管15と、これら被凝縮管15を被
って被凝縮管15外周に二次冷却材の水冷層16とその
高さ調節を行なう加圧空気層17とを形成する調圧室1
8とから成る。水冷層16側となる調圧室18の下部に
は冷却水Sを給排水するための給水管19と排出管20
とが接続されている。給水管19には回転数一定、吐出
量一定の冷却水ポンプ21とこのポンプ21の入出力口
に接続されたバイパス管22とが連結され、このバイパ
ス管22にはこれを流れる循環量を制御して冷却水供給
量を制御する流量制御弁23が設(プられている。また
排水管20には冷却水排水量を一制御する絞り弁24が
設けられ、この絞り弁24と上記流量制御弁23との制
御によって調圧室18の下部に所定量の冷却水を供給す
るようになっている。一方、加圧空気層17側となる調
圧室18の上部には加圧空気Aを供給する圧搾空気供給
管25が接続され、この供給管25には加圧空気層17
の圧力を調節する圧力調整弁26が設けられ、この圧力
調整弁26を制御することにより加圧空気層17内を減
圧して水冷層16の高さを上げたり、逆に増圧して水冷
層16の高さを下げたりすることができるようになって
いる。この場合、冷却水ポンプ21の回転数は一定であ
り、吐出量も一定であるから、圧力調整弁26のみの制
御ではなくこれと一緒に絞り弁24と流量IJ Ill
弁23とを連動して制御するようにすれば無理なく安定
した水冷層16の高さ調節を行なうこが可能となる。The connecting pipe 9 is fixed to a cylinder head (not shown),
A heat exchanger 3 for condensing steam through indirect heat exchange with cooling water S serving as a secondary coolant is connected to the end extending at right angles via a bellows joint 12 for absorbing engine vibrations. This heat exchanger 3 has an upper end open to a ladder 13 at the top, a lower end connected to a connecting pipe and a lower end opened to a ladder 14, and a number of condensing pipes 15 standing upright, and covering these condensing pipes 15. A pressure regulating chamber 1 forms a water-cooled layer 16 of a secondary coolant and a pressurized air layer 17 for adjusting its height on the outer periphery of the condensed pipe 15.
It consists of 8. A water supply pipe 19 and a discharge pipe 20 for supplying and discharging cooling water S are provided at the lower part of the pressure regulating chamber 18 on the side of the water cooling layer 16.
are connected. A cooling water pump 21 with a constant rotation speed and a constant discharge amount is connected to the water supply pipe 19, and a bypass pipe 22 connected to the input/output port of this pump 21 is connected to the water supply pipe 19. A flow rate control valve 23 is provided to control the amount of cooling water supplied. The drain pipe 20 is also provided with a throttle valve 24 that controls the amount of cooling water discharged. A predetermined amount of cooling water is supplied to the lower part of the pressure regulating chamber 18 by control with the valve 23. On the other hand, pressurized air A is supplied to the upper part of the pressure regulating chamber 18 on the pressurized air layer 17 side. A compressed air supply pipe 25 is connected, and a compressed air layer 17 is connected to this supply pipe 25.
By controlling the pressure regulating valve 26, the pressure inside the pressurized air layer 17 can be reduced to raise the height of the water cooling layer 16, or conversely, the pressure can be increased to increase the height of the water cooling layer. 16 can be lowered in height. In this case, the rotation speed of the cooling water pump 21 is constant and the discharge amount is also constant, so instead of controlling only the pressure regulating valve 26, the throttle valve 24 and the flow rate IJ Ill are controlled together with the pressure regulating valve 26.
By controlling the valve 23 in conjunction with the valve 23, it becomes possible to easily and stably adjust the height of the water cooling layer 16.
このように水冷層16の高さ調節を行なうことによって
、−次冷却材側の上記PGと二次冷却材たる冷却水Sと
の間の接触面積(熱交換面積)を増減させることができ
るようになっている。−上記圧力調整弁26、絞り弁2
4、流量制御弁23は二次冷却材圧と加圧気体圧との圧
力バランスを調節して二次冷却材の気化冷却材に対する
熱交換面積を増減させる圧力調節手段を構成している。By adjusting the height of the water cooling layer 16 in this way, the contact area (heat exchange area) between the PG on the secondary coolant side and the cooling water S serving as the secondary coolant can be increased or decreased. It has become. -The above pressure regulating valve 26, throttle valve 2
4. The flow control valve 23 constitutes a pressure adjusting means that adjusts the pressure balance between the secondary coolant pressure and the pressurized gas pressure to increase or decrease the heat exchange area of the secondary coolant with respect to the vaporized coolant.
なお、冷却水ポンプ21の回転数を変えて冷却水量を調
整することもできるが、この場合モータ側の制御が大樹
りなものとなり、且つ水の流れが不安定となる。しかも
、被凝縮管15内の蒸気PGは100℃以上で且つ圧力
は大気圧以上となるので、水圧変化を生じる水量制御で
は冷却水Sが沸l1Ilするおそれがある。Note that the amount of cooling water can be adjusted by changing the rotational speed of the cooling water pump 21, but in this case, the control on the motor side becomes complicated and the flow of water becomes unstable. Moreover, since the temperature of the steam PG in the condensed pipe 15 is 100° C. or higher and the pressure is higher than atmospheric pressure, there is a risk that the cooling water S will boil when controlling the amount of water that causes a change in water pressure.
よって、圧力が加わったまま冷水槽16の高さを調節し
た方が好ましい。Therefore, it is preferable to adjust the height of the cold water tank 16 while the pressure is applied.
また、27は熱交換器3の上部ヘッダ13に設けた空気
抜き弁である。Further, 27 is an air vent valve provided in the upper header 13 of the heat exchanger 3.
ところで、排気弁本体2等の内燃機関の構成要素に熱負
荷を検出するための各種センサが設けである。排気弁本
体2にはその弁軸部4から弁傘部1の表面に沿って排気
弁温度Tl11を検出するための弁温度センサ30、例
えば熱雷対が設けられている。気化冷却材案内管8には
冷却材気化室6の蒸気温度Tvを検出するための蒸気温
度センサ31、例えば熱雷対と、同室6の蒸気圧力Pを
検出するための圧力センサ32とが設けられている。By the way, various sensors for detecting thermal load are provided in the components of the internal combustion engine such as the exhaust valve body 2. The exhaust valve main body 2 is provided with a valve temperature sensor 30, for example, a thermal lightning pair, for detecting the exhaust valve temperature Tl11 from the valve stem portion 4 along the surface of the valve head portion 1. The vaporized coolant guide pipe 8 is provided with a vapor temperature sensor 31 for detecting the vapor temperature Tv of the coolant vaporizing chamber 6, such as a thermal lightning pair, and a pressure sensor 32 for detecting the vapor pressure P of the same chamber 6. It is being
また熱交換器3には冷水槽水位Hを検出すめための水位
センサ33が設けられている。この水位センサ33は、
調圧室18の外にこれの上部と下部とで連通して調圧室
18と同じく加圧空気層179−
と水冷層16との二重層が内部に形成される起立した水
位管34と、この水位管34にシールリング35を介し
て上部から差し込まれ下端に設()たフロート36によ
り水冷層16の水位に応じて昇降移動するスケール37
と、このスケール37の目盛を読み取る光電ランプ38
とから成り、水冷層16の高さを常時検出できるように
なっている。Further, the heat exchanger 3 is provided with a water level sensor 33 for detecting the cold water tank water level H. This water level sensor 33 is
An upright water level pipe 34 communicates with the outside of the pressure regulation chamber 18 at its upper and lower parts and has a double layer of a pressurized air layer 179 and a water cooling layer 16 formed therein, similar to the pressure regulation chamber 18; A scale 37 is inserted into this water level pipe 34 from above through a seal ring 35 and moves up and down according to the water level of the water cooling layer 16 by a float 36 installed at the lower end.
A photoelectric lamp 38 reads the graduations of this scale 37.
The height of the water cooling layer 16 can be detected at all times.
そして第2図に示す如くクランク軸のギヤ39の回転か
らエンジンの回転数Nを検出する回転センサ40と、燃
料ラック41の位置を検出するラック位置センサ42と
が設けられ、これらはいずれも光電ランプ等から構成さ
れている。As shown in FIG. 2, a rotation sensor 40 that detects the engine rotation speed N from the rotation of the crankshaft gear 39 and a rack position sensor 42 that detects the position of the fuel rack 41 are provided, both of which are photoelectrically operated. It consists of lamps, etc.
これら弁温度センサ3O1上記温度センサ31、圧力セ
ンサ32、水位センサ33、回転センサ4O及びラック
位置[ンサ42は第3図に示す如く制御部43に電気的
に接続され、排気弁温度信号、蒸気温度信号、蒸気圧力
信号、水冷層水位信号、エンジン回転数信号及びラック
位置信号を制御部43に入力する。制御部43にはデー
タ設定器44が接続され、制御部43に所定の排気弁温
度値10−
や最適な排気弁温度を得るために必要なデータ値を予め
入力する。制御部43の出力側は圧力調整弁26、絞り
弁24、流量制御弁23及び空気抜き弁27に接続され
、作動指令信号を出すことでこれらの弁の動作を制御す
るようになっている。These valve temperature sensors 3O1, the temperature sensor 31, the pressure sensor 32, the water level sensor 33, the rotation sensor 4O, and the rack position sensor 42 are electrically connected to the control unit 43 as shown in FIG. A temperature signal, a steam pressure signal, a water cooling layer level signal, an engine rotation speed signal, and a rack position signal are input to the control section 43. A data setting device 44 is connected to the control section 43, and inputs data values necessary for obtaining a predetermined exhaust valve temperature value 10- and an optimum exhaust valve temperature into the control section 43 in advance. The output side of the control section 43 is connected to the pressure regulating valve 26, the throttle valve 24, the flow rate control valve 23, and the air vent valve 27, and the operation of these valves is controlled by issuing an operation command signal.
ここで制御部43の機能について説明J−る。制御部4
3によって熱交換器3の加圧空気圧を変え熱交換面積を
増減すると、ずなわら水冷層16の高さを調節すると、
イれに対応して排気弁温度が制御されるのであるが、こ
の排気弁温度と加圧空気圧との関係、換言すれば水冷層
16の高さと加圧空気圧とは排気弁温度、或いは蒸気温
度、蒸気圧力、シリンダー内ガス温度、排気ガス渇麿、
エンジンの回転数、燃料ラックの位置などに関係する。Here, the functions of the control section 43 will be explained. Control unit 4
3, when the pressurized air pressure of the heat exchanger 3 is changed to increase or decrease the heat exchange area, and when the height of the water cooling layer 16 is adjusted,
The exhaust valve temperature is controlled in response to this, and the relationship between the exhaust valve temperature and the pressurized air pressure, in other words, the height of the water cooling layer 16 and the pressurized air pressure are the exhaust valve temperature or the steam temperature. , steam pressure, gas temperature in cylinder, exhaust gas dryness,
It is related to engine speed, fuel rack position, etc.
そして、排気弁温度をのぞいたすべての値は単独で或い
は組み合せによって排気弁温度と対応するのである。し
たがって、上述した各種センサにより排気弁温度を直接
又は間接的に検出して、この検出値に基づいて圧力調節
手段を制御することによって排気弁本体2の温度制御が
可能となる。All values except the exhaust valve temperature correspond to the exhaust valve temperature singly or in combination. Therefore, the temperature of the exhaust valve main body 2 can be controlled by directly or indirectly detecting the exhaust valve temperature using the various sensors described above and controlling the pressure regulating means based on the detected value.
各種センサにより検出されるこれらの値の変動が、本発
明の内燃機関の熱負荷変動を意味する。具体的に制御部
43の機能を説明Jるど、固定値制御機能と任意制御機
能の2つがあり、これらは選択可能である。Fluctuations in these values detected by various sensors mean heat load fluctuations in the internal combustion engine of the present invention. Specifically, the functions of the control section 43 will be explained. There are two functions, a fixed value control function and an arbitrary control function, and these are selectable.
まず、固定制御機能は、検出値を予め設定した所望の一
定値にすべく圧力調整弁26等を制御するものである。First, the fixed control function controls the pressure regulating valve 26 and the like in order to keep the detected value at a preset desired constant value.
排気弁温度Tmを例にとると、データ設定器44を介し
て制御部43に予め所望の排気弁温度Tlll0を入力
し、これを記憶させておく。Taking the exhaust valve temperature Tm as an example, a desired exhaust valve temperature Tlll0 is input in advance to the control unit 43 via the data setter 44 and stored.
そして、弁温度センサ30から検出される排気弁温度信
号を温度に換痒し、この換算した排気弁部iTi+と所
望の排気弁温度1moとを比較させる。Then, the exhaust valve temperature signal detected from the valve temperature sensor 30 is converted into temperature, and the converted exhaust valve portion iTi+ is compared with a desired exhaust valve temperature 1mo.
Tm<Tm0なら冷却のしすぎであるから圧力調整弁2
6を開く一方、流量制御弁23及び絞り弁24を共に閉
じる方向に作動すべく、これら圧力調整弁26、流量制
御弁23及び絞り弁24に作動指令信号を出す。逆にT
ll1>TI!10なら冷却不足であるから圧力調整弁
26にこれを閉じ、流量制御弁23及び絞り弁24にこ
れらを開く作動指令信号を出す。また下1じTlll0
のときはその時点で合弁の作動を停止させる。If Tm<Tm0, the cooling is too much, so pressure regulating valve 2
6 is opened, while an operation command signal is issued to the pressure regulating valve 26, the flow rate control valve 23, and the throttle valve 24 in order to operate the flow rate control valve 23 and the throttle valve 24 in the direction of closing them. On the other hand, T
ll1>TI! If it is 10, there is insufficient cooling, so an operation command signal is issued to the pressure regulating valve 26 to close it and to the flow rate control valve 23 and throttle valve 24 to open them. Also below 1ji Tlll0
In this case, the operation of the joint venture will be stopped at that point.
なお、蒸気圧力1〕、冷水層水位Hの場合も上述の場合
と全く同じである。このうち冷水層水位信号はフィード
バック信号としての機能をもっているのでこれを利用し
、制御部43の制御対象である合弁を作動させても冷水
層16の高さに変化がない場合は警告を発するようにす
ることもできる。Note that the case where the steam pressure is 1] and the cold water layer level H is exactly the same as the above case. Among these, the cold water layer level signal has a function as a feedback signal, so it is used to issue a warning if the height of the cold water layer 16 does not change even if the joint venture controlled by the control unit 43 is activated. It can also be done.
次に、任意制御機能は、エンジン負荷に対応して排気弁
温度Tl11も変えるように圧力調節手段を制御するも
のである。すなわら、エンジン負荷が変動すると熱の発
生量が変わるので排気弁本体2内の温度差が大きく変化
する。したがって熱応力も大きく変わる。このため排気
弁本体2を保護するためには排気弁本体2の温度レベル
をある範囲内に制御することと、熱応力の発生を最小に
するような温度レベルに制御することが必要となる。Next, the optional control function is to control the pressure regulating means so as to change the exhaust valve temperature Tl11 in accordance with the engine load. That is, when the engine load fluctuates, the amount of heat generated changes, so the temperature difference within the exhaust valve body 2 changes significantly. Therefore, the thermal stress also changes significantly. Therefore, in order to protect the exhaust valve body 2, it is necessary to control the temperature level of the exhaust valve body 2 within a certain range and to a temperature level that minimizes the generation of thermal stress.
よって、予め実験等に基づいてエンジン出力と排気弁温
度測定値とから計粋により両者の関係式を作成し、エン
ジン出力に対する最適な排気弁湿度13−
データとしてこれを設定器44を介して制御部43に記
憶させる。エンジン出力、すなわち負荷はエンジンの回
転数Nと燃料ラック位置りとでほぼ決まるので、回転セ
ンサN及びラック位置センサLから検出されるこれらの
信号をそれぞれの物理単位に換算し、この換算した測定
値N、Lを先ず記憶させた所望の値No 、 Lo と
照合し、一致するまで繰り返し照合さぼる。一致すると
予めめて記憶させておいたそのときの最適排気弁濃度T
mo(又は上記温度Tvo、水冷層水冷1」。)を発生
させる。そしてこの最適排気弁温度Tlll0と弁温度
センサ30より得られ1=実際の排気弁温度Tmとを比
較し、後は固定値制御機能と同様に排気弁温度T11が
最適排気弁温度となるように圧力調整弁26、流量制御
弁23及び絞り弁24を制御する。Therefore, a relational expression between the engine output and the measured exhaust valve temperature is created in advance based on experiments or the like, and this is controlled via the setting device 44 as the optimum exhaust valve humidity data for the engine output. The information is stored in the section 43. Since the engine output, that is, the load, is approximately determined by the engine rotation speed N and the fuel rack position, these signals detected from the rotation sensor N and rack position sensor L are converted into their respective physical units, and the converted measurement The values N and L are first compared with the stored desired values No and Lo, and the comparison is repeated until they match. If they match, the optimum exhaust valve concentration T at that time is stored in advance.
mo (or the above temperature Tvo, water cooling layer water cooling 1''). Then, compare this optimum exhaust valve temperature Tlll0 with the actual exhaust valve temperature Tm obtained from the valve temperature sensor 30, and then set the exhaust valve temperature T11 to the optimum exhaust valve temperature as in the fixed value control function. The pressure regulating valve 26, the flow rate control valve 23, and the throttle valve 24 are controlled.
特に、直接熱応力を受番プる弁温度ヒンサ30、蒸気温
度センサ31、圧力センサ32などと異り、水位センサ
33は熱の影響を受けないので破損することが少ない。In particular, unlike the valve temperature sensor 30, steam temperature sensor 31, pressure sensor 32, etc., which are directly subjected to thermal stress, the water level sensor 33 is not affected by heat and is therefore less likely to be damaged.
したがって弁温度センサ30等が破損しても、水位セン
サ33による水冷層水位14−
信号と回転セン++−40及びラック位置センサ42に
よるエンジン負荷信号とからでも、予めエンジン出力に
対する最適な水冷層16の高さをデータとして記憶させ
ておくことにより同様な圧)]調調節膜の制御が可能で
ある。Therefore, even if the valve temperature sensor 30 or the like is damaged, the optimum water cooling layer 16 for the engine output can be determined in advance based on the water cooling layer water level 14- signal from the water level sensor 33 and the engine load signal from the rotation sensor ++-40 and rack position sensor 42. By storing the height of the pressure as data, it is possible to control a similar pressure adjustment membrane.
なお、制御部43における上述した演篩処理に基づく圧
力調節を円滑にするために、必要に応じて制御部43が
ら空気抜き弁27に作動指令信号を出し、熱交換器3内
の空気量を調節するようになっている。In order to smoothly adjust the pressure based on the above-mentioned sieving process in the control unit 43, the control unit 43 outputs an operation command signal to the air vent valve 27 as necessary to adjust the amount of air in the heat exchanger 3. It is supposed to be done.
以上の構成よりなるこの実施例の作用について述べる。The operation of this embodiment having the above configuration will be described.
排気弁本体2が回転しつつ昇降動じている弁動作状態に
おいて、弁傘部1が排気ガスにより加熱されると、冷却
材室5内の冷却水Pが昇温し、その気化時に周囲から熱
を奪って弁傘部1を冷却する。そして、この気化した蒸
気PGは冷却材気化室6内を上昇して案内管8、連結管
9を経て熱交換器3の被凝縮管15内に至り、ここで調
圧室18内の冷却水Sと間接熱交換されて凝縮液化する
。When the valve head portion 1 is heated by the exhaust gas in the valve operating state in which the exhaust valve body 2 is rotating and moving up and down, the temperature of the cooling water P in the coolant chamber 5 rises, and when it vaporizes, it absorbs heat from the surroundings. to cool the valve head part 1. Then, this vaporized steam PG rises in the coolant vaporization chamber 6, passes through the guide pipe 8 and the connecting pipe 9, and reaches the condensed pipe 15 of the heat exchanger 3, where the cooling water in the pressure regulation chamber 18 It is condensed and liquefied through indirect heat exchange with S.
液化した冷却水PLは連結管9、案内管8を流下して冷
却材室5内に戻流され、再び気化するというサイクルを
繰り返すことになる。このサイクルにおいて、エンジン
負荷が変動する場合には、弁温度センサ30、蒸気温度
レンジ31、圧力センサ32、水位センサ33、回転レ
ンジ−40及びラック位置センサ42からの各種信号よ
りこれらの物理単位を制御部43で換算すると共に、こ
れら換算値と、これらに対応して予め入力しておいた値
とを比較する。この比較は、制御lIす度や要求規格か
らすべての熱負荷要素について行なっても、或いは1つ
のみに限定例えば排気弁温度Tmのみに限定して行なっ
てもよい。そして比較結果に基づいて制御部43は排気
弁温度Tmが所望の一定値或いは最適な排気弁温度とな
るように圧力調整弁26、流量制御弁23及び絞り弁2
4に開方向又は閉方向の作動指令信号が出力する。今、
排気弁温度Tll+を例にとると、冷え過ぎである7m
<Tmoであれば、制御部43は圧力調整弁26を開く
方向に作動し、流量制御弁23及び絞りべ24を閉じる
方向に作動する。これらの作動により調圧室18内りお
ける加圧空気量が増大して加圧空気圧が増え、二次冷却
材たる冷却水圧に打ち克ってこれの調圧室18内への流
入を抑制し、水冷層16の高さを低下させる。したがっ
て二次冷却材Sに対する気化冷却材PGの接触面積が減
少して熱交換器3における熱交換率が低下し、気化冷却
材PGの凝縮液化量が減少する。その結果、冷却材室5
内に冷却のために戻流さ゛れる液化−次冷却材PLが減
り、排気弁本体2の冷却が抑制されてこれの温度を上昇
させ、もって排気弁温度Tl11を所望の値に制御する
ことができる。逆にTm>Tm0であれば今度は冷却不
足であるから、制御部43は冷却水Sの蒸気PGに対す
る熱交換面積を増大させるべく圧力調節手段を制御する
。その結果凝縮液化量が増大し排気弁本体2を更に冷却
して温度を下降させ、もって排気弁温度TIを所望の値
に制御することができる。The liquefied cooling water PL flows down the connecting pipe 9 and the guide pipe 8, flows back into the coolant chamber 5, and repeats the cycle of vaporizing again. In this cycle, when the engine load fluctuates, these physical units are determined from various signals from the valve temperature sensor 30, steam temperature range 31, pressure sensor 32, water level sensor 33, rotation range 40, and rack position sensor 42. The control unit 43 performs the conversion and compares these converted values with corresponding values input in advance. This comparison may be performed for all heat load elements depending on the control level and required standards, or may be limited to only one, for example, only the exhaust valve temperature Tm. Based on the comparison result, the control unit 43 controls the pressure regulating valve 26, the flow rate control valve 23, and the throttle valve 2 so that the exhaust valve temperature Tm becomes a desired constant value or an optimal exhaust valve temperature.
4, an operation command signal in the opening direction or the closing direction is output. now,
Taking the exhaust valve temperature Tll+ as an example, 7m is too cold.
If <Tmo, the control unit 43 operates to open the pressure regulating valve 26 and close the flow rate control valve 23 and the throttle valve 24. These operations increase the amount of pressurized air in the pressure regulation chamber 18, increasing the pressurized air pressure, which overcomes the pressure of cooling water, which is the secondary coolant, and suppresses its inflow into the pressure regulation chamber 18. , the height of the water cooling layer 16 is reduced. Therefore, the contact area of the vaporized coolant PG with the secondary coolant S decreases, the heat exchange rate in the heat exchanger 3 decreases, and the amount of condensed and liquefied vaporized coolant PG decreases. As a result, the coolant chamber 5
The liquefied secondary coolant PL flowing back into the exhaust valve body 2 for cooling is reduced, the cooling of the exhaust valve body 2 is suppressed, and its temperature is increased, thereby making it possible to control the exhaust valve temperature Tl11 to a desired value. can. On the other hand, if Tm>Tm0, cooling is insufficient this time, so the control unit 43 controls the pressure adjustment means to increase the heat exchange area of the cooling water S with respect to the steam PG. As a result, the amount of condensation and liquefaction increases, and the exhaust valve main body 2 is further cooled to lower its temperature, thereby making it possible to control the exhaust valve temperature TI to a desired value.
このように上記実施例によればエンジンの排気弁温度を
熱負荷(排気弁温度、蒸気温間、エンジ−1フー
ン回転数及びラック位置等)の変化に応じて一定温度又
は最適温度となるようにしたので、熱負荷の変動にかか
わらず排気弁を所望の温度に制御することができる。こ
の結果、低負荷における硫酸腐食、高負荷におけるバナ
ジウム腐食などを有効に回避でき、寿命を飛躍的に向上
させることができる。また熱負荷の変化に対しても排気
弁を所望の温度に制御できるので、弁傘部1の温度変化
を小さくすることができる。その結果、弁傘部1に加わ
る熱応力変化小さくなり高温疲労に充分耐えることがで
き、寿命及び信頼性が格段と向上する。In this way, according to the above embodiment, the exhaust valve temperature of the engine can be maintained at a constant temperature or an optimum temperature according to changes in heat load (exhaust valve temperature, steam temperature, engine fan rotation speed, rack position, etc.). Therefore, the exhaust valve can be controlled to a desired temperature regardless of fluctuations in heat load. As a result, sulfuric acid corrosion under low loads, vanadium corrosion under high loads, etc. can be effectively avoided, and the service life can be dramatically improved. Furthermore, since the exhaust valve can be controlled to a desired temperature even in response to changes in heat load, changes in temperature of the valve head portion 1 can be reduced. As a result, changes in thermal stress applied to the valve head portion 1 are reduced, making it possible to sufficiently withstand high-temperature fatigue, and significantly improving lifespan and reliability.
更に高熱負荷雰囲気内でも排気弁温度は充分適温になっ
ているので、材料の高温強度が充分高い。Furthermore, since the exhaust valve temperature is sufficiently appropriate even in a high heat load atmosphere, the high temperature strength of the material is sufficiently high.
よって排気弁に高価な材料、例えばN 1Illoni
c80Aなどを使う必要はな〈従来使用されている耐熱
合金で充分である。Therefore, expensive materials for the exhaust valve, e.g.
There is no need to use c80A or the like; conventionally used heat-resistant alloys are sufficient.
一方、燃焼によって生じる異物が高温度レベルにおいて
特に著しく弁座面に付着し弁座面を創傷する。これは高
温強度の高い高価な材料にあっても弁座面が高温になる
ことにはかわりがないので18−
事情は同じである。ところが、この実施例によれば異物
が付着する温度以下に排気弁温度を制御できるので、こ
のような創傷を避けることができ、この点からも排気弁
の寿命を向上させることができる。On the other hand, foreign matter generated by combustion adheres to the valve seat surface particularly at high temperature levels and damages the valve seat surface. This is because even if the material is made of expensive material with high temperature strength, the valve seat surface will still become hot, so the situation is the same. However, according to this embodiment, since the temperature of the exhaust valve can be controlled to be below the temperature at which foreign matter adheres, such scratches can be avoided, and from this point of view as well, the life of the exhaust valve can be improved.
また、エンジンの熱負荷と排気弁温度との関係(温度レ
ベル及び熱応力レベル)は予め計算によって推定するこ
とができ、この計算値と実働中の排気弁温度又は蒸気温
度もしくは蒸気圧力等を制御部43で比較することがで
きるので、冷却の温度制御が的確かつ容易である。In addition, the relationship between the heat load of the engine and the exhaust valve temperature (temperature level and thermal stress level) can be estimated in advance by calculation, and the exhaust valve temperature, steam temperature, steam pressure, etc. during actual operation can be controlled using this calculated value. Since the comparison can be made in the section 43, the cooling temperature control is accurate and easy.
加つるに熱交換器3の冷却水出口温度が100℃以上と
なるので排熱利用に供することができる。In addition, since the cooling water outlet temperature of the heat exchanger 3 is 100° C. or higher, the exhaust heat can be utilized.
尚、第1図のものは熱交換器3内に入る気化二次冷却材
PGと熱交換機3から出る凝縮二次冷却UPLとが同一
の通路を通るようになっているが、これらを分離して通
ずようにしてもよい。In addition, in the one in Figure 1, the vaporized secondary coolant PG entering the heat exchanger 3 and the condensed secondary cooling UPL coming out of the heat exchanger 3 pass through the same passage, but it is necessary to separate them. You may also communicate through
即ち、第4図の熱交換器3は、連通管9から上昇する蒸
気PGを収容して凝縮液化する凝縮室70と、この凝縮
室70内に水平かつ多段に配設された凝縮管71と、該
凝縮管71を接続すべく凝縮室70の前後(紙面の表裏
方向)に設けられた図示しない調圧室からなる。この調
圧室内には二次冷却材Sの水冷層とこれを加圧する加圧
空気層とが形成され、上記水冷層には一定圧の冷却水が
給水管63と排水管64により給排され、加圧空気層に
は圧搾空気供給管65を通して加圧空気が供給されてい
る。そして、冷却水と加圧空気との圧力バランスを調節
することにより冷却水が満だされる凝縮管71の本数が
増減し、その結果第1図のものと同様に一次冷w月と二
次冷却材との接触面積を変えられるようになっている。That is, the heat exchanger 3 in FIG. 4 includes a condensing chamber 70 that accommodates steam PG rising from a communication pipe 9 and condenses it into liquid, and condensing tubes 71 arranged horizontally and in multiple stages within this condensing chamber 70. , consisting of pressure regulating chambers (not shown) provided before and after the condensing chamber 70 (in the front and back directions of the page) to which the condensing pipe 71 is connected. A water-cooled layer of the secondary coolant S and a pressurized air layer that pressurizes the secondary coolant S are formed in this pressure regulating chamber, and cooling water at a constant pressure is supplied and discharged to the water-cooled layer through a water supply pipe 63 and a drain pipe 64. , pressurized air is supplied to the pressurized air layer through a compressed air supply pipe 65. By adjusting the pressure balance between cooling water and pressurized air, the number of condensing pipes 71 filled with cooling water is increased or decreased, and as a result, as in the case of Fig. 1, primary cooling and secondary cooling It is possible to change the contact area with the coolant.
このような外凝縮形の熱交換器3において、蒸気PGと
凝縮液PLとが混流しないように凝縮室70内に設けた
凝縮管71を蒸気PGの流れに沿ってテーパ状とすると
ともに、下流側を下げて全体を傾斜させである。そして
熱交換器3に接続される連結管9及び気化冷却材案内管
8も蒸気PG 。In such an external condensing type heat exchanger 3, the condensing pipe 71 provided in the condensing chamber 70 is tapered along the flow of the steam PG so that the steam PG and the condensate PL do not flow together. The sides are lowered and the whole structure is slanted. The connecting pipe 9 and vaporized coolant guide pipe 8 connected to the heat exchanger 3 are also steam PG.
と凝縮液PLとが混流しないように分離しである。and the condensate PL are separated so that they do not mix.
連結管9の分離手段は仕切板72で連結管9を上下に区
画形成することによって行ない、上方を蒸気、下方を凝
縮液の通路としている。また、案内管8の分離手段は二
重管構造とし、内管73を蒸気PGの通路、外管74を
凝縮液PLの通路とすることによって行なっている。外
管74の下端には蒸気PGが入りにくく、逆に凝縮液P
Lが出やすくなるように、焼結合金とかスチールウール
などの多孔質を形成する物質75が充填されている。Separation means for the connecting tube 9 is achieved by dividing the connecting tube 9 into upper and lower sections using a partition plate 72, with the upper section serving as a passage for steam and the lower section serving as a passage for condensate. Further, the separation means of the guide tube 8 has a double-tube structure, with the inner tube 73 serving as a passage for the steam PG, and the outer tube 74 serving as a passage for the condensed liquid PL. It is difficult for steam PG to enter the lower end of the outer tube 74, and condensate P
It is filled with a porous substance 75 such as sintered alloy or steel wool so that L can easily come out.
また、内管73はこれを上昇する蒸気PGが凝縮液によ
って冷却されないように自体で二重管構造としである。Further, the inner pipe 73 itself has a double pipe structure so that the steam PG rising therein is not cooled by the condensate.
従って、蒸気と凝縮液とは完全に分離されることになる
から熱交換器3の凝縮能力を格段と向上させることがで
きる。また案内管8は凝縮液PLに接触することになる
ので、蒸気PGの濡mよりは低くなることが期待でき、
その低くなる分だ【プ案内管8に接触するシールリング
11(第1図参照)も高温にならずに済みシールリング
11の寿命が向上するという利点がある。Therefore, the steam and condensate are completely separated, so that the condensing capacity of the heat exchanger 3 can be significantly improved. Also, since the guide tube 8 will come into contact with the condensate PL, it can be expected that the wetness m of the steam PG will be lower.
This lower temperature has the advantage that the seal ring 11 (see FIG. 1) in contact with the guide tube 8 does not reach a high temperature, and the life of the seal ring 11 is improved.
[発明の効果] 以上要するにこの発明によれば次のような優れ21− た効果を発揮する。[Effect of the invention] In summary, according to this invention, the following advantages 21- It has a great effect.
(1) 内燃機関の熱負荷変動を検出し、この検出値に
応じて二次冷却材の気化−次冷却材に対する熱交換面積
を増減させて排気弁の温度を制御するようにしているの
で、熱負荷変動にかかわらず、排気弁温度を的確に制御
して安定させることができる。(1) The temperature of the exhaust valve is controlled by detecting the heat load fluctuation of the internal combustion engine and increasing or decreasing the heat exchange area of the secondary coolant to the vaporized secondary coolant according to the detected value. The exhaust valve temperature can be accurately controlled and stabilized regardless of heat load fluctuations.
(2) 排気弁温度の安定化により排気弁温度の過冷却
や冷却不足を防ぐことができ、これらに起因する金属腐
食や損傷を有効に回避して排気弁温度の信頼性、寿命の
向上がはかられ、もって内燃機関を安全に運転すること
ができる。(2) By stabilizing the exhaust valve temperature, it is possible to prevent overcooling or insufficient cooling of the exhaust valve temperature, effectively avoiding metal corrosion and damage caused by these, and improving the reliability of the exhaust valve temperature and the lifespan. This allows the internal combustion engine to be operated safely.
図はこの発明を実施する内燃機関の排気弁装置の好適一
実施例を示す図であって第1図は第一実施例に係る装置
全体の概略縦断面図、第2図は回転センサとラック位置
センサの取付位置説明図、第3図は制御部の入出力系を
示すブロック図、第4図は第二実施例に係る熱交換器及
22−
びその周辺の概略縦断面図である。
尚、図中2は排気弁たる排気弁本体、3は熱交換器、P
は一次冷却材、PGは気化−次冷却材、PLは凝縮−次
冷却材、Sは二次冷却月である。
特許出願人 石川島播磨重工業株式会社代理人弁理士
絹 谷 信 雄
23−The figures are views showing a preferred embodiment of an exhaust valve device for an internal combustion engine according to the present invention, in which FIG. 1 is a schematic vertical sectional view of the entire device according to the first embodiment, and FIG. 2 is a rotation sensor and a rack. FIG. 3 is a block diagram showing the input/output system of the control section, and FIG. 4 is a schematic vertical sectional view of the heat exchanger 22 and its surroundings according to the second embodiment. In the figure, 2 is the exhaust valve body, 3 is the heat exchanger, and P
is the primary coolant, PG is the evaporative coolant, PL is the condensing coolant, and S is the secondary coolant. Patent applicant: Patent attorney representing Ishikawajima-Harima Heavy Industries Co., Ltd.
Nobuo Kinutani 23-
Claims (1)
おいて、該排気弁内部より導出した気化−次冷却材を二
次冷却材と間接熱交換させて凝縮し、この凝縮−次冷却
材を再び上記排気弁に戻すに際し、内燃機関の熱負荷変
動を検出し、該検出値に応じて二次冷却材の気化−次冷
却材に対する熱交換面積を増減させて排気弁の湿度を制
御するようにしたことを特徴とする内燃機関の排気弁温
度制御方法。In the exhaust valve of an internal combustion engine that has a closed thermosiphon pipe, the vaporized secondary coolant drawn out from inside the exhaust valve is condensed by indirect heat exchange with the secondary coolant, and this condensed secondary coolant is When the exhaust valve is returned to the exhaust valve, the humidity of the exhaust valve is controlled by detecting the heat load fluctuation of the internal combustion engine and increasing or decreasing the heat exchange area of the secondary coolant with respect to the vaporized-secondary coolant according to the detected value. An exhaust valve temperature control method for an internal combustion engine, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24067283A JPS60132009A (en) | 1983-12-20 | 1983-12-20 | Exhaust valve temperature controlling method of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24067283A JPS60132009A (en) | 1983-12-20 | 1983-12-20 | Exhaust valve temperature controlling method of internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60132009A true JPS60132009A (en) | 1985-07-13 |
JPH0468442B2 JPH0468442B2 (en) | 1992-11-02 |
Family
ID=17062982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24067283A Granted JPS60132009A (en) | 1983-12-20 | 1983-12-20 | Exhaust valve temperature controlling method of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60132009A (en) |
-
1983
- 1983-12-20 JP JP24067283A patent/JPS60132009A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0468442B2 (en) | 1992-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8069684B2 (en) | Control of a refrigeration circuit with an internal heat exchanger | |
JPS6262073A (en) | Device for controlling temperature of poppet valve | |
JPH0311268A (en) | Cooling device for motor | |
JPS6093117A (en) | Boiling-cooling type intercooler | |
US6332328B1 (en) | Absorption heat pump and process for operation of an absorption heat pump | |
US6779355B2 (en) | Refrigeration device | |
US6397625B1 (en) | Absorption refrigeration machine | |
JP2522241B2 (en) | Temperature control device for poppet type valve | |
JPS60132009A (en) | Exhaust valve temperature controlling method of internal combustion engine | |
JPS60132008A (en) | Exhaust valve device of internal combustion engine | |
CN114294833A (en) | Control method of heat pump high-energy-efficiency hot water system | |
JP4540315B2 (en) | Cryogenic liquid heating method and apparatus | |
JPH0476009B2 (en) | ||
JPH09318188A (en) | Method of controlling absorption cold/hot water generator | |
JPH022883Y2 (en) | ||
JPH0735420A (en) | Refrigerating device | |
JPS627979Y2 (en) | ||
JPH0324828Y2 (en) | ||
CN113758322A (en) | Separated heat pipe heat exchanger | |
JPH0324827Y2 (en) | ||
SU885687A1 (en) | Unit for storing and pumping liquefied gas | |
JPH034726B2 (en) | ||
JPH0452430Y2 (en) | ||
JPH0743054B2 (en) | Poppet valve temperature control method | |
JPS60108527A (en) | Evaporative cooling device for engine |