JPS6261892B2 - - Google Patents

Info

Publication number
JPS6261892B2
JPS6261892B2 JP14462881A JP14462881A JPS6261892B2 JP S6261892 B2 JPS6261892 B2 JP S6261892B2 JP 14462881 A JP14462881 A JP 14462881A JP 14462881 A JP14462881 A JP 14462881A JP S6261892 B2 JPS6261892 B2 JP S6261892B2
Authority
JP
Japan
Prior art keywords
converter
signal
output
input
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14462881A
Other languages
Japanese (ja)
Other versions
JPS5847214A (en
Inventor
Toyofumi Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14462881A priority Critical patent/JPS5847214A/en
Publication of JPS5847214A publication Critical patent/JPS5847214A/en
Publication of JPS6261892B2 publication Critical patent/JPS6261892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は、電磁流量計に係り、特に方形波励磁
電磁流量計検出器の測定管内の流体の存否を検知
する機能を有する電磁流量計変換器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic flowmeter, and more particularly to an electromagnetic flowmeter converter having a function of detecting the presence or absence of fluid in a measurement pipe of a square wave excitation electromagnetic flowmeter detector.

第1図に電磁流量計検出器(以下検出器とい
う)1と電磁流量計変換器(以下変換器という)
5とからなる電磁流量計のブロツク図を示す。検
出器1は励磁コイル2の測定管3に設けられた流
体に発生する起電力を検出する電極4とからな
り、電極間の電圧は変換器5の高入力インピーダ
ンス差動交流増幅器6で増幅され、通常は後段増
幅器7で4〜20mADCの統一信号にして出力さ
れる。
Figure 1 shows an electromagnetic flowmeter detector (hereinafter referred to as the detector) 1 and an electromagnetic flowmeter converter (hereinafter referred to as the converter).
5 shows a block diagram of an electromagnetic flowmeter consisting of 5. The detector 1 consists of an electrode 4 that detects the electromotive force generated in the fluid provided in the measurement tube 3 of the excitation coil 2, and the voltage between the electrodes is amplified by the high input impedance differential AC amplifier 6 of the converter 5. , which is normally converted into a unified signal of 4 to 20 mADC by the downstream amplifier 7 and output.

第2図に入力信号の等価回路を示す。図中、8
は電極間に同相で現われる同相雑音電圧源、9,
9′は流量に比例した信号電圧源であり、抵抗1
0,10′は流体の導電率や電極の大きさで主に
決まる出力インピーダンスをあらわしている。
FIG. 2 shows an equivalent circuit of the input signal. In the figure, 8
is the common mode noise voltage source appearing in the same phase between the electrodes, 9.
9' is a signal voltage source proportional to the flow rate, and resistor 1
0 and 10' represent the output impedance, which is mainly determined by the conductivity of the fluid and the size of the electrode.

実際に検出器が設置される場合、流量変化、圧
力変化が激しい配管や設置方法そのものにより検
出器内の流体が抜けてしまうこともしばしばあ
る。検出器内の流体が抜けると、第2図におい
て、信号電源9,9′はゼロ、出力インピーダン
ス10,10′は無限大となる。変換器内の差動
交流増幅器6は、外来雑音の影響がないなどの理
想的な条件であれば出力値はゼロとなり、流体が
ない即ち流量がゼロということが出力され、特に
問題はない。しかしながら通常は、商用電源や励
磁電源からの影響を受け、差動交流増幅器6が飽
和を起したりして変換器の出力値はゼロになら
ず、流体が流れていると誤認してしまうという不
都合が生じた。
When a detector is actually installed, the fluid inside the detector often leaks due to piping or the installation method itself, which undergoes large changes in flow rate and pressure. When the fluid in the detector is discharged, the signal power supplies 9, 9' become zero and the output impedances 10, 10' become infinite in FIG. 2. If the differential AC amplifier 6 in the converter is under ideal conditions such as no influence of external noise, the output value will be zero, indicating that there is no fluid, that is, the flow rate is zero, and there is no particular problem. However, normally, the differential AC amplifier 6 saturates due to the influence of the commercial power supply or excitation power supply, and the output value of the converter does not reach zero, leading to the misunderstanding that fluid is flowing. An inconvenience occurred.

そして、このような問題に対し従来は次のよう
な対策がなされていた。その一つの例は第3図に
示すように、差動交流増幅器6の各入力とグラン
ド間を抵抗器11,11′で結びインピーダンス
を低くする方法である。これにより、流体が抜け
ても入力部のインピーダンスは大きくならず且つ
雑音の影響も受けず出力値はゼロとなる。この方
法の欠点は流体の導電率が変化すると、つまりイ
ンピーダンスが変化すると変換器の出力値が変動
することであり、流体の導電率があまり低くなく
且つ変化も少ない場合にしか適用できないことで
ある。また、流体が静止しているのか、無いのか
のどちらであるかということが変換器の出力だけ
では判別できない。
Conventionally, the following countermeasures have been taken against such problems. One example, as shown in FIG. 3, is to connect each input of the differential AC amplifier 6 and the ground using resistors 11 and 11' to lower the impedance. As a result, even if the fluid escapes, the impedance of the input section does not increase, and the output value becomes zero without being affected by noise. The disadvantage of this method is that the output value of the transducer changes when the conductivity of the fluid changes, that is, when the impedance changes, and it can only be applied when the conductivity of the fluid is not very low and changes little. . Furthermore, it is not possible to determine whether the fluid is stationary or absent based solely on the output of the converter.

他の対策例は、測定管に圧力計を取り付け、管
内の圧力で流体の抜けたことを検出する方法であ
る。通常、流体が流れれば圧力を生じるので、圧
力の上昇が無く、変換器の出力が振れれば流体抜
けとわかる。この方法の欠点は、圧力計等余分な
計器を必要とすることである。
Another example of countermeasure is to attach a pressure gauge to the measuring tube and detect the leakage of fluid based on the pressure inside the tube. Normally, when fluid flows, pressure is generated, so if there is no increase in pressure and the output of the converter fluctuates, it can be determined that there is a fluid leak. The disadvantage of this method is that it requires extra instruments such as pressure gauges.

本発明は、検出器内流体の抜けを、変換器側の
工夫により特に測定機器を別に用意することな
く、また変換器の入力インピーダンスを下げると
いう性能の低下もなく検知することを目的とす
る。しかしてこの目的は、励磁信号に同期してオ
ンオフするスイツチと直流基準電圧源と抵抗器と
を有し変換器への入力信号の模擬信号を発生する
模擬信号発生回路と、この回路の出力信号を前記
変換器の一方の入力へ接続するとともに変換器の
他方の入力をグランドへ接続し且つ励磁回路を遮
断する3回路切替スイツチと、この切替スイツチ
を作動させたとき前記変換器の出力電圧を、測定
管内に流体が存在し1対の電極の出力インピーダ
ンスが最高値のときに前記模擬信号を入力して得
られた変換器の出力値に等しく定められた基準電
圧と比較し、この基準電圧を超えたとき測定管内
に流体が存在しないことを示す信号を出力するコ
ンパレータとを具備するようにし、前記3回路切
替スイツチにより流量測定動作と測定管内流体の
存否検出動作とが切換えられるようにしたことに
より達成された。
An object of the present invention is to detect the leakage of fluid in a detector without preparing a separate measurement device by using a device on the converter side, and without deteriorating the performance by lowering the input impedance of the converter. However, the purpose of the lever is to provide a simulation signal generation circuit that has a switch that turns on and off in synchronization with an excitation signal, a DC reference voltage source, and a resistor, and generates a simulation signal of the input signal to the converter, and an output signal of this circuit. a three-circuit changeover switch that connects the converter to one input of the converter, connects the other input of the converter to ground, and interrupts the excitation circuit; and when the changeover switch is activated, the output voltage of the converter changes. , when there is a fluid in the measurement tube and the output impedance of the pair of electrodes is at its highest value, the simulated signal is input and the output value of the converter is compared with a reference voltage determined to be equal to the output value of the converter. and a comparator that outputs a signal indicating that there is no fluid in the measuring tube when the flow rate exceeds 1, and the three-circuit changeover switch can switch between the flow rate measurement operation and the operation of detecting the presence or absence of fluid in the measuring tube. This was achieved by

以下、本発明の実施例を図面を参照して説明す
る。第4図に本発明一実施例の方形波励磁電磁流
量計変換器の構成を示す。方形波励磁電磁流量計
変換器は高入力インピーダンス差動交流増幅器1
1とその出力を演算処理する後段増幅器12、励
磁回路18から構成されるのは従来通りである。
この電磁流量計変換器に下記の各要素を付設す
る。励磁信号に同期してオンオフする通常FET
等の半導体で構成されるスイツチ14、直流基準
電圧源13、オンオフされる基準電圧を所定の電
流値に制限する抵抗器15からなり電磁流量計変
換器への入力信号の模擬信号を発生する模擬信号
発生回路を設ける。また、この模擬信号発生回路
の出力信号を変換器の一方の入力へ接続するスイ
ツチ19b、変換器の他方の入力をグランドへ接
続するスイツチ19a、励磁回路18の出力を遮
断するスイツチ19cからなる3回路切替スイツ
チ19を設ける。さらに変換器の後段増幅器12
の出力を基準電圧20と比較するコンパレータ2
1を設ける。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows the configuration of a square wave excitation electromagnetic flowmeter converter according to an embodiment of the present invention. Square wave excitation electromagnetic flow meter converter is a high input impedance differential AC amplifier 1
1, a post-stage amplifier 12 for arithmetic processing of its output, and an excitation circuit 18 as before.
The following elements are attached to this electromagnetic flowmeter converter. Normal FET that turns on and off in synchronization with the excitation signal
A simulator that generates a simulated signal of the input signal to the electromagnetic flowmeter converter is composed of a switch 14 made of semiconductors such as a DC reference voltage source 13, and a resistor 15 that limits the reference voltage to be turned on and off to a predetermined current value. A signal generation circuit is provided. Further, there is a switch 19b that connects the output signal of the simulated signal generating circuit to one input of the converter, a switch 19a that connects the other input of the converter to the ground, and a switch 19c that cuts off the output of the excitation circuit 18. A circuit changeover switch 19 is provided. Furthermore, a downstream amplifier 12 of the converter
comparator 2 that compares the output of
1 will be provided.

上記のように構成された本発明一実施例の電磁
流量計変換器は、3回路切替スイツチ19が図示
の状態にある場合即ち通常の流量測定動作におい
ては、全く従来通りの方形波励磁電磁流量計変換
器として働くことは明らかである。第5図には、
励磁回路18で作られる励磁信号22をa図に、
高インピーダンス差動交流増幅器11の両入力に
現われる検出器17の出力信号23をb図に示
す。b図に示した斜線部分の波高値をサンプリン
グし流量信号として出力するのが一般的である。
The electromagnetic flowmeter converter according to the embodiment of the present invention configured as described above has a completely conventional square wave excitation electromagnetic flow rate when the three-circuit changeover switch 19 is in the state shown, that is, in normal flow rate measurement operation. It is clear that it works as a meter transducer. In Figure 5,
The excitation signal 22 generated by the excitation circuit 18 is shown in figure a.
The output signal 23 of the detector 17 appearing at both inputs of the high impedance differential AC amplifier 11 is shown in Figure b. It is common to sample the peak value of the shaded area shown in Figure b and output it as a flow rate signal.

検出器の測定管内の流体の抜けを検出するため
3回路切替スイツチ19を切替えた場合には、差
動交流増幅器11の入力の一端はスイツチ19a
によりグランドに落ち、他端はスイツチ19bに
より抵抗器15に接続され、励磁回路18の出力
はスイツチ19cにより遮断され、そのため励磁
コイル2は励磁されず、検出器17内の電極3に
流量信号は発生しない。このときの差動交流増幅
器11の入力間の電圧波形24を第5図cに示
す。第5図cは第4図における差動交流増幅器1
1の上側入力を基準として表わしたものであり、
下側入力には負電圧の方形波電圧が加わる。しか
しながら差動交流増幅器11が交流増幅器である
ため出力は第5図dに示した波形25が加わつた
場合と等価である。この入力波形の波高値は、 1/2V1R0/R1+R0 …(1) となる。ここでV1は基準電圧源13の電圧、R0
は第2図に示した出力インピーダンス10,1
0′の直列合成抵抗値、R1は抵抗器15の抵抗値
である。励磁周波数は10Hz以下と低く、電圧値
も安定した領域なので、容量分等は考えず抵抗分
のみと出力インピーダンスを考えてよい。
When the three-circuit selector switch 19 is switched to detect the leakage of fluid in the measuring tube of the detector, one end of the input of the differential AC amplifier 11 is switched to the switch 19a.
The other end is connected to the resistor 15 by the switch 19b, and the output of the excitation circuit 18 is cut off by the switch 19c, so the excitation coil 2 is not excited and the flow rate signal is not transmitted to the electrode 3 in the detector 17. Does not occur. The voltage waveform 24 between the inputs of the differential AC amplifier 11 at this time is shown in FIG. 5c. Figure 5c shows the differential AC amplifier 1 in Figure 4.
It is expressed based on the upper input of 1,
A negative square wave voltage is applied to the lower input. However, since the differential AC amplifier 11 is an AC amplifier, the output is equivalent to the case where the waveform 25 shown in FIG. 5d is added. The peak value of this input waveform is 1/2V 1 R 0 /R 1 +R 0 (1). Here, V 1 is the voltage of the reference voltage source 13, R 0
is the output impedance 10,1 shown in Figure 2.
0' is the series combined resistance value, and R 1 is the resistance value of the resistor 15. The excitation frequency is low at 10Hz or less, and the voltage value is also in a stable range, so you can consider only the resistance and output impedance without considering the capacitance.

電磁流量計変換器の出力は、入力波形の波高値
に比例するから、3回路切替スイツチ19を切替
えた場合の出力値は(1)式より、基準電圧V1に比
例し、R1≫R0ならR0にも比例する。また、(1)式
はV1やR1の値を適当に選ぶことにより変換器の
増幅度を変えなくても流量信号と同じような出力
値が得られることを示している。
Since the output of the electromagnetic flowmeter converter is proportional to the peak value of the input waveform, the output value when the three-circuit changeover switch 19 is switched is proportional to the reference voltage V 1 from equation (1), and R 1 ≫ R If it is 0 , it is also proportional to R 0 . Furthermore, equation (1) shows that by appropriately selecting the values of V 1 and R 1 , an output value similar to the flow rate signal can be obtained without changing the amplification degree of the converter.

そこで、検出器の測定管内に流体が存在する場
合のR0の最高値を予め求めておき、V1,R1を適
当な定数にして模擬信号発生回路の出力を一定の
ゲインを持つた変換器に入力したときの変換器の
出力値を求める。そして、この出力値を電圧値と
し、これをコンパレータ21の基準電圧20とす
る。
Therefore, the maximum value of R 0 when fluid is present in the measuring tube of the detector is determined in advance, and V 1 and R 1 are set to appropriate constants to convert the output of the simulated signal generation circuit to have a constant gain. Find the output value of the converter when input to the converter. Then, this output value is set as a voltage value, and this is set as the reference voltage 20 of the comparator 21.

このように設定、構成された本発明一実施例の
電磁流量計変換器において、通常流量測定動作か
ら3回路切替スイツチ19により測定管内流体存
否検知動作に切替えた場合、変換器の出力電圧値
が基準電圧20を超えたときは前記のR0が所定
最高値より大なるときであり、つまり、測定管内
に流体が存在しない場合であり、このときのコン
パレータ21の出力により検出器内流体抜けを知
ることができる。
In the electromagnetic flowmeter converter of the embodiment of the present invention set and configured in this manner, when the normal flow rate measurement operation is switched to the operation for detecting the presence or absence of fluid in the measuring pipe by the three-circuit changeover switch 19, the output voltage value of the converter changes. When the reference voltage exceeds 20, it means that the above-mentioned R 0 is larger than the predetermined maximum value, that is, there is no fluid in the measuring tube, and the output of the comparator 21 at this time prevents fluid leakage in the detector. You can know.

以上の説明から明らかなように、本発明による
電磁流量計変換器では、検出器内の流体存否検知
のために、特に変換器のゲインを変えるなどの変
更を必要とせず、また変換器に若干の電気部品を
追加付設するのみで他の圧力計などの測定計器や
それを接続するケーブル等も必要としないで、検
出器内の流体の存否を知ることができる。また、
流量測定動作時には従来の変換器と全く同等に働
くので、変換器入力インピーダンス低下に伴う性
能低下がない。第4図の実施例では3回路切替ス
イツチを用いたが、これはリレーでも全く問題な
いし、変換器のゲイン変更もないので遠隔操作で
検出器内流体の存否検知も容易である。
As is clear from the above description, the electromagnetic flowmeter converter according to the present invention does not require any changes such as changing the gain of the converter in order to detect the presence or absence of fluid in the detector, and the converter does not require any changes such as changing the gain of the converter. The presence or absence of fluid in the detector can be determined by simply adding an additional electrical component, without requiring other measuring instruments such as pressure gauges or cables to connect them. Also,
During flow measurement operation, it works exactly the same as a conventional converter, so there is no performance deterioration due to a reduction in converter input impedance. In the embodiment shown in FIG. 4, a three-circuit changeover switch is used, but there is no problem with a relay, and since there is no need to change the gain of the converter, it is easy to detect the presence or absence of fluid in the detector by remote control.

次に、第6図に本発明の別の実施例を示す。こ
の実施例のものは、励磁信号を分周器26で分周
し、その分周した励磁信号によりパルス発生器2
7から、例えば正信号が入つた時のみ流体の存否
検知に必要な時間だけリレー28をオンさせるよ
うなワンシヨツトパルスを発生させる。そして、
ワンシヨツトパルスが発生している間リレー28
をオンさせ、流体検知動作を行ない、流量信号は
トラツクホールド回路29により流体検知動作直
前の値を出力するようにしたものである。
Next, FIG. 6 shows another embodiment of the present invention. In this embodiment, the frequency of the excitation signal is divided by a frequency divider 26, and the frequency-divided excitation signal is used to generate a pulse generator 2.
7, a one-shot pulse is generated that turns on the relay 28 for the time necessary to detect the presence or absence of fluid only when a positive signal is received, for example. and,
While the one-shot pulse is occurring, the relay 28
is turned on to perform a fluid detection operation, and the track hold circuit 29 outputs the flow rate signal at the value immediately before the fluid detection operation.

第4図の実施例では、遠隔操作は可能でも人為
的に信号を与えなければ流体検知動作は行なわな
かつたが、第6図の実施例では流体検知を自動で
行なうことができる。そして、第6図の実施例で
は励磁信号を分周して検知間隔を決めているの
で、特にタイマなど必要なく、また流量信号もホ
ールド回路を用いて流体検知している間に発生す
る誤差をなるべく少なくしている。
In the embodiment shown in FIG. 4, although remote control is possible, the fluid detection operation is not performed unless a signal is given manually, but in the embodiment shown in FIG. 6, fluid detection can be performed automatically. In the embodiment shown in Fig. 6, the detection interval is determined by dividing the excitation signal, so there is no need for a timer, and a hold circuit is also used for the flow rate signal to eliminate errors that occur during fluid detection. I try to minimize it as much as possible.

以上詳述したように本発明によれば、電磁流量
計検出器内の流体抜けを特に測定機器を別に用意
することなく、また変換器の入力インピーダンス
を下げるという性能の低下もなく、流量測定動作
から任意に切替えて検知できる方形波励磁電磁流
量計変換器を提供することができる。
As described in detail above, according to the present invention, fluid leakage in the electromagnetic flowmeter detector can be detected without preparing a separate measurement device, and without deteriorating performance by lowering the input impedance of the converter. It is possible to provide a square wave excitation electromagnetic flowmeter converter that can detect by arbitrarily switching from .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電磁流量計の検出器と変換器からなる
構成を示すブロツク図、第2図は変換器への入力
信号の等価回路を示す図、第3図は検出器内流体
抜け発生時の誤動作防止対策の従来例を示す電気
的接続図、第4図は本発明一実施例の方形波励磁
電磁流量計変換器の構成を示すブロツク図、第5
図a,b,c,dはそれぞれ第4図における励磁
信号、差動交流増幅器の両入力に現われる検出器
の出力信号、流体検知動作時における差動交流増
幅器の入力間の電圧波形、第5図cと等価な入力
波形を示すタイムチヤート、第6図は本発明の別
の実施例の方形波励磁電磁流量計変換器の構成を
示すブロツク図である。 2…励磁コイル、3…測定管、4…電極、1
0,10′…出力インピーダンス、11…高入力
インピーダンス差動交流増幅器、12…後段増幅
器、13…直流基準電圧源、14…スイツチ、1
5…抵抗器、17…検出器、18…励磁回路、1
9…3回路切替スイツチ、20…基準電圧、21
…コンパレータ、26…分周器、27…パルス発
生器、28…リレー、29…トラツクホールド回
路。
Figure 1 is a block diagram showing the configuration of an electromagnetic flowmeter consisting of a detector and a converter, Figure 2 is a diagram showing the equivalent circuit of the input signal to the converter, and Figure 3 is a diagram showing when fluid leaks in the detector. FIG. 4 is an electrical connection diagram showing a conventional example of malfunction prevention measures; FIG. 4 is a block diagram showing the configuration of a square wave excitation electromagnetic flow meter converter according to an embodiment of the present invention; FIG.
Figures a, b, c, and d are the excitation signal in Figure 4, the detector output signal appearing at both inputs of the differential AC amplifier, the voltage waveform between the inputs of the differential AC amplifier during fluid detection operation, and the fifth FIG. 6 is a time chart showing an input waveform equivalent to that in FIG. 2... Excitation coil, 3... Measuring tube, 4... Electrode, 1
0, 10'... Output impedance, 11... High input impedance differential AC amplifier, 12... Post-stage amplifier, 13... DC reference voltage source, 14... Switch, 1
5...Resistor, 17...Detector, 18...Excitation circuit, 1
9...3 circuit selection switch, 20...reference voltage, 21
... Comparator, 26... Frequency divider, 27... Pulse generator, 28... Relay, 29... Track hold circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 測定管の管軸に垂直に励磁コイルにより所定
周期で一定の磁界を加え測定管内を流れる導電性
流体に発生する電圧を電極により取り出し、極性
が反転する前の磁界が安定した時点における電圧
をサンプリングし信号増幅して流量信号として出
力する方形波励磁電磁流量計変換器において、直
流基準電圧源に一端が接続され他端が前記変換器
の一方の入力に接続され励磁信号に同期してオン
オフし前記直流基準電圧源とで変換器への入力信
号の模疑信号を発生する模疑信号発生回路を構成
するスイツチと、このスイツチを介して出力され
た模疑信号発生回路の出力信号を前記変換器の一
方の入力へ接続するとともに変換器の他方の入力
をグランドへ接続し且つ励磁回路の出力を遮断す
る3回路切替スイツチと、この切替スイツチを作
動させたときの前記変換器の出力電圧を前記測定
管内に流体が存在し前記電極の出力インピーダン
スが最高値のときに前記模疑信号を入力して得ら
れた前記変換器の出力値に等しく定められた基準
電圧と比較しこの電圧を超えたとき測定管内に流
体が存在しないことを示す信号を出力するコンパ
レータとを具備したことを特徴とする方形波励磁
電磁流量計変換器。
1 Apply a constant magnetic field perpendicular to the tube axis of the measuring tube at a predetermined period using an excitation coil, extract the voltage generated in the conductive fluid flowing inside the measuring tube with an electrode, and measure the voltage at the point when the magnetic field stabilizes before the polarity reverses. In a square wave excitation electromagnetic flowmeter converter that samples, amplifies the signal, and outputs it as a flow rate signal, one end is connected to a DC reference voltage source, the other end is connected to one input of the converter, and the converter is turned on and off in synchronization with the excitation signal. and a switch that constitutes a dub signal generation circuit that generates a dub signal of the input signal to the converter with the DC reference voltage source, and an output signal of the dub signal generation circuit outputted through this switch. A three-circuit changeover switch that connects to one input of the converter, connects the other input of the converter to ground, and cuts off the output of the excitation circuit, and the output voltage of the converter when the changeover switch is activated. is compared with a reference voltage set equal to the output value of the converter obtained by inputting the simulated signal when a fluid exists in the measurement tube and the output impedance of the electrode is at its highest value. 1. A square wave excitation electromagnetic flow meter converter, comprising: a comparator that outputs a signal indicating that no fluid exists in a measuring pipe when the square wave excitation exceeds the limit.
JP14462881A 1981-09-16 1981-09-16 Square wave exciting electro-magnetic flow meter converter Granted JPS5847214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14462881A JPS5847214A (en) 1981-09-16 1981-09-16 Square wave exciting electro-magnetic flow meter converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14462881A JPS5847214A (en) 1981-09-16 1981-09-16 Square wave exciting electro-magnetic flow meter converter

Publications (2)

Publication Number Publication Date
JPS5847214A JPS5847214A (en) 1983-03-18
JPS6261892B2 true JPS6261892B2 (en) 1987-12-23

Family

ID=15366455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14462881A Granted JPS5847214A (en) 1981-09-16 1981-09-16 Square wave exciting electro-magnetic flow meter converter

Country Status (1)

Country Link
JP (1) JPS5847214A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153325U (en) * 1982-04-02 1983-10-13 株式会社山武 electromagnetic flow meter
EP0543054B1 (en) * 1991-11-22 1995-02-22 Fischer & Porter GmbH Device to measure the flow rate of a fluid containing electrical charges
US5426984A (en) * 1993-09-02 1995-06-27 Rosemount Inc. Magnetic flowmeter with empty pipe detector
DE102014114443B4 (en) * 2014-10-06 2019-07-11 Finetek Co., Ltd Electromagnetic flowmeter with voltage amplitude conductivity sampling function for a liquid in a pipe
DE102014116505B3 (en) * 2014-11-12 2016-03-31 Finetek Co., Ltd. Electromagnetic flowmeter with variable frequency conductivity detection function for a liquid in a pipe

Also Published As

Publication number Publication date
JPS5847214A (en) 1983-03-18

Similar Documents

Publication Publication Date Title
JP4593867B2 (en) Electric leakage diagnosis method for electromagnetic flowmeter
US6531884B1 (en) Diagnostics for piezoelectric sensor
JP5603415B2 (en) System for detecting incomplete process ground connections
KR950001284A (en) Electromagnetic flowmeter and electronic measurement of flow rate
JPS6235072B2 (en)
JPS6261892B2 (en)
JPH0682281A (en) Vortex flowmeter
US5307688A (en) Method and flowmeter for unsteady fluid flow study
JP2560772B2 (en) Deterioration detection device for lightning arrester
CN212931520U (en) Electromagnetic flowmeter
JP2751269B2 (en) Electromagnetic flow meter
JP3204066B2 (en) Capacitive electromagnetic flowmeter
JP2000241211A (en) Flow rate measuring apparatus
JP5973897B2 (en) Electromagnetic flow meter
JPS59195166A (en) Rough measuring method of frequency
JP3964761B2 (en) 2-wire electromagnetic flow meter
JPH0142008Y2 (en)
JPS5917374B2 (en) Flowmeter
JPH06341875A (en) Electromagnetic flowmeter
JPS5939655Y2 (en) Magnetron inspection equipment
JPS5523443A (en) Flow-rate measuring method by electromagnetic flow meter
JPH03239917A (en) Electromagnetic flow meter
JPS62206416A (en) Fluid flow meter
JPS5921483B2 (en) fluid measuring device
JPH01272075A (en) Deterioration detecting device for lightning arrestor