JPH0142008Y2 - - Google Patents

Info

Publication number
JPH0142008Y2
JPH0142008Y2 JP1067979U JP1067979U JPH0142008Y2 JP H0142008 Y2 JPH0142008 Y2 JP H0142008Y2 JP 1067979 U JP1067979 U JP 1067979U JP 1067979 U JP1067979 U JP 1067979U JP H0142008 Y2 JPH0142008 Y2 JP H0142008Y2
Authority
JP
Japan
Prior art keywords
span
verification
zero point
preamplifier
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1067979U
Other languages
Japanese (ja)
Other versions
JPS55109819U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1067979U priority Critical patent/JPH0142008Y2/ja
Publication of JPS55109819U publication Critical patent/JPS55109819U/ja
Application granted granted Critical
Publication of JPH0142008Y2 publication Critical patent/JPH0142008Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 この考案は電磁流量計発信器から出力される流
量検出信号を所定のスパンを持つ例えば電流信号
に変換するための電磁流量計変換器に関し、特に
スパンの検定が容易に且つ正確に行なうことがで
きるようにしようとするものである。
[Detailed description of the invention] This invention relates to an electromagnetic flowmeter converter for converting a flow rate detection signal output from an electromagnetic flowmeter transmitter into, for example, a current signal having a predetermined span. The aim is to be able to do it accurately.

電磁流量計発信器ではその利得が変動すると流
量測定誤差が発生する。このため定期的に変換器
の利得を検査し、入力対出力の関係が規定した関
係を保つているか否かを調べる必要がある。この
検査は一般にスパン検定と呼ばれている。第1図
は従来のスパン検定機能を持つ電磁流量計変換器
の一例を示す。図中1は電磁流量計変換器を示
し、2はこの変換器1に流量検出信号を入力する
電磁流量計発信器を示す。電磁流量計発信器2は
周知のように流路を構成するパイプ3に一対の電
極4a,4bが流体の流れと直交する方向に取付
けられ、その電極4a,4bを結ぶ線と更に直交
する方向に励磁コイル5a,5bが取付けられ、
これら励磁コイル5a,5bを例えば商用電源6
にて励磁することによつて電極4a,4bから流
体の流速に比例した信号を得るようにしている。
この検出信号は変換器1の入力端子7−7に入力
される。変換器1は前置増幅器8と、スパン設定
回路9と、割算回路10と、出力回路11と、ゼ
ロ点調整回路13と、スパン検定用模擬信号源1
4等により構成することができる。即ち前置増幅
器8では入力端子7−7に発信器2から与えられ
た検出信号を受信増幅器8a,8bによつて高入
力インピーダンスで受け、偏差増幅器8cにて同
相ノイズ等を除去し、これより低インピーダンス
で出力するようにし、同相ノイズの除去といわゆ
るインピーダンス変換機能を有し、利得はほゞ1
近くに設定される場合が多い。スパン設定回路9
では入力信号対出力電流の関係が所定の関係とな
るように増幅器の利得を調整できるように構成さ
れている。割算回路10では流量検出信号を励磁
コイル5a,5bを流れる励磁電流に比例した信
号で割算し、商用電源6の電源電圧変動に基ずく
流量検出信号の変動分を除去するようにしてい
る。割算回路10の出力は出力回路11に供給さ
れ、この出力回路11にて所定のスパンを持つ電
流信号に変換され、出力端子12からその電流信
号が送出される。この電流信号は一般に4〜20m
Aのスパンを有するものが普通であり、流量検出
信号がゼロのとき出力電流が4mAに対応し、発
信器2で定まる最大流速(流量)のとき出力電流
が20mAとなるようにスパン設定回路9の利得が
設定される。
When the gain of an electromagnetic flowmeter transmitter fluctuates, errors in flow measurement occur. Therefore, it is necessary to periodically check the gain of the converter to determine whether the input-to-output relationship maintains the specified relationship. This test is generally called a span test. FIG. 1 shows an example of a conventional electromagnetic flowmeter converter with a span verification function. In the figure, 1 indicates an electromagnetic flowmeter converter, and 2 indicates an electromagnetic flowmeter transmitter that inputs a flow rate detection signal to the converter 1. As is well known, in the electromagnetic flowmeter transmitter 2, a pair of electrodes 4a and 4b are attached to a pipe 3 constituting a flow path in a direction perpendicular to the flow of fluid, and a pair of electrodes 4a and 4b are attached in a direction perpendicular to a line connecting the electrodes 4a and 4b. Excitation coils 5a and 5b are attached to
These exciting coils 5a, 5b are connected to a commercial power source 6, for example.
By exciting the electrodes 4a and 4b, a signal proportional to the flow velocity of the fluid is obtained from the electrodes 4a and 4b.
This detection signal is input to the input terminal 7-7 of the converter 1. The converter 1 includes a preamplifier 8, a span setting circuit 9, a divider circuit 10, an output circuit 11, a zero point adjustment circuit 13, and a simulated signal source 1 for span verification.
4 or the like. That is, in the preamplifier 8, the detection signal given from the transmitter 2 to the input terminal 7-7 is received by receiving amplifiers 8a and 8b at high input impedance, and common mode noise etc. are removed by the deviation amplifier 8c. It outputs at low impedance, has common mode noise removal and impedance conversion function, and has a gain of approximately 1.
Often located nearby. Span setting circuit 9
The amplifier is configured so that the gain of the amplifier can be adjusted so that the relationship between the input signal and the output current is a predetermined relationship. The divider circuit 10 divides the flow rate detection signal by a signal proportional to the excitation current flowing through the excitation coils 5a and 5b, thereby removing fluctuations in the flow rate detection signal based on fluctuations in the power supply voltage of the commercial power supply 6. . The output of the divider circuit 10 is supplied to an output circuit 11, where it is converted into a current signal having a predetermined span, and the current signal is sent out from an output terminal 12. This current signal is generally 4~20m
The span setting circuit 9 is set so that when the flow rate detection signal is zero, the output current corresponds to 4 mA, and when the maximum flow rate (flow rate) determined by the transmitter 2 is reached, the output current is 20 mA. The gain is set.

ところで発信器2の部分を流れる流体の流速が
ゼロのときでも一般に電極4a,4bには疑似出
力が発生する。この疑似出力によつて発信器2の
出力がゼロ点浮動する。よつてこのゼロ点浮動を
打消して流量がゼロのとき出力電流が4mAとな
るようにするためにゼロ点調整回路13が設けら
れ、このゼロ点調整回路13から流量がゼロのと
き発信器2が発生するゼロ点浮動電圧と同じ大き
さの補償電圧を発生させ、このゼロ点補償電圧を
前置増幅器8に供給してゼロ点浮動電圧を打消す
ようにしている。
Incidentally, even when the flow velocity of the fluid flowing through the transmitter 2 is zero, a pseudo output is generally generated at the electrodes 4a and 4b. This pseudo output causes the output of the oscillator 2 to float at zero point. Therefore, in order to cancel this zero point floating and make the output current 4 mA when the flow rate is zero, a zero point adjustment circuit 13 is provided, and from this zero point adjustment circuit 13, when the flow rate is zero, the transmitter 2 A compensation voltage having the same magnitude as the zero-point floating voltage generated by the zero-point floating voltage is generated, and this zero-point compensation voltage is supplied to the preamplifier 8 to cancel the zero-point floating voltage.

スパン検定用模擬信号源14は抵抗器R1,R2
の分圧回路にて構成され、この分圧回路にて励磁
電流に比例した信号を分割してスパン検定用模擬
信号を発生させ、そのスパン検定用模擬信号をス
パン検定切換回路15に与え、スパン検定時に検
定用模擬信号を前置増幅器8に供給するようにし
ている。
The simulated signal source 14 for span verification is resistors R 1 and R 2
This voltage dividing circuit divides a signal proportional to the excitation current to generate a span verification simulation signal, and the span verification simulation signal is applied to the span verification switching circuit 15, which converts the span A test simulation signal is supplied to the preamplifier 8 during the test.

スパン検定切換回路15は入力端子7−7と前
置増幅器8との間に挿入されたスイツチ15a,
15bによつて構成され、流量測定時は入力端子
7−7が前置増幅器8を構成する受信増幅器8
a,8bの入力端子に接続されている。これに対
しスパン検定時は一方の受信増幅器8aの入力端
子を共通電位点に接続し、他方の受信増幅器8b
の入力端子にスパン検定用模擬信号源4から出力
されるスパン検定用模擬信号を与える。よつてこ
の状態で出力端子12から出力される電流値が所
定の値例えば20mAとなるようにスパン設定回路
9の利得を調整するものである。
The span verification switching circuit 15 includes a switch 15a inserted between the input terminal 7-7 and the preamplifier 8.
15b, and the input terminal 7-7 constitutes the preamplifier 8 during flow rate measurement.
It is connected to the input terminals a and 8b. On the other hand, during span verification, the input terminal of one receiving amplifier 8a is connected to the common potential point, and the input terminal of the other receiving amplifier 8b is connected to the common potential point.
A simulated signal for span verification outputted from the simulated signal source 4 for span verification is applied to the input terminal of. Therefore, the gain of the span setting circuit 9 is adjusted so that the current value outputted from the output terminal 12 in this state becomes a predetermined value, for example, 20 mA.

ところで従来のスパン検定切換回路15では検
定時は発信器2の接続を解除し、発信器2の出力
信号に代えてスパン検定模擬信号を前置増幅器8
に与えるようにしている。このためスパン検定時
は発信器2から流量がゼロのときのゼロ点浮動電
圧が入力されなくなるのでゼロ調整回路13のゼ
ロ点補償電圧をゼロに設定しなおさなければなら
ない。よつて検定終了時には再び疑似信号と同一
の大きさのゼロ点補償電圧が得られるようにゼロ
点調整を行なわなくてはならない。このゼロ点調
整を行なうには流量計発信器2を流れる流体の流
れを停止させ、流量をゼロの状態にしなければな
らない。実動中に流路の流れを停止させることは
難しい。実際には流量計発信器の部分に側路を設
けておき、ゼロ点調整を行なう場合は流体を側路
に流し流量計発信器2を流れる流量をゼロにする
ようにしている。このため設備費が大きく掛る欠
点がある。更に切換回路15が入力端子7−7と
前置増幅器8の間に挿入されていることにより、
この部分はインピーダンスが非常に高い部分であ
るため切換回路15を構成するスイツチ15a,
15bは絶縁抵抗が高く、その絶縁抵抗が安定し
ているスイツチを用いなければならない。このよ
うに絶縁抵抗が高いスイツチは高価であり、コス
ト高となる欠点がある。また絶縁抵抗が変動する
と、測定誤差となつて現われる欠点もある。
By the way, in the conventional span verification switching circuit 15, the connection of the transmitter 2 is canceled during verification, and the span verification simulation signal is sent to the preamplifier 8 instead of the output signal of the transmitter 2.
I try to give it to Therefore, during span verification, the zero point floating voltage when the flow rate is zero is no longer input from the transmitter 2, so the zero point compensation voltage of the zero adjustment circuit 13 must be reset to zero. Therefore, at the end of the verification, it is necessary to perform zero point adjustment again so that a zero point compensation voltage having the same magnitude as the pseudo signal is obtained. In order to perform this zero point adjustment, it is necessary to stop the flow of fluid flowing through the flowmeter transmitter 2 and bring the flow rate to zero. It is difficult to stop the flow in the channel during actual operation. In reality, a side passage is provided in the flow meter transmitter section, and when performing zero point adjustment, fluid is passed through the side passage and the flow rate flowing through the flow meter transmitter 2 is brought to zero. For this reason, there is a drawback that equipment costs are high. Furthermore, by inserting the switching circuit 15 between the input terminal 7-7 and the preamplifier 8,
Since this part has a very high impedance, the switch 15a, which constitutes the switching circuit 15,
15b has high insulation resistance, and a switch with stable insulation resistance must be used. Switches with such high insulation resistance are expensive and have the disadvantage of increasing costs. Another disadvantage is that fluctuations in insulation resistance result in measurement errors.

この考案の目的はスパン検定時にゼロ調整回路
のゼロ点補償電圧をゼロに設定しなおす必要がな
い、従つてゼロ点調整を再度行なう必要がない電
磁流量変換器を提供するにある。
The purpose of this invention is to provide an electromagnetic flow rate converter that does not require resetting the zero point compensation voltage of the zero adjustment circuit to zero during span verification, and therefore does not require re-adjusting the zero point.

この考案ではゼロ点補償電圧の供給点の後段側
にスパン設定回路を設け、このゼロ点補償電圧の
供給点とスパン設定回路との間にスパン検定用模
擬信号を入力するための検定切換回路を設けたも
のである。このように構成することにより検定切
換回路を検定状態に切換え、この切換回路を通じ
てスパン検定用模擬信号をスパン設定回路に供給
しても、ゼロ点補償電圧の供給点がその前段にあ
るためゼロ点補償電圧とは無関係にスパン検定を
行なうことができるから、ゼロ点調整回路の補償
電圧をゼロに設定しなおす必要がなく、よつてス
パン検定後はスパン検定切換回路を元の状態に戻
すことにより直ちに測定状態とすることができ
る。以下にこの考案の一実施例を図面を用いて詳
細に説明する。
In this invention, a span setting circuit is provided after the zero point compensation voltage supply point, and a verification switching circuit is provided between the zero point compensation voltage supply point and the span setting circuit to input a simulated signal for span verification. It was established. With this configuration, even if the verification switching circuit is switched to the verification state and a simulated signal for span verification is supplied to the span setting circuit through this switching circuit, the zero point compensation voltage supply point is in the previous stage, so the zero point Since span verification can be performed independently of the compensation voltage, there is no need to reset the compensation voltage of the zero point adjustment circuit to zero, and therefore, after span verification, the span verification switching circuit can be returned to its original state. It can be put into the measurement state immediately. An embodiment of this invention will be described below in detail with reference to the drawings.

第2図はこの考案の一実施例を示す。第2図に
おいて第1図と対応する部分には同一符号を附し
その重複説明は省略するが、この考案においては
電磁流量計発信器のゼロ点浮動信号を打消すため
のゼロ調信号供給点と及びこれより後段に設けた
スパン設定回路との間に流量測定信号に代えてス
パン検定用模擬信号をスパン設定回路に入力させ
るスパン検定切換回路を設けるものである。つま
りこの例では前置増幅器8を構成する偏差増幅器
8cの一方の入力端子にゼロ点調整回路13から
補償電圧を供給し、この供給点において流量計発
信器2におけるゼロ点浮動信号を打消すようにし
た場合を示す。尚このゼロ点補償電圧の供給点は
第1図のように受信増幅器8a又は8bの何れか
一方の入力側に供給するようにしてもよい。前置
増幅器8の出力をスパン検定切換回路15を通じ
てスパン設定回路9に供給する。スパン検定切換
回路15は、この例では一つのスイツチ15aに
よつて構成した場合を示し、流量測定状態では前
置増幅器8の出力をスパン設定回路9に与えるよ
うにスイツチ15aが接続構成され、スパン検定
時は流量測定信号に代えてスパン検定用模擬信号
源14から出力される模擬信号をスパン設定回路
9に供給するようにスイツチ15aが接続構成さ
れる。
FIG. 2 shows an embodiment of this invention. In Figure 2, parts corresponding to those in Figure 1 are given the same reference numerals and redundant explanation will be omitted. A span verification switching circuit for inputting a span verification simulation signal to the span setting circuit in place of the flow rate measurement signal is provided between this and a span setting circuit provided at a subsequent stage. In other words, in this example, a compensation voltage is supplied from the zero point adjustment circuit 13 to one input terminal of the deviation amplifier 8c constituting the preamplifier 8, and the zero point floating signal in the flowmeter transmitter 2 is canceled at this supply point. This shows the case when Incidentally, the supply point of this zero point compensation voltage may be supplied to either the input side of the receiving amplifier 8a or 8b as shown in FIG. The output of the preamplifier 8 is supplied to the span setting circuit 9 through the span verification switching circuit 15. In this example, the span verification switching circuit 15 is configured with one switch 15a. In the flow rate measurement state, the switch 15a is connected so as to give the output of the preamplifier 8 to the span setting circuit 9. At the time of verification, the switch 15a is connected so as to supply the span setting circuit 9 with a simulated signal output from the span verification simulated signal source 14 instead of the flow rate measurement signal.

このようにゼロ点補償電圧の供給点より後段に
スパン検定切換回路15を設けたことによりスパ
ン検定時はゼロ点補償電圧に関係なくスパン検定
を行なうことができる。換言すれば前置増幅器8
は利得が充分低く設定され、その低い利得に固定
されているから経時変化により利得が変動するこ
とはない。よつて前置増幅器8を含めてスパン検
定を行なわなくとも正確なスパン検定を行なうこ
とができる。従つて前置増幅器8においてゼロ点
補償電圧を与え、発信器2のゼロ点浮動を打消す
ようにし、その後段側でスパン検定のための切換
を行なうからスパン検定時にゼロ点補償電圧を変
更しなくてもスパン検定を行なうことができる。
よつて流量計発信器2で発生するゼロ点浮動電圧
に対応した補償電圧はゼロ点調整回路13に記憶
しておくことができるから、スパン検定後に切換
回路15のスイツチ15aを元の状態に戻せば直
ちに元の流量測定状態に戻すことができ、よつて
従来のように流体の流れを停止させ、ゼロ点調整
を再度行なう必要はなく、スパン検定後の再起動
が容易にできる利点がある。更に切換回路15を
前置増幅器8の出力側に挿入したので、この部分
ではインピーダンスが充分低いからスイツチ15
aは絶縁抵抗が特別高抵抗値を呈するような高価
なものを使う必要がなく、よつてコストの低下も
期待できる。
In this way, by providing the span verification switching circuit 15 at the stage subsequent to the supply point of the zero point compensation voltage, the span verification can be performed regardless of the zero point compensation voltage. In other words, preamplifier 8
Since the gain is set to a sufficiently low value and is fixed at that low gain, the gain will not fluctuate over time. Therefore, accurate span verification can be performed without including the preamplifier 8 in the span verification. Therefore, a zero point compensation voltage is applied in the preamplifier 8 to cancel out the zero point floating of the oscillator 2, and since switching for span verification is performed at the subsequent stage, the zero point compensation voltage must be changed during span verification. You can perform a span test without it.
Therefore, the compensation voltage corresponding to the zero point floating voltage generated by the flowmeter transmitter 2 can be stored in the zero point adjustment circuit 13, so that the switch 15a of the switching circuit 15 can be returned to its original state after span verification. It is possible to immediately return to the original flow rate measurement state, so there is no need to stop the fluid flow and perform zero point adjustment again as in the conventional method, and there is an advantage that restarting after span verification can be easily performed. Furthermore, since the switching circuit 15 is inserted on the output side of the preamplifier 8, the impedance is sufficiently low in this part, so the switch 15 is
There is no need to use an expensive material whose insulation resistance is particularly high for a, and a reduction in cost can therefore be expected.

第3図はこの考案の他の実施例を示す。この例
では前置増幅器8の出力とスパン設定回路9との
間を2本の直列抵抗器R3,R4を介して接続し、
これら直列抵抗器R3とR4の接続中点をスパン切
換回路15を構成するスイツチ15aによつてス
パン検定時に共通電位点に接続するようにし、そ
のときスイツチ15bを通じてスパン検定用模擬
信号をスパン設定回路9に供給するように構成し
た場合を示す。このようにスパン切換回路15を
構成することにより流量測定信号の伝送路にスイ
ツチが直列に挿入されることを回避することがで
きる。よつてスイツチの接触抵抗が経時変化して
もスパンが変わることもなく安定に動作させるこ
とができ信頼性を向上できる。
FIG. 3 shows another embodiment of this invention. In this example, the output of the preamplifier 8 and the span setting circuit 9 are connected via two series resistors R 3 and R 4 ,
The midpoint of the connection between these series resistors R3 and R4 is connected to a common potential point during span verification by a switch 15a constituting the span switching circuit 15, and at this time, a simulated signal for span verification is connected to the span verification signal through the switch 15b. A case is shown in which the signal is configured to be supplied to the setting circuit 9. By configuring the span switching circuit 15 in this manner, it is possible to avoid inserting a switch in series in the transmission path of the flow measurement signal. Therefore, even if the contact resistance of the switch changes over time, the span does not change, allowing stable operation and improving reliability.

第4図はこの考案の更に他の実施例を示す。こ
の例ではスパン検定用模擬信号入力端子16を設
け、この入力端子16を通じてスパン検定時に外
部から例えばスパンチエツカ(特に図示しない)
より模擬信号を与えるように構成した場合を示
す。結局この考案ではスパン検定用模擬信号源1
4は変換器1内に内蔵することを要件とするもの
でないことは容易に理解できよう。
FIG. 4 shows yet another embodiment of this invention. In this example, a simulated signal input terminal 16 for span verification is provided, and through this input terminal 16, for example, a span checker (not particularly shown) is input from the outside during span verification.
This shows a case where the configuration is configured to give a more simulated signal. In the end, in this design, the simulated signal source 1 for span verification
It is easy to understand that 4 is not required to be built into the converter 1.

またスパン検定用模擬信号源14を変換器1に
内蔵した上に外部入力端子16を設け、必要に応
じて外部からもスパン検定用模擬信号を供給でき
るように構成することもできる。
Further, it is also possible to incorporate the span test simulation signal source 14 into the converter 1 and provide an external input terminal 16 so that the span test simulation signal can be supplied from the outside as required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスパン検定機能を持つ電磁流量
計変換器を説明するための接続図、第2図はこの
考案の一実施例を示す接続図、第3図及び第4図
はこの考案の他の実施例を示す接続図である。 1:電磁流量計変換器、2:電磁流量計発信
器、8:前置増幅器、9:スパン設定回路、1
3:ゼロ点調整回路、15:スパン検定切換回
路。
Figure 1 is a connection diagram for explaining a conventional electromagnetic flowmeter converter with a span verification function, Figure 2 is a connection diagram showing an embodiment of this invention, and Figures 3 and 4 are of this invention. FIG. 7 is a connection diagram showing another embodiment. 1: Electromagnetic flowmeter converter, 2: Electromagnetic flowmeter transmitter, 8: Preamplifier, 9: Span setting circuit, 1
3: Zero point adjustment circuit, 15: Span verification switching circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電磁流量計発信器からの電圧を一定倍に増幅す
る前置増幅器と、スパンを検定するための模擬信
号を発生する模擬信号源と、ゼロ点を補償するゼ
ロ点補償電圧を発生するゼロ点調整回路と、スパ
ンを設定するスパン設定回路と、前記前置増幅器
の出力と前記模擬信号源からの模擬信号とを切換
えて前記スパン設定回路に印加するスパン検定切
換回路とを具備し、前記ゼロ点補償電圧を前記前
置増幅器に印加して前記電磁流量計発信器からの
ゼロ点浮動電圧を消去しスパン検定時には前記ス
パン検定切換回路を前記模擬信号源側に切換えて
スパン検定をすることを特徴とする電磁流量計変
換器。
A preamplifier that amplifies the voltage from the electromagnetic flowmeter oscillator by a certain factor, a simulated signal source that generates a simulated signal for verifying the span, and a zero point adjustment that generates a zero point compensation voltage to compensate for the zero point. a span setting circuit for setting a span, and a span verification switching circuit for switching between the output of the preamplifier and a simulated signal from the simulated signal source and applying the same to the span setting circuit, A compensation voltage is applied to the preamplifier to erase the zero point floating voltage from the electromagnetic flowmeter oscillator, and at the time of span verification, the span verification switching circuit is switched to the simulated signal source side to perform span verification. Electromagnetic flow meter converter.
JP1067979U 1979-01-29 1979-01-29 Expired JPH0142008Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1067979U JPH0142008Y2 (en) 1979-01-29 1979-01-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1067979U JPH0142008Y2 (en) 1979-01-29 1979-01-29

Publications (2)

Publication Number Publication Date
JPS55109819U JPS55109819U (en) 1980-08-01
JPH0142008Y2 true JPH0142008Y2 (en) 1989-12-11

Family

ID=33045324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1067979U Expired JPH0142008Y2 (en) 1979-01-29 1979-01-29

Country Status (1)

Country Link
JP (1) JPH0142008Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639308Y2 (en) * 1988-07-13 1994-10-12 山武ハネウエル株式会社 Electromagnetic flow meter pseudo input device
DE3829063C3 (en) * 1988-08-26 1998-01-29 Danfoss As Method for drift detection of a transducer in magnetic-inductive flow measurement and magnetic-inductive flow meter

Also Published As

Publication number Publication date
JPS55109819U (en) 1980-08-01

Similar Documents

Publication Publication Date Title
US6003385A (en) Ultrasound apparatus for measuring the flow speed of a fluid
US6644127B1 (en) Electromagnetic flowmeter arrangement
US9207212B2 (en) Method for operating a resonant measurement system
JP2003315121A (en) Electromagnetic flowmeter
JPH0477853B2 (en)
JPH0142008Y2 (en)
EP0690565A1 (en) Common mode error correction for differential amplifiers
US4520650A (en) Field-portable calibration unit for electromagnetic flow meters
US7368920B2 (en) Potential fixing device and potential fixing method
US5499543A (en) Device for measuring the flow of fluid through a measuring pipe
US4068166A (en) Method and apparatus for measuring percent error of an impedance
EP0102623A1 (en) A current sensing circuit for motor controls
CN101203733A (en) Coriolis flow meter and method for flow measurement
JPH0535362B2 (en)
JPS6261892B2 (en)
DK168722B1 (en) Differential amplifier coupling
JPS5810610A (en) Electromagnetic flowmeter
JPH08146050A (en) Measuring instrument using differential amplifier
US4287773A (en) Bidirectional magnetic flowmeter
JP2001188074A (en) Impedance measuring method and device
JPH0450500Y2 (en)
JPH0125294Y2 (en)
JPS606734Y2 (en) Check device for electromagnetic flowmeter
JPH08320346A (en) Coulombmeter
JPS6018702A (en) Displacement measuring device