JPS6018702A - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JPS6018702A
JPS6018702A JP12728783A JP12728783A JPS6018702A JP S6018702 A JPS6018702 A JP S6018702A JP 12728783 A JP12728783 A JP 12728783A JP 12728783 A JP12728783 A JP 12728783A JP S6018702 A JPS6018702 A JP S6018702A
Authority
JP
Japan
Prior art keywords
output
displacement
circuit
core
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12728783A
Other languages
Japanese (ja)
Other versions
JPH0321048B2 (en
Inventor
Masahiro Tarui
樽井 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP12728783A priority Critical patent/JPS6018702A/en
Publication of JPS6018702A publication Critical patent/JPS6018702A/en
Publication of JPH0321048B2 publication Critical patent/JPH0321048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To make it possible to correct the measurement error due to non- linearity by simple operation without decreasing the measuring efficiency, by performing the specified operation by using the output value of a differential transformer under the specified conditions thereof. CONSTITUTION:When the displacement of a core 12a of a differential transformer 12 before measurement is approximately at timing t1 of zoro, a switch 14 is connected to the side (a). The output value EM1 of an A/D converter 18 at this time is memorized. When the displacement of the core 12a becomes the maximum value at the time of measurement, the switch 14 is connected to the side (b) and the output value EM2 of the converter 18 is memorized. At timing t3 immediately after that measurement, the switch is connected to the side (a), and the output EM3 of the converter 18 is memorized. An operating circuit 23 operates (EM1/EM2)XEM3 based on first to third memory circuits 19-21 and makes a display circuit 24 to display the results. Therefore, the value becomes approximately equal to the true value EMD, and the measurement error due to non-linearity can be corrected by the simple operation.

Description

【発明の詳細な説明】 本発明は差動トランスを用いた変位測定装置に関する。[Detailed description of the invention] The present invention relates to a displacement measuring device using a differential transformer.

測長機や重量測定機などのように差動トランスを用いた
装置では、測定すべき長さや重量などに比例させて差動
トランスのコアを直線方向に変位させ、この変位量を電
気信号に変換して長さや重さなどを測定している。即ち
、第1図に示すように差動トランス1のコア1aをX方
向に変位させると、1次コイル1bに対向する二つの2
次コイル1C11dの出力電圧e1、e2は第2図のよ
うにコア1aの変位に比例して変化する。従って両者の
差電圧θ1−e2がコア1aの変位に比例して変化する
ので2次コイル1(!、1(1の出力信号から差電圧信
号を取り出してコア1aの変位量を測定している。
In devices that use a differential transformer, such as length measuring machines and weight measuring machines, the core of the differential transformer is displaced in a linear direction in proportion to the length or weight to be measured, and this amount of displacement is converted into an electrical signal. It is converted to measure length, weight, etc. That is, when the core 1a of the differential transformer 1 is displaced in the X direction as shown in FIG.
The output voltages e1 and e2 of the secondary coil 1C11d change in proportion to the displacement of the core 1a, as shown in FIG. Therefore, the differential voltage θ1-e2 between the two changes in proportion to the displacement of the core 1a, so the displacement amount of the core 1a is measured by extracting the differential voltage signal from the output signal of the secondary coil 1(!, 1(1). .

しかして、出力電圧θ1、e2は第2図に示すようにコ
ア1aがある範囲内の変位に対してはほぼ直線的に変化
するが、ある範囲以上では、相互インダクタンスの変化
のために曲線を描いて変化する。このため、ある範囲を
超えると測定精度が急激に劣化する結果となり、この対
策が問題となっていた。
As shown in Fig. 2, the output voltages θ1 and e2 change almost linearly with respect to the displacement of the core 1a within a certain range, but beyond a certain range, the output voltages θ1 and e2 change curves due to changes in mutual inductance. Draw and change. For this reason, measurement accuracy deteriorates rapidly beyond a certain range, and countermeasures against this result have been problematic.

この対策の一つとして従来では、基準長の物体あるいは
基準重量の物体を測定ごとに、あるいは間欠的に測定し
、その実測値に基いて補正演算をしていた。しかし、こ
の方法では基準量の測定のだめに時間を割くので測定の
能率が落ち、また基準物体を供給するだめの特別の構造
を必要とするなどの欠点があった。
As one measure against this problem, in the past, an object of a reference length or a reference weight was measured every measurement or intermittently, and correction calculations were performed based on the actual measurement values. However, this method has disadvantages in that it takes time to measure the reference quantity, reducing measurement efficiency, and requires a special structure for supplying the reference object.

また他の対策として、実測によって非直線的な変化をデ
ータとして記憶させておき、このデータに基いて測定値
から補正演算する方法も行なわれているが、この方法で
は温度変化や経時変化による感度ドリフトの補正ができ
ないことや、差動トランスを交換すると再度補正データ
をとる必要があり、演算が極めて複雑となるなどの欠点
があった。
Another countermeasure is to store non-linear changes from actual measurements as data, and then perform correction calculations from the measured values based on this data. There were disadvantages such as the inability to correct drift and the need to obtain correction data again when the differential transformer was replaced, making calculations extremely complicated.

本発明は上記の欠点を改良し、測定能率を落とすことな
く、簡単な演算で非直線性による測定誤差を補正できる
ようにした変位測定装置を提供することを目的としてい
る。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and provide a displacement measuring device that can correct measurement errors due to nonlinearity by simple calculations without reducing measurement efficiency.

以下、図面に基いて本発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第3図は本発明の変化測定装置の一実施例を示すブロッ
ク図である。
FIG. 3 is a block diagram showing an embodiment of the change measuring device of the present invention.

同図において、11は所定周波数の発振信号を出力する
発振回路、12は測定すべき直線方向の変位に比例して
コア12aが変位する差動トランスであって、発振回路
11の発振信号によって1次コイル12bが励磁され、
逆極性に接続された2つの2次コイ/L’12C,12
dからコア12aの変位に対応した出力電圧θ1、e2
 をそれぞれ出力する。13は差動トランス12の2次
コイル1?、12(lの出力電圧e1、θ2の差電圧e
1−02 を2次コイル13bに取り出す入カドランス
であって、入カドランス13の1次コイル13aの中間
タップからはelと82の平均電圧(e1+82)口が
取り出される。14は切換スイッチで、入カドランス1
3の2次コイル131)からの出力端子(イ)と1次コ
イル13aの中間タップからの出力端子(ロ)とを切換
えるものである。15は切換スイッチ14を介して端子
(イ)又は(ロ)からの出力信号を増幅する交流増幅器
、16は交流増幅器15の出力信号を検波して直流信号
にする検波器、17は検波器16の出力信号を増幅する
直流増幅器、18は直流増幅器17の出力信号をディジ
タル信号に変換するA / D変換器である。
In the figure, 11 is an oscillation circuit that outputs an oscillation signal of a predetermined frequency, and 12 is a differential transformer whose core 12a is displaced in proportion to the linear displacement to be measured. The next coil 12b is excited,
Two secondary coils connected with opposite polarity/L'12C, 12
Output voltages θ1, e2 corresponding to the displacement of the core 12a from d
Output each. 13 is the secondary coil 1 of the differential transformer 12? , 12(l output voltage e1, difference voltage e of θ2
1-02 to the secondary coil 13b, and an average voltage of el and 82 (e1+82) is taken out from the intermediate tap of the primary coil 13a of the input quadrangle 13. 14 is a changeover switch, input quadrature transformer 1
The output terminal (A) from the secondary coil 131) of No. 3 and the output terminal (B) from the intermediate tap of the primary coil 13a are switched. 15 is an AC amplifier that amplifies the output signal from the terminal (a) or (b) via the changeover switch 14; 16 is a detector that detects the output signal of the AC amplifier 15 and converts it into a DC signal; 17 is a detector 16 18 is an A/D converter that converts the output signal of the DC amplifier 17 into a digital signal.

19は測定前に、即ち差動トランス12のコア12aの
変位がほぼ零のときに、切換スイッチ14を(ロ)側に
接続した場合のA / D変換器18の出力値EM1を
記憶する第1の記憶回路、20は測定時に、即ち差動ト
ランス12のコア12aの変位がほぼ最大になったとき
に、切換スイッチ14を(ロ)側に接続した場合のA 
/ D変換器18の出力値EM2を記憶する第2の記憶
回路、21は測定時に、即ち差動トランス12のコア1
2aの変位がほぼ最大になったときに、切換スイッチ1
4を(イ)側に接続した場合のA / D変換器18の
出力値EM3を記憶する第3の記憶回路である。22は
前記各タイミングでの切換スイッチ14の切換え信号及
び第1、第2、第3の記憶回路19.20.21への書
込み信号、及び書込み終了後の第1、第2、第3の記憶
回路19.20.21への読出し信号を出力するタイミ
ング回路である。例えば電縫測定の場合、第4図に示す
ように、秤に被計量物を移送すると、コア121Lの変
位Xはほぼ零から次第に増加し、最大値で安定し、秤か
ら被計量物が去ると、はぼ零に戻る。第4図に示すよう
に秤に被計量物をのせる前にタイミングt1において第
1の記憶回路19はEMlを記憶し、秤に被計量物をの
せて変位Xがほぼ最大になつたときに僅かな間隔をおい
たタイミングt2、t3 においてそれぞれ第2、第3
の記憶回路20.21は8M2.8M3を記憶する。
19 stores the output value EM1 of the A/D converter 18 when the changeover switch 14 is connected to the (b) side before measurement, that is, when the displacement of the core 12a of the differential transformer 12 is approximately zero. Memory circuit 1, 20 is A when the changeover switch 14 is connected to the (b) side at the time of measurement, that is, when the displacement of the core 12a of the differential transformer 12 is almost at its maximum.
/ A second storage circuit 21 stores the output value EM2 of the D converter 18, that is, the core 1 of the differential transformer 12 at the time of measurement.
When the displacement of 2a reaches almost the maximum, selector switch 1
This is a third storage circuit that stores the output value EM3 of the A/D converter 18 when A/D converter 4 is connected to the (A) side. 22 is a switching signal of the changeover switch 14 at each timing, a write signal to the first, second, and third memory circuits 19, 20, and 21, and a signal for the first, second, and third memory after the writing is completed. This is a timing circuit that outputs a read signal to circuits 19, 20, and 21. For example, in the case of electric resistance welding measurement, as shown in Figure 4, when the object to be weighed is transferred to the scale, the displacement Then, he returned to Zero. As shown in FIG. 4, the first memory circuit 19 stores EM1 at timing t1 before placing the object on the scale, and when the displacement X reaches almost the maximum after placing the object on the scale. At timings t2 and t3 with a slight interval, the second and third
The storage circuit 20.21 stores 8M2.8M3.

23は第1、第2、第3の記憶回路19.20.21の
各記憶値を受領して、(”/ 8M2 ) X BM3
を演算し、この演算結果を変位信号として出力する演算
回路、24はこの変位信号を表示する表示回路である。
23 receives each memory value of the first, second, and third memory circuits 19, 20, and 21, and executes (''/8M2) x BM3
24 is a display circuit that displays this displacement signal.

次に上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

差動トランス12の1次コイル121)は発振回路11
からの発振信号によって励磁され、2次コイル12C1
12dの出力電圧e1、θ2はコア12aの変位に対応
して変化する。入カドランス13の2次コイル13bに
は出力電圧θ1−02が生じ、1次コイル13aの中間
タップには(e、+ 1132 ) /2 が生じる。
The primary coil 121) of the differential transformer 12 is the oscillation circuit 11
The secondary coil 12C1 is excited by the oscillation signal from the
The output voltages e1 and θ2 of the core 12d change in accordance with the displacement of the core 12a. An output voltage θ1-02 is generated at the secondary coil 13b of the input quadrature transformer 13, and (e, +1132)/2 is generated at the intermediate tap of the primary coil 13a.

第2図に示すように、コア12aの変位に従っである範
囲内で2次コイル12’l’、12aの出力電圧θ1、
θ2はほぼ直線的に変化するから、差電圧e1−02も
同様にほぼ直線的に変化する。一方、平均電圧(θ1+
02v2は同一の範囲内でコア12aの変位に無関係に
ほぼ一定になる。第4図に示すように、コア12aの変
位Xは測定前は零で、測定時に零から次第に増加して最
大値で安定し、測定終了時に急激に零に戻る。従って、
差電圧θ1−82及び平均電圧(e1+02)/2は測
定時にコア12aの移動に伴って第2図に示す特性で出
力される。
As shown in FIG. 2, the output voltage θ1 of the secondary coils 12'l' and 12a changes within a certain range according to the displacement of the core 12a.
Since θ2 changes approximately linearly, the differential voltage e1-02 also changes approximately linearly. On the other hand, the average voltage (θ1+
02v2 becomes approximately constant within the same range regardless of the displacement of the core 12a. As shown in FIG. 4, the displacement X of the core 12a is zero before the measurement, gradually increases from zero during the measurement, stabilizes at the maximum value, and rapidly returns to zero at the end of the measurement. Therefore,
The differential voltage θ1-82 and the average voltage (e1+02)/2 are output with the characteristics shown in FIG. 2 as the core 12a moves during measurement.

切換スイッチ14−の切換えによって、上記の差電圧8
1−82を表わす端子(イ)からの出力信号及び平均電
圧(e、十02)/2を表わす端子(ロ)からの出力信
号は、いずれも同一の回路15〜18を経由する。即ち
、増幅器15で増幅され、検波器16で検波されて直流
信号にされ、直流増幅器17で増幅され、A / D変
換器18でディジタル信号に変換される。そして、測定
前のコア12aの変位がほぼ零のタイミングt1におい
て、第1の記憶回路10には平均電圧(e1+82)/
2即ち、(イ)側に切換スイッチ14を接続した場合の
A / D変換器18の出力値EM1が記憶される。
By switching the changeover switch 14-, the above-mentioned differential voltage 8
The output signal from the terminal (a) representing 1-82 and the output signal from the terminal (b) representing the average voltage (e, 102)/2 both pass through the same circuits 15-18. That is, the signal is amplified by an amplifier 15, detected by a wave detector 16 and converted into a DC signal, amplified by a DC amplifier 17, and converted into a digital signal by an A/D converter 18. Then, at timing t1 when the displacement of the core 12a before measurement is almost zero, the first memory circuit 10 has an average voltage (e1+82)/
2, that is, the output value EM1 of the A/D converter 18 when the changeover switch 14 is connected to the (A) side is stored.

そして、測定時にコア12aの変位がほぼ最大値となっ
たときのタイミングt2において、第2の記憶回路20
には平均電圧(e1+02)/2即ち(ロ)側に切換ス
イッチ14を接続した場合のA / D変換器18の出
力値EM2が記憶される。そして、その直後のt3にお
いて、切換スイッチ14が(イ)側に切換えられて、差
電圧e 1e 2側即ち、(イ)側に接続された場合の
A/D変換器18の出力値EM3が記憶される。演算回
路23は各記憶回路19.20,21の出力値に基いて
(EMl /EM2 )x 8M3を演算して変位信号
として出力し、表示回路24で変位を出力する。
Then, at timing t2 when the displacement of the core 12a reaches almost the maximum value during measurement, the second storage circuit 20
The average voltage (e1+02)/2, ie, the output value EM2 of the A/D converter 18 when the changeover switch 14 is connected to the (b) side is stored. Then, at t3 immediately after that, the changeover switch 14 is switched to the (a) side, and the output value EM3 of the A/D converter 18 when connected to the differential voltage e 1e 2 side, that is, the (a) side, is be remembered. The arithmetic circuit 23 calculates (EMl/EM2)x8M3 based on the output values of the respective memory circuits 19, 20, 21 and outputs it as a displacement signal, and the display circuit 24 outputs the displacement.

コア12aの変位Xが1t/1を超えている場合には、
第2図に示すように第3の記憶回路21に記憶された実
測値EM3は直線的変化からはずれ、直線部分の延長線
上にある真の値EMDよりも低下している。一方、第2
の記憶回路20に記憶された値EM2も、直線部分から
はずれて低下し、第1の記憶回路19に記憶されている
変位量の場合の値EM1より低下している。従って% 
8M2をEMlまで引上げれば% 8M3も真の値EM
Dに近づくことになる。従って、EMIに比率EM1/
bM2を乗算した値は真の値EMDに近似することにな
るので、演算回路23からは非直線部分の測定誤差が補
正された値が出力されることになる。変位量Xの最大値
が1−/1の範囲内の場合にはEMi、7ヤ、がほぼ、
なので8M3がその捷1演算結果として出力される。
If the displacement X of the core 12a exceeds 1t/1,
As shown in FIG. 2, the measured value EM3 stored in the third storage circuit 21 deviates from the linear change and is lower than the true value EMD, which is on the extension of the straight line. On the other hand, the second
The value EM2 stored in the storage circuit 20 also deviates from the linear portion and decreases, and is lower than the value EM1 for the displacement amount stored in the first storage circuit 19. Therefore %
If 8M2 is raised to EMl, % 8M3 is also the true value EM
This will bring us closer to D. Therefore, EMI has a ratio EM1/
Since the value multiplied by bM2 approximates the true value EMD, the arithmetic circuit 23 outputs a value in which the measurement error in the non-linear portion has been corrected. When the maximum value of the displacement amount X is within the range of 1-/1, EMi, 7ya, is approximately
Therefore, 8M3 is output as the result of the 1 calculation.

なお第5図に示すように、θ1、θ2の直線性が著しく
悪い場合には、e、−e2も(e1+02)/2も同様
に直線性が悪くなる。このため、実測値EM3は真の値
EMDからはずれているが、8M2も同様にEMlから
はずれているので(8M1/F)、、2)を8M3に乗
算すれば真の値EMDに近づくことになる。従って、第
5図のような特性の場合にも測定誤差が補正された変位
信号が演算結果として得られることになる。
As shown in FIG. 5, when the linearity of θ1 and θ2 is extremely poor, the linearity of e, -e2 and (e1+02)/2 is similarly poor. Therefore, the measured value EM3 deviates from the true value EMD, but since 8M2 also deviates from EMl, multiplying 8M3 by (8M1/F), 2) approaches the true value EMD. Become. Therefore, even in the case of the characteristics shown in FIG. 5, a displacement signal with measurement errors corrected can be obtained as a calculation result.

なお第1の記憶回路10には、毎回の測定の度にEM1
’に記憶させる代りに、間欠的に記憶させてもよい。
Note that the first memory circuit 10 stores EM1 for each measurement.
'Instead of being stored in ', it may be stored intermittently.

また感度ドリフトの補正も行うことができる。It is also possible to correct sensitivity drift.

即ち、秤を校正する場合に、秤に何も乗せないときの第
1の記憶回路19にEMlを記憶し、校正用の分銅を秤
に乗せたときの(e□+ex)/2の値EM2を第2の
記憶回路20に記憶し、同時にe□−82の値EM3を
第3の記憶回路に記憶し、このとき(EMI /EM2
 ) ×EM3を計算し、この結果が校正値となるよう
に調整し、以後このときの第1の記憶回路19の値EM
1を保持記憶し、毎回の測定毎にこのEM、の値をもと
に毎回の記憶値EM2.8M3との演算(EM1/EM
2)×EM3を行うことにより、直線性の補正と同時に
感度変化の補正もできる。
That is, when calibrating a scale, EMl is stored in the first storage circuit 19 when nothing is placed on the scale, and the value EM2 of (e□+ex)/2 when a calibration weight is placed on the scale. is stored in the second storage circuit 20, and at the same time, the value EM3 of e□-82 is stored in the third storage circuit, and at this time (EMI /EM2
)×EM3, and adjust this result to become the calibration value, and thereafter use the value EM of the first storage circuit 19 at this time.
1 is retained and memorized, and the calculation (EM1/EM
2) By performing ×EM3, sensitivity change can be corrected at the same time as linearity correction.

以上説明したように本発明の変位測定装置では測定誤差
の補正のために特別に基準長あるいは基準重量の実測を
行なう必要がなく、簡単な演算によるだけでよいので、
測定能率を落とすことなく自動的に補正された変位測定
をすることが可能となる。
As explained above, with the displacement measuring device of the present invention, there is no need to specifically measure the reference length or reference weight in order to correct measurement errors, and only simple calculations are required.
It becomes possible to perform automatically corrected displacement measurements without reducing measurement efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は差動トランスの回路図、第2図は差動トランス
のコアの変位に対する出力特性を示す図、第3図は本発
明の一実施例の構成を示すブロック図、第4図は測定時
におけるコアの変位を示す図、第5図は非直線性が著し
い場合の差動トランスのコアの変位に対する出力特性な
示す図である。 11・・・発振回路、12・・・差動トランス、14・
・・切換スイッチ、17・・・直流増幅器、19・・・
第1の記憶回路、20・・・第2の記憶回路、21・・
・第3の記憶回路、23・・・演算回路。 特許 出 願人 安立電気株式会社 代理人 弁理士 早 川 誠 志
FIG. 1 is a circuit diagram of a differential transformer, FIG. 2 is a diagram showing output characteristics with respect to core displacement of the differential transformer, FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. FIG. 5 is a diagram showing the displacement of the core during measurement, and FIG. 5 is a diagram showing the output characteristics of the differential transformer with respect to the displacement of the core when the nonlinearity is significant. 11... Oscillation circuit, 12... Differential transformer, 14...
...Selector switch, 17...DC amplifier, 19...
First memory circuit, 20...Second memory circuit, 21...
- Third memory circuit, 23... arithmetic circuit. Patent Applicant Anritsu Electric Co., Ltd. Agent Patent Attorney Makoto Hayakawa

Claims (1)

【特許請求の範囲】 所定周波数の発振信号を発生する発振回路と;該発振回
路の発振信号によって1次コイルが励磁され、二つの2
次コイルの出力電圧がコアの変位に対応して変化する差
動トランスと;前記二つの2次コイルの出力電圧の差電
圧信号を出力する差電圧出力回路及び和電圧信号を出力
する和電圧出力回路と; 前記差電圧信号と和電圧信号とを切換えて出力する切換
えスイッチと; 該切換スイッチの出力信号を増幅検波する増幅検波回路
と; 該増幅検波回路の出力信号をディジタル信号に変換する
A/D変換器と; 前記差動トランスのコアの変位がほぼ零のときの前記切
換スイッチを和電圧信号側に接続した場合の前記A /
 D変換器の出力値EM1を記憶する第1の記憶回路と
; 前記差動トランスのコアが変位したときの前記切換スイ
ッチを和電圧信号側に接続した場合の前記A / D変
換器の出力値EM2を記憶する第2の記憶回路及び差電
圧信号側に接続した場合の前記A / D変換器の出力
値EM3を記憶する第3の記憶回路と; 前記各記憶値を受領して(1M1/ EM2 ) X 
EM3を演算し、該演算結果を前記コアの変位信号とし
て出力する演算回路とを具備する変位測定装置。
[Claims] An oscillation circuit that generates an oscillation signal of a predetermined frequency; a primary coil is excited by the oscillation signal of the oscillation circuit, and two secondary coils are excited.
A differential transformer in which the output voltage of the secondary coil changes in accordance with the displacement of the core; a differential voltage output circuit that outputs a differential voltage signal between the output voltages of the two secondary coils; and a sum voltage output circuit that outputs a sum voltage signal. a circuit; a changeover switch that switches between and outputs the difference voltage signal and the sum voltage signal; an amplification and detection circuit that amplifies and detects the output signal of the changeover switch; and A that converts the output signal of the amplification and detection circuit into a digital signal. /D converter; and the A/D converter when the changeover switch is connected to the sum voltage signal side when the displacement of the core of the differential transformer is approximately zero.
a first storage circuit that stores an output value EM1 of the D converter; an output value of the A/D converter when the changeover switch is connected to the sum voltage signal side when the core of the differential transformer is displaced; a second storage circuit that stores EM2; and a third storage circuit that stores the output value EM3 of the A/D converter when connected to the differential voltage signal side; EM2)
A displacement measuring device comprising: a calculation circuit that calculates EM3 and outputs the calculation result as a displacement signal of the core.
JP12728783A 1983-07-13 1983-07-13 Displacement measuring device Granted JPS6018702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12728783A JPS6018702A (en) 1983-07-13 1983-07-13 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12728783A JPS6018702A (en) 1983-07-13 1983-07-13 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPS6018702A true JPS6018702A (en) 1985-01-30
JPH0321048B2 JPH0321048B2 (en) 1991-03-20

Family

ID=14956234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12728783A Granted JPS6018702A (en) 1983-07-13 1983-07-13 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPS6018702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197812A (en) * 1989-12-26 1991-08-29 Komatsu Ltd Stroke detector
CN109374323A (en) * 2018-09-29 2019-02-22 国网山西省电力公司阳泉供电公司 Transformer mechanical fault detection method based on vibration signal index energy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641043A (en) * 1979-09-14 1981-04-17 Hatano Yoshiyo Molding sand collapsing agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641043A (en) * 1979-09-14 1981-04-17 Hatano Yoshiyo Molding sand collapsing agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197812A (en) * 1989-12-26 1991-08-29 Komatsu Ltd Stroke detector
CN109374323A (en) * 2018-09-29 2019-02-22 国网山西省电力公司阳泉供电公司 Transformer mechanical fault detection method based on vibration signal index energy

Also Published As

Publication number Publication date
JPH0321048B2 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
CN102680788B (en) Method for measuring current dependence of direct-current standard resistors by utilizing multiplied current
US5448173A (en) Triple-probe plasma measuring apparatus for correcting space potential errors
JPS6018702A (en) Displacement measuring device
JPS62167432A (en) Method for calibrating measured value
JP4369909B2 (en) Magnetic property measuring method and measuring instrument
JPH0321047B2 (en)
JP2982612B2 (en) PQ calculation correction method
JP2009002758A (en) Impedance measuring apparatus
JP2002139528A (en) Impedance measuring device
JPH0522182B2 (en)
CN211426616U (en) Double-loop sampling device
JPS5912562Y2 (en) Calibration circuit for strain measurement
CN114280350B (en) High-precision current sensor and shunt-based high-current measurement method
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
JP2860803B2 (en) Measurement method of insulation resistance of ungrounded circuit
JP3791743B2 (en) Calibration method for peak / peak voltage measuring device and peak / peak voltage measuring device using this calibration method
US5051687A (en) Transimpedance circuit
JP2001188074A (en) Impedance measuring method and device
JP2003014795A (en) Alternating current measuring device
JPH0769246B2 (en) Leakage position detection device
KR100287917B1 (en) Method for interpolating rated voltage of the measuring instrument for power
JPS637349B2 (en)
CN112816759A (en) Double-loop sampling device
JPS6123811Y2 (en)
SU712775A1 (en) Automatic meter of complex resistance components