JPS6261798B2 - - Google Patents

Info

Publication number
JPS6261798B2
JPS6261798B2 JP53016856A JP1685678A JPS6261798B2 JP S6261798 B2 JPS6261798 B2 JP S6261798B2 JP 53016856 A JP53016856 A JP 53016856A JP 1685678 A JP1685678 A JP 1685678A JP S6261798 B2 JPS6261798 B2 JP S6261798B2
Authority
JP
Japan
Prior art keywords
storage body
storage
wavy
cylindrical portion
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53016856A
Other languages
Japanese (ja)
Other versions
JPS54108914A (en
Inventor
Etsuo Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1685678A priority Critical patent/JPS54108914A/en
Publication of JPS54108914A publication Critical patent/JPS54108914A/en
Publication of JPS6261798B2 publication Critical patent/JPS6261798B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、例えば、空気、冷媒あるいは他の
諸気体を圧縮する圧縮機、特に容積形圧縮機の圧
縮機構の新しい形式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new type of compression mechanism for compressors, particularly positive displacement compressors, for compressing air, refrigerant or other gases, for example.

従来のこの種の圧縮機の一例を第1図に示す断
面図に従つて説明する。第1図に示すものは通称
ローリングピストン形と呼ばれているもので、第
1図において、1はシリンダ、2はローリングピ
ストン、3はクランク軸、4はベーン、5はスプ
リング、6はベーン溝、7はスプリングホルダ、
8は吸入室、9は圧縮室、10は吸入口、11は
吐出口、12は吐出弁、13は吸入管、14は吸
入マフラ、15はシエルである。尚、0はクラン
ク軸3が例えば図示しないモータに接続される場
合の回転中心、0′はクランク偏心部の中心であ
り、第1図には明示していないが、クランク軸3
が嵌合された軸受部が0を中心としてシリンダ1
と同心状に設けられている。
An example of a conventional compressor of this type will be explained with reference to a sectional view shown in FIG. The one shown in Fig. 1 is commonly called a rolling piston type, and in Fig. 1, 1 is a cylinder, 2 is a rolling piston, 3 is a crankshaft, 4 is a vane, 5 is a spring, and 6 is a vane groove. , 7 is a spring holder,
8 is a suction chamber, 9 is a compression chamber, 10 is a suction port, 11 is a discharge port, 12 is a discharge valve, 13 is a suction pipe, 14 is a suction muffler, and 15 is a shell. Note that 0 is the center of rotation when the crankshaft 3 is connected to, for example, a motor (not shown), and 0' is the center of the eccentric part of the crank.Although not clearly shown in FIG.
The bearing part fitted with cylinder 1 is centered at 0.
It is arranged concentrically with.

従来の容積形圧縮機は、例えば上記のように構
成されており、外気ないし冷凍サイクル等の装置
からの冷媒は吸入マフラ14、吸入管13、吸入
口10を経て、吸入室8に吸入され、0〜0′の偏
心部に中心をおくローリングピストン2が0を中
心とし、0〜0′を腕として例えば第1図矢印Aの
方向に回転するにつれて、吸入室8内にたまり続
けその体積を増加させてゆく。一方、圧縮室9内
の気体はローリングピストン2が上記のように回
転するにつれて、圧縮室9の容積が減少してくる
ので、その圧力が上昇して吐出弁12をおしあげ
て流出してゆく。第1図で、ローリングピストン
2がベーン4をその飛び出し部分4aが無いよう
に右側に押しつけた状態になつた時、つまり、ベ
ーン4が完全にベーン溝6に収納された時、吸入
行程および圧縮行程が終了すると同時に、次の吸
入行程、圧縮行程に入る。すなわちこの状態で
は、吸入室8の容積は、シリンダ1の内壁で構成
される空間からローリングピストン2と同一外形
の円柱の体積を差し引いた値で最大となり、圧縮
室9の容積は零となる。
A conventional positive displacement compressor is configured, for example, as described above, and refrigerant from outside air or a device such as a refrigeration cycle is sucked into the suction chamber 8 through the suction muffler 14, the suction pipe 13, and the suction port 10. As the rolling piston 2 centered at the eccentric portion between 0 and 0' rotates, for example, in the direction of arrow A in FIG. Continue to increase. On the other hand, as the rolling piston 2 rotates as described above, the volume of the compression chamber 9 decreases, so the pressure of the gas in the compression chamber 9 increases, pushing down the discharge valve 12 and flowing out. In FIG. 1, when the rolling piston 2 presses the vane 4 to the right without the protruding portion 4a, that is, when the vane 4 is completely accommodated in the vane groove 6, the suction stroke and compression At the same time as the stroke ends, the next suction stroke and compression stroke begin. That is, in this state, the volume of the suction chamber 8 becomes the maximum value obtained by subtracting the volume of a cylinder having the same external shape as the rolling piston 2 from the space formed by the inner wall of the cylinder 1, and the volume of the compression chamber 9 becomes zero.

ところで、上記のように構成された容積形圧縮
機においては、圧縮室9と吸入室8の圧力差が
0′に作用するので、0〜0′のまわりに回転モーメ
ントを生ずるのみならず、ローリングピストン2
に接続されたクランク軸3の偏心部に作用する圧
力と同じ大きさの圧力がクランク軸3に加わるの
で、ローリングピストン2とクランク軸3の偏心
部との間に負荷が生じる欠点があつた。又、クラ
ンク軸3が支承される図示しない軸受部とクラン
ク軸3との間にも同じ大きさの負荷を生じ、時に
はクランク軸3が当該軸受を破損させる欠点を有
していた。
By the way, in the positive displacement compressor configured as described above, the pressure difference between the compression chamber 9 and the suction chamber 8 is
0', it not only generates a rotational moment around 0 to 0', but also causes the rolling piston 2
Since the same amount of pressure is applied to the crankshaft 3 as the pressure acting on the eccentric part of the crankshaft 3 connected to the rolling piston 2, a load is generated between the rolling piston 2 and the eccentric part of the crankshaft 3. Further, the same load is generated between the crankshaft 3 and a bearing portion (not shown) on which the crankshaft 3 is supported, and the crankshaft 3 has the drawback of sometimes damaging the bearing.

また、0を中心とし、0〜0′を腕とするクラン
ク軸3の偏心部分にローリングピストン2の質量
分が偏在するので円滑な回転を達成するためには
バランスウエイト等を取付けてバランシングを行
なわなければならないという欠点を有していた。
In addition, the mass of the rolling piston 2 is unevenly distributed on the eccentric part of the crankshaft 3 with 0 as the center and arms as 0 to 0', so in order to achieve smooth rotation, a balance weight or the like must be attached to perform balancing. It had the disadvantage that it had to be done.

また、一回転、一圧縮しか行なえないので、加
振源となる気体圧縮トルクの変動周波数は駆動源
の例えばモータ等の回転数に一致している。従つ
て、防振系すなわち防振バネ等の固有振動数から
当該気体圧縮トルク変動の周波数を遠ざけて防振
しようとする場合、防振ばねの固有振動数を気体
圧縮トルク変動の周波数から充分には遠ざけるこ
とができない欠点があつた。
Further, since only one rotation and one compression can be performed, the fluctuation frequency of the gas compression torque serving as the vibration source matches the rotational speed of the driving source, such as a motor. Therefore, when trying to isolate vibration by moving the frequency of the gas compression torque fluctuation away from the natural frequency of the vibration isolation system, that is, the vibration isolation spring, etc., it is necessary to set the natural frequency of the vibration isolation spring sufficiently far from the frequency of the gas compression torque fluctuation. had a drawback that could not be avoided.

この発明は上記のような従来の欠点を除去する
ためになされたもので、軸受負荷が原理的に全く
生じず、機械的なバランシングを全く行う必要が
なく、また設計に際して、気体圧縮トルクの周波
数を任意に選択でき振動を小さくすることが可能
で、かつ小形軽量化が容易に実現できる新しい形
式の容積形圧縮機を得ることを目的とする。
This invention was made to eliminate the above-mentioned drawbacks of the conventional technology.In principle, no bearing load occurs, there is no need for mechanical balancing at all, and the frequency of the gas compression torque is reduced during design. The purpose of the present invention is to provide a new type of positive displacement compressor that can be arbitrarily selected, reduce vibrations, and easily realize compactness and weight reduction.

以下、第2図ないし第5図に従つてこの発明の
一実施例を説明する。先ず、この発明の一般原理
を第2図の概念図に基づき説明する。図におい
て、18は加想上の中心軸、19は中心軸18に
直交する円形平面、20は円形平面19に含ま
れ、かつ中心軸18に直交する線分、21,22
は線分20を含み、なめらかに等ピツチで連なる
波状面、23,24は中心軸18を軸とする円筒
面、25は中心軸18を含む平面、26は平面1
9を含む平面、27は中心軸18に直交する平面
である。すなわち、円形平面19、線分20、平
面26は同一平面上にある。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 5. First, the general principle of this invention will be explained based on the conceptual diagram of FIG. In the figure, 18 is an imaginary central axis, 19 is a circular plane perpendicular to the central axis 18, 20 is a line segment included in the circular plane 19 and perpendicular to the central axis 18, 21, 22
is a wavy surface that includes the line segment 20 and is smoothly continuous at equal pitches, 23 and 24 are cylindrical surfaces centered on the central axis 18, 25 is a plane containing the central axis 18, and 26 is the plane 1
A plane including 9 and 27 are planes perpendicular to the central axis 18 . That is, the circular plane 19, the line segment 20, and the plane 26 are on the same plane.

尚、波状面21,22及び円筒面24によつて
定められる立体は、平面26に垂直に、つまり中
心軸18の軸方向に突出する滑らかな山を有する
同一ピツチの波状部29を構成している。更に、
前記波状部29の滑らかな山28の頂上部が線分
20に相当する。
The solid body defined by the wavy surfaces 21 and 22 and the cylindrical surface 24 constitutes a wavy portion 29 of the same pitch that has smooth peaks that protrude perpendicularly to the plane 26, that is, in the axial direction of the central axis 18. There is. Furthermore,
The top portion of the smooth peak 28 of the wavy portion 29 corresponds to the line segment 20.

第2図は以上のような面によつて構成された3
次元物体を示し、特に平面25を除いた分を総称
して回転体30と呼ぶ。
Figure 2 shows 3
It shows a dimensional object, and in particular, the part excluding the plane 25 is collectively called a rotating body 30.

上記のように構成された回転体30が回転した
場合の状況について説明する。
A situation when the rotating body 30 configured as described above rotates will be described.

第2図において、円筒面23、円筒面24の仮
想延長面、線分20と波状面21と平面19を含
む平面26および平面25によつて囲まれる空間
V1および円筒面23、円筒面24の仮想延長
面、波状面22と平面19とを含む平面26およ
び平面25によつて囲まれる空間V2について考
える。回転体30すなわち第2図において、平面
25を除いた3次元物体を中心軸18のまわり
に、例えば、第2図において、上方より見て右向
きに第2図矢印Bで示すように回転せしめ平面2
5およびその延長面を空間に仮想的に固定せしめ
た場合、当該空間V1は回転につれて、その容積
をまし、ついには、平面25が第2図において、
線分20を含むに至つてその容積は最大となる。
一方、空間V2は逆にその容積を減少することに
なり、第2図において、線分20を平面25が含
むに至つて当該空間V2の容積は零となつてしま
う。
In FIG. 2, a space surrounded by a cylindrical surface 23, a virtual extension surface of the cylindrical surface 24, a plane 26 including a line segment 20, a wavy surface 21, and a plane 19, and a plane 25.
Consider a space V 2 surrounded by V 1 , a cylindrical surface 23 , a virtual extension surface of the cylindrical surface 24 , a plane 26 including the wavy surface 22 and the plane 19 , and a plane 25 . The rotating body 30, that is, the three-dimensional object excluding the plane 25 in FIG. 2, is rotated around the central axis 18, for example, as shown by arrow B in FIG. 2 when viewed from above in FIG. 2
5 and its extended surface are virtually fixed in space, the volume of the space V 1 increases as it rotates, until the plane 25 becomes as shown in FIG.
Its volume becomes maximum when it includes the line segment 20.
On the other hand, the volume of the space V 2 is conversely reduced, and in FIG. 2, when the plane 25 includes the line segment 20, the volume of the space V 2 becomes zero.

したがつて、第2図における空間V1を吸入室
に、空間V2を圧縮室に、平面25をベーンにそ
れぞれ相当せしめ、当該3次元物体を適当な駆動
源にて回転せしめ、当該3次元物体を覆うシリン
ダハウジングを構成し、且つ、吸入口、吐出口等
を設置せしめれば、容積形圧縮機を構成できるこ
とは容易に推定できるであろう。
Therefore, the space V 1 in FIG. 2 corresponds to the suction chamber, the space V 2 corresponds to the compression chamber, and the plane 25 corresponds to the vane, and the three-dimensional object is rotated by an appropriate driving source, and the three-dimensional object is It can be easily assumed that a positive displacement compressor can be constructed by constructing a cylinder housing that covers an object and installing an inlet, a discharge port, etc.

第2図においては、なめらかに接続する波状面
21,22は2つの山および谷を構成する場合に
ついて示したものであり、この場合には、吸入室
に相当する空間、例えばV1と同一のものが2
室、圧縮室に相当する空間、例えばV2と同一の
ものが2室存在するが、波状面21,22におけ
る山および谷の数は1ケあるいは3ケ以上でもよ
いことは直ちに理解される。その場合、平面25
に相当するベーン数は山あるいは谷の数と同数だ
け必要となる。
In FIG. 2, the smoothly connected wavy surfaces 21 and 22 form two peaks and valleys, and in this case, the space corresponding to the suction chamber, for example, the same as V 1 2 things
Although there are two spaces corresponding to the compression chambers, for example V 2 , it is immediately understood that the number of peaks and valleys in the wavy surfaces 21 and 22 may be one or more than three. In that case, plane 25
The same number of vanes as the number of peaks or valleys are required.

さて、基本原理が明らかになつたこの発明の具
体的な実施例について考える。
Now, let us consider a concrete example of this invention whose basic principle has been clarified.

尚、第3図ないし第5図において、第1図及び
第2図と同一符号は同一又は相当部分を示すにつ
き符号の説明は適宜、省略する。
Note that in FIGS. 3 to 5, the same reference numerals as in FIGS. 1 and 2 indicate the same or corresponding parts, and the explanation of the reference numerals will be omitted as appropriate.

第3図ないし第5図において、30は後述する
シリンダハウジング31に収納された回転体で、
この回転体30は第2図に示したものと同様の形
状をなしている。すなわち、この回転体30はシ
リンダハウジングに収納された被収納体に外なら
ない。つまり、回転体30である被収納体は波状
部29が一体的に形成されている。31は一端が
開口した帽子状の筒部とこの筒部の開口部を塞ぐ
塞板とから成るシリンダハウジングでその内側周
面は回転体30の円筒面24に摺接し、又その上
端に位置する塞板の内側面には回転体30の波状
部29の山28の頂上部が摺接しこの頂上部はシ
ール部32を構成している。
In FIGS. 3 to 5, 30 is a rotating body housed in a cylinder housing 31, which will be described later.
This rotating body 30 has a similar shape to that shown in FIG. In other words, the rotary body 30 is nothing but an object housed in the cylinder housing. In other words, the corrugated portion 29 is integrally formed in the body to be stored, which is the rotating body 30. Reference numeral 31 denotes a cylinder housing consisting of a cap-shaped cylindrical portion with one end open and a closing plate that closes the opening of the cylindrical portion, and its inner peripheral surface is in sliding contact with the cylindrical surface 24 of the rotating body 30, and is located at the upper end thereof. The tops of the peaks 28 of the corrugated portions 29 of the rotating body 30 are in sliding contact with the inner surface of the closing plate, and these tops constitute a sealing portion 32 .

33は回転体30を駆動する回転軸で、この回
転軸33は回転体30と一体成形されている。3
4はこの回転軸33を支承する軸受で、この軸受
34はシリンダハウジング31に底部に穿設した
上記回転軸33挿通用の孔部に設けられている。
33 is a rotating shaft that drives the rotating body 30, and this rotating shaft 33 is integrally molded with the rotating body 30. 3
Reference numeral 4 denotes a bearing for supporting the rotary shaft 33, and the bearing 34 is provided in a hole drilled in the bottom of the cylinder housing 31 through which the rotary shaft 33 is inserted.

35は吸入ポート、36は吐出ポート、37は
固定ボルト、38は回転軸33を回転するモータ
である。
35 is a suction port, 36 is a discharge port, 37 is a fixing bolt, and 38 is a motor that rotates the rotating shaft 33.

尚、ベーン4は形状が方形平板状をなし、その
先端部は波状部29に適当な接圧をもつて気密な
状態で接触している。
The vane 4 has a rectangular flat plate shape, and its tip is in airtight contact with the corrugated portion 29 with an appropriate contact pressure.

次にこのように構成されたものの動作を説明す
る。
Next, the operation of the device configured as described above will be explained.

第3図〜第5図に示す例では、第2図に示され
る場合と同様の2個の山28を有する波状部29
を備えた回転体30が、矢印Cのようにモータ3
8によつて駆動されると、波状部29の山28の
頂上部つまりシール部32とスプリング5によつ
て波状部29におさえつけられているベーン4と
の間に形成される圧縮室9は、回転体30の回転
により、その体積を減じ、圧力は上昇してその内
に含まれる気体は吐出弁12を押し上げ、吐出口
11ら吐出ポート36に流入する。一方吸入ポー
ト35から吸入口10を経て吸入室8に吸入され
る気体は、その間容積を増加せしめ、シール部3
2がベーン4と一致したら吸入を完了する。他
方、この時圧縮室9の容積は零となり圧縮を完了
する。吸入行程を終了した吸入室8はただちに圧
縮行程に入り、圧縮室9となる。
In the example shown in FIGS. 3 to 5, a wavy portion 29 having two peaks 28 similar to the case shown in FIG.
The rotating body 30 equipped with
8, the compression chamber 9 is formed between the top of the peak 28 of the corrugated portion 29, that is, the seal portion 32, and the vane 4, which is pressed against the corrugated portion 29 by the spring 5. As the rotating body 30 rotates, its volume decreases, the pressure rises, and the gas contained therein pushes up the discharge valve 12 and flows into the discharge port 36 from the discharge port 11. On the other hand, the gas sucked into the suction chamber 8 from the suction port 35 via the suction port 10 increases its volume, and
When 2 coincides with vane 4, inhalation is completed. On the other hand, at this time, the volume of the compression chamber 9 becomes zero, and compression is completed. After completing the suction stroke, the suction chamber 8 immediately enters the compression stroke and becomes the compression chamber 9.

この例のように、圧縮室9が2つある場合、あ
るいは2つ以上の場合でも、回転体30の波状部
29を等ピツチに構成してあるので、圧縮室9の
圧力は回転軸33に関してたがいに打ち消しあう
し、また、吸入室8の圧力も回転軸33に関して
打ち消しあうので、回転軸33とシリンダハウジ
ング31に設けられた軸受34との間には負荷は
生じないことが理解される。
As in this example, when there are two compression chambers 9, or even when there are two or more, the corrugated portions 29 of the rotating body 30 are arranged at equal pitches, so that the pressure in the compression chambers 9 is maintained with respect to the rotating shaft 33. It is understood that since the pressure in the suction chamber 8 also cancels out with respect to the rotating shaft 33, no load is generated between the rotating shaft 33 and the bearing 34 provided in the cylinder housing 31.

また、回転体30は等ピツチの波状部29およ
び回転軸33を有しているので、回転軸33のま
わりには、静的にも動的にもバランスがとれてい
ることは明らかで、バランスリングはモータ38
で駆動する場合にも全く不要となることが分か
る。
Furthermore, since the rotating body 30 has the equally pitched wavy portions 29 and the rotating shaft 33, it is clear that the rotating shaft 33 is statically and dynamically balanced. The ring is motor 38
It can be seen that it is completely unnecessary even when driven by

ところで、回転体30は、例えば第6図のよう
に、2つ以上の等ピツチの波状部29をもつもの
でもよいので、一回転中に吸入圧縮吐出の行程を
多数回に選ぶことが可能となり、定速運転の場合
の気体圧縮トルク脈動の周波数を任意に選択でき
ることも明らかである。
By the way, the rotary body 30 may have two or more equally spaced undulating portions 29, as shown in FIG. 6, for example, so that it is possible to select a number of suction, compression and discharge strokes during one rotation. It is also clear that the frequency of the gas compression torque pulsations in the case of constant speed operation can be arbitrarily selected.

ここで、第2図、第6図に示す如く、等ピツチ
の波状部29の山28、すなわちシール部32の
数が異なる場合について考える。例えば、波状部
29が第2図の如く、2つの山28を有する場合
は1/2回転で一回の吸入圧縮を行い、1回転では
2回の吸入圧縮を行う。又、波状部29が第6図
の如く、3つ以上の山28を有する場合は1/3回
転で一回の吸入圧縮を行い、1回転では3回の吸
入圧縮を行なう。従つて、例えば同一の回転数の
モータ38で駆動し、かつ同一容積の気体を吸入
吐出する場合は、第6図に示す3つの山28を有
する波状部29を備えた回転体30のほうが回転
体本体を小さくでき、軽量化が可能となる。この
ように等ピツチの波状部29の山28の数、すな
わちシール部32の数を適切範囲で増加させるこ
とによつて、小形計量化が可能となる。
Here, as shown in FIGS. 2 and 6, a case will be considered in which the ridges 28 of the wavy portions 29 of equal pitch, that is, the number of seal portions 32 are different. For example, if the corrugated portion 29 has two peaks 28 as shown in FIG. 2, one suction compression is performed in 1/2 rotation, and two suction compressions are performed in one rotation. Further, when the corrugated portion 29 has three or more peaks 28 as shown in FIG. 6, suction compression is performed once in 1/3 rotation, and suction compression is performed three times in one rotation. Therefore, for example, when driven by a motor 38 with the same rotational speed and inhaling and discharging the same volume of gas, the rotating body 30 having the corrugated portion 29 having three peaks 28 shown in FIG. 6 rotates faster. The main body can be made smaller and lighter. In this way, by increasing the number of ridges 28 of the equally pitched wavy portion 29, that is, the number of seal portions 32 within an appropriate range, it becomes possible to reduce the size and weight.

尚、図示した実施例において、必要に応じて潤
滑機構が付加できるのは言う迄もない。
It goes without saying that a lubrication mechanism can be added to the illustrated embodiment if necessary.

実施例では回転体30は波状部29を片側に有
するもののみについて説明したが、回転体30の
軸方向に沿つてその両側に波状部29を形成して
もよい。この場合には、回転体30に加わる軸方
向の圧力が相殺され、結果として回転体30に加
わる軸方向の圧力が極めて小さくなる。
In the embodiment, the rotating body 30 has only the corrugated portion 29 on one side, but the corrugated portion 29 may be formed on both sides of the rotating body 30 along the axial direction. In this case, the axial pressure applied to the rotating body 30 is canceled out, and as a result, the axial pressure applied to the rotating body 30 becomes extremely small.

この発明は以上説明したとおり、同一パターン
の波状部を有する被収納体を回転させ、ベーンと
波状部と収納体とで形成される空間の容積を変化
させるように構成したので、軸受負荷が原理的に
存在せず、機械的バランスリング等も全く不要
で、低振動かつ軽量化が図れるという極めて優れ
た容積形圧縮機を可能にする効果がある。
As explained above, this invention is configured so that the storage object having the same pattern of wavy portions is rotated to change the volume of the space formed by the vane, the wavy portion, and the storage object, so that the bearing load is basically reduced. This has the effect of making it possible to create an extremely superior positive displacement compressor, which does not require a mechanical balance ring or the like, and is low in vibration and lightweight.

またこの発明においては、収納体は、一端が開
口した帽子状の筒部と、この筒部の開口を閉塞す
る蓋部とから形成し、上記被収納体は、先端面が
収納体の蓋部内面と摺接する回動軸と一体の中心
円柱部とこの中心円柱部の先端面と平行でかつ径
方向に同一幅寸法を有し該先端面の周縁複数個所
から軸基端方向に凹陥させて刻設した波状面から
なる等ピツチの波状部と上記中心円柱部の先端面
と同一平面上に位置し上記各波状部に連なる複数
の頂上部とから形成するとともに、上記各ベーン
は、先端部が上記被収納体の波状面に更に両側部
が該被収納体の中心円柱部と収納体の筒部内面と
に摺接可能にかつ上記波状部の数と同数を収納体
の蓋部に上記回動軸軸線方向へ進退自在に設ける
よう構成したので、中心円柱部を必要最小限まで
小径のものとすることができ収納体内に形成され
る部屋のスペースを大きく設定することが可能と
なり、小形化を図ることができる。特に本発明に
おいては、被収納体がその中心円柱部の端面を収
納体の蓋部内面に摺動可能に当接せしめて収納さ
れているため、被収納体の軸方向移動を規制で
き、閉塞性および信頼性を著しく向上させ得る効
果がある。
Further, in the present invention, the storage body is formed from a cap-shaped cylinder portion with one end open and a lid portion that closes the opening of the cylinder portion, and the storage body has a distal end surface that is formed from the lid portion of the storage body. A central cylindrical portion integral with the rotation shaft that slides on the inner surface, parallel to the distal end surface of the central cylindrical portion and having the same width dimension in the radial direction, and recessed from multiple points on the peripheral edge of the distal end surface in the direction of the shaft proximal end. Each vane is formed of an equally pitched wavy portion made of carved wavy surfaces and a plurality of peaks located on the same plane as the tip surface of the central cylindrical portion and connected to each of the wavy portions. The wavy surface of the storage body is further arranged so that both side portions can be slidably contacted with the central cylindrical portion of the storage body and the inner surface of the cylindrical portion of the storage body, and the same number of wavy portions are attached to the lid portion of the storage body. Since it is configured so that it can move forward and backward in the direction of the rotation axis, the diameter of the central column can be reduced to the minimum necessary, making it possible to increase the space of the room formed inside the storage body, making it possible to reduce the size of the cylinder. It is possible to aim for In particular, in the present invention, since the object to be stored is stored with the end surface of the central cylindrical portion slidably in contact with the inner surface of the lid of the storage object, the axial movement of the object to be stored can be restricted, and the blockage This has the effect of significantly improving performance and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の断面図、第2図はこの発明
の原料を説明する説明図、第3図はこの発明の一
実施例を示す部分断面斜視図、第4図は第3図に
示したものの平面図、第5図は第4図の−線
における断面図、第6図は回転体の他の実施例を
示す斜視図である。 図において、4はベーン、8は吸入室、9は圧
縮室、18は中心軸(中心円柱部)、19は円形
平面(中心円柱部の先端面)、21,22は波状
面、29は波状部、30は回転体(被収納体)、
31はシリンダハウジング(収納体)、32はシ
ール部(頂上部)、33は回転軸である。尚、図
中同一符号は同一又は相当部分を示す。
Fig. 1 is a cross-sectional view of a conventional device, Fig. 2 is an explanatory diagram explaining the raw material of the present invention, Fig. 3 is a partial cross-sectional perspective view showing an embodiment of the present invention, and Fig. 4 is shown in Fig. 3. 5 is a sectional view taken along the line - in FIG. 4, and FIG. 6 is a perspective view showing another embodiment of the rotating body. In the figure, 4 is a vane, 8 is a suction chamber, 9 is a compression chamber, 18 is a central axis (central cylindrical part), 19 is a circular plane (the tip surface of the central cylindrical part), 21 and 22 are wavy surfaces, and 29 is a wavy surface. part, 30 is a rotating body (stored body),
31 is a cylinder housing (housing body), 32 is a seal portion (top portion), and 33 is a rotating shaft. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 収納体と、これに収納されて収納端部表面形
状により該収納体内空間を複数の室に画成する被
収納体と、この被収納体の端面側に対向配置され
るとともに上記表面形状に沿つて出没自在に上記
収納体に設けられかつ該被収納体によつて画成さ
れる室の各々を更に2室に画成する複数のベーン
と、これらベーンを出没させて該被収納体を収納
体に対し同軸的に回動させる回動軸とを備え、上
記被収納体が回動することにより、該被収納体お
よび各ベーンによつて収納体内に画成された複数
の空間のうち半数はその容積が増加し残り半数は
その容積が減少するように設定して圧縮吸入を行
なうようにした容積形圧縮機において、上記収納
体は、一端が開口した帽子状の筒部とこの筒部の
開口を閉塞する蓋部とから形成し、上記被収納体
は、先端面が収納体の蓋部内面と摺接する上記回
動軸と一体の中心円柱部とこの中心円柱部の先端
面と平行でかつ径方向に同一幅寸法を有し該先端
面の周縁複数個所から軸基端方向に凹陥させて刻
設した波状面からなる等ピツチの波状部と上記中
心円柱部の先端面と同一平面上に位置し上記各波
状部に連なる複数の頂上部とから形成するととも
に、上記各ベーンは、先端部が上記被収納体の波
状面に更に両側部が該被収納体の中心円柱部と収
納体の筒部内面とに摺接可能にかつ上記波状部の
数と同数を収納体の蓋部に上記回動軸軸線方向へ
進退自在に設けたことを特徴とする容積形圧縮
機。
1. A storage body, a storage object that is stored in the storage body and defines a space inside the storage body into a plurality of chambers according to the surface shape of the storage end, and a storage body that is arranged opposite to the end surface side of the storage body and has the surface shape described above. a plurality of vanes that are provided in the storage body so as to be freely retractable along the storage body and further define each of the chambers defined by the storage object into two chambers; A rotation shaft that rotates coaxially with respect to the storage body is provided, and when the storage body rotates, one of the plurality of spaces defined in the storage body by the storage body and each vane is provided. In a positive displacement compressor that performs compression suction by setting half of the volume to increase and the other half to decrease the volume, the storage body includes a cap-shaped cylinder with one end open and the cylinder. and a lid portion that closes the opening of the storage body, and the storage object includes a central cylindrical portion integral with the rotation shaft whose distal end surface is in sliding contact with the inner surface of the lid portion of the storage body, and a distal end surface of the central cylindrical portion. A wavy portion of equal pitch consisting of a wavy surface that is parallel and has the same width in the radial direction and is recessed from multiple locations on the peripheral edge of the distal end surface toward the proximal end of the shaft, and is the same as the distal end surface of the central cylindrical portion. Each vane is formed of a plurality of top portions located on a plane and connected to each of the wavy portions, and each of the vanes has a tip portion connected to the wavy surface of the object to be stored, and both side portions to the central cylindrical portion of the object to be stored. 1. A positive displacement compressor, characterized in that a lid portion of the storage body is provided with the same number of corrugated portions as the number of the corrugated portions, which are slidably in contact with the inner surface of the cylindrical portion of the storage body, and are movable forward and backward in the axial direction of the rotation shaft.
JP1685678A 1978-02-15 1978-02-15 Volumetric compressor Granted JPS54108914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1685678A JPS54108914A (en) 1978-02-15 1978-02-15 Volumetric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1685678A JPS54108914A (en) 1978-02-15 1978-02-15 Volumetric compressor

Publications (2)

Publication Number Publication Date
JPS54108914A JPS54108914A (en) 1979-08-27
JPS6261798B2 true JPS6261798B2 (en) 1987-12-23

Family

ID=11927852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1685678A Granted JPS54108914A (en) 1978-02-15 1978-02-15 Volumetric compressor

Country Status (1)

Country Link
JP (1) JPS54108914A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417584B1 (en) * 2001-06-04 2004-02-05 주식회사 엘지이아이 Cylinder assembly of compressor
CN100375845C (en) * 2003-06-17 2008-03-19 乐金电子(天津)电器有限公司 Method for machining baffle slot of compressor
JP4454318B2 (en) * 2004-01-08 2010-04-21 三洋電機株式会社 Compressor
US7481635B2 (en) * 2004-09-30 2009-01-27 Sanyo Electric Co., Ltd. Shaft seal for rotary type compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197006A (en) * 1975-02-21 1976-08-26
JPS5292108A (en) * 1976-01-30 1977-08-03 Hitachi Metals Ltd Axial sliding blade type liquid rotor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197006A (en) * 1975-02-21 1976-08-26
JPS5292108A (en) * 1976-01-30 1977-08-03 Hitachi Metals Ltd Axial sliding blade type liquid rotor

Also Published As

Publication number Publication date
JPS54108914A (en) 1979-08-27

Similar Documents

Publication Publication Date Title
US4427351A (en) Rotary compressor with noise reducing space adjacent the discharge port
JPH09310688A (en) Variable displacement type scroll compressor
JP2006083844A (en) Multi-cylinder rotary compressor
JPH0672597B2 (en) Rotating waveform motion type air compressor
KR100315954B1 (en) Compressor
JPS6261798B2 (en)
JP2002138979A (en) Multi-cylinder rotary compressor
JPH04143483A (en) Compressor with rolling piston
JP2825236B2 (en) Fluid compressor
JPH0219685A (en) Fluid compressor
US6425744B2 (en) Helical blade type compressor having a helical blade in a stationary cylinder
RU2304225C2 (en) Rotary wave engine
JPH11101190A (en) Compressor
CN114412777B (en) Movable scroll, scroll compressor and air conditioner
JPH0313435B2 (en)
JPH0732951Y2 (en) Fluid compressor
JP2588911Y2 (en) Rotary compressor
RU2287062C2 (en) Rotary-vane device
JPS5941035B2 (en) positive displacement fluid compression device
KR100351148B1 (en) Compressor
JP2804060B2 (en) Fluid compressor
JP2880771B2 (en) Fluid compressor
JPH0219682A (en) Fluid compressor
JP2779814B2 (en) Displacement compressor
JPH07107391B2 (en) Fluid compressor