JP2006083844A - Multi-cylinder rotary compressor - Google Patents

Multi-cylinder rotary compressor Download PDF

Info

Publication number
JP2006083844A
JP2006083844A JP2005188736A JP2005188736A JP2006083844A JP 2006083844 A JP2006083844 A JP 2006083844A JP 2005188736 A JP2005188736 A JP 2005188736A JP 2005188736 A JP2005188736 A JP 2005188736A JP 2006083844 A JP2006083844 A JP 2006083844A
Authority
JP
Japan
Prior art keywords
compression
compression chambers
rotary compressor
communication hole
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005188736A
Other languages
Japanese (ja)
Inventor
Jong Won Seok
種 元 石
Valeri Lenchine
ヴァレリ レンチネ
Jin-Woo Lee
鎭 宇 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006083844A publication Critical patent/JP2006083844A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/061Silencers using overlapping frequencies, e.g. Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the suction loss of each compression chamber and reduce suction noises without enlarging the cross section area of a suction port of each compression chamber. <P>SOLUTION: The multi-cylinder rotary compressor comprises first and second compression chambers 31, 32 partitioned from each other, first and second suction ports 61, 62 communicated with the insides of the first and second compression chambers, respectively, and a communication hole 71 located adjacent to the first and second suction ports 61, 62 for communicating the first compression chamber 31 with the second compression chamber 32. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多気筒回転圧縮機に関するもので、詳しくは、吸入損失及び冷媒の吸入によって発生する騷音を減少できる多気筒回転圧縮機に関するものである。   The present invention relates to a multi-cylinder rotary compressor, and more particularly to a multi-cylinder rotary compressor that can reduce suction loss and noise generated by refrigerant suction.

一般に、一つの圧縮室を備えた回転圧縮機は、圧縮室内のリングピストンが回転軸の中心に対して偏心した状態で回転するため、ガスの圧縮動作時、回転トルクの激しい変動および質量の不均衡によって振動が大きくなるという問題があった。したがって、このような問題を解消するために、上部および下部にそれぞれ独立した圧縮室を設け、各圧縮室内のリングピストンを反対位置で回転させることで、回転トルクの変化及び質量の不均衡を最小化したものが多気筒回転圧縮機である。   In general, a rotary compressor having a single compression chamber rotates with the ring piston in the compression chamber being eccentric with respect to the center of the rotation shaft. There was a problem that the vibration increased due to the equilibrium. Therefore, in order to solve such problems, independent compression chambers are provided in the upper and lower portions, and the ring pistons in the respective compression chambers are rotated at opposite positions, thereby minimizing rotational torque changes and mass imbalances. What has become a multi-cylinder rotary compressor.

特許文献1(2001年6月5日公開)には、上記のような多気筒回転圧縮機が開示されている。この圧縮機は、第1圧縮室が内部に形成された上部の第1シリンダーボディーと、第2圧縮室が内部に形成された下部の第2シリンダーボディーと、第1圧縮室と第2圧縮室との間を区画するための区画板とを備える。また、この圧縮機は、回転軸の回転時、各圧縮室の内部で反対位置を維持した状態で偏心回転しながら冷媒ガスを圧縮する第1及び第2リングピストンと、各圧縮室に冷媒ガスを吸入させるために、各圧縮室内に連通される第1及び第2吸入口とをさらに備える。   Patent Document 1 (published on June 5, 2001) discloses such a multi-cylinder rotary compressor. The compressor includes an upper first cylinder body in which a first compression chamber is formed, a lower second cylinder body in which a second compression chamber is formed, a first compression chamber, and a second compression chamber. And a partition plate for partitioning between the two. The compressor also includes first and second ring pistons that compress the refrigerant gas while rotating eccentrically while maintaining the opposite positions inside the compression chambers when the rotary shaft rotates, and refrigerant gas in each compression chamber. In order to inhale the air, it further includes first and second suction ports communicating with each compression chamber.

しかしながら、上記のような多気筒回転圧縮機は、一つの圧縮室を備える同一容量の回転圧縮機に比べると、各圧縮室を形成する第1及び第2シリンダーボディーの高さが低いため、各シリンダーボディーに形成される第1及び第2吸入口の直径も制限的であった。したがって、この圧縮機は、各吸入口の小さい断面積によって吸入流動抵抗が大きくなるため、各圧縮室の吸入体積が急激に増大する時点(ガスの吸入量が急激に多くなる時点)における各吸入口を通したガスの流入量が充分でなく、吸入損失及び吸入騷音が大きくなるという問題があった。
日本特開2001−153079号公報
However, the multi-cylinder rotary compressor as described above has a lower height of the first and second cylinder bodies forming the compression chambers than the same capacity rotary compressor having one compression chamber. The diameters of the first and second suction ports formed in the cylinder body were also limited. Therefore, since this compressor has a large suction flow resistance due to a small cross-sectional area of each suction port, each suction at the time when the suction volume of each compression chamber suddenly increases (when the amount of gas suction increases rapidly). There is a problem that the amount of gas flowing through the mouth is not sufficient, and suction loss and suction noise increase.
Japanese Unexamined Patent Publication No. 2001-153079

本発明は、上記のような問題点を解決するためになされたもので、各圧縮室の吸入口の断面積を拡大せずに、各圧縮室の吸入損失を減少できる多気筒回転圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a multi-cylinder rotary compressor that can reduce the suction loss of each compression chamber without increasing the cross-sectional area of the suction port of each compression chamber. The purpose is to provide.

また、本発明は、吸入騷音を減少できる多気筒回転圧縮機を提供することを目的とする。   Another object of the present invention is to provide a multi-cylinder rotary compressor that can reduce suction noise.

上記の目的を達成するために、本発明による多気筒回転圧縮機は、相互区画された第1及び第2圧縮室と、前記第1及び第2圧縮室の内部にそれぞれ連通される第1及び第2吸入口と、前記第1及び第2吸入口と隣接して位置され、前記第1圧縮室と前記第2圧縮室とを連通させる連通孔とを含むことを特徴とする。   In order to achieve the above object, a multi-cylinder rotary compressor according to the present invention includes first and second compression chambers that are partitioned from each other, and first and second chambers that communicate with the interiors of the first and second compression chambers, respectively. It includes a second suction port and a communication hole that is positioned adjacent to the first and second suction ports and communicates with the first compression chamber and the second compression chamber.

また、前記連通孔に隣接した位置で、前記第1及び第2圧縮室の内面に所定深さに陥没して形成される第1及び第2空洞部をさらに含むことを特徴とする。   The first and second cavities may be further formed by being recessed to a predetermined depth on the inner surfaces of the first and second compression chambers at positions adjacent to the communication holes.

また、前記第1及び第2空洞部は、前記連通孔と対向して位置されることを特徴とする。   Further, the first and second cavities are positioned to face the communication hole.

また、前記第1及び第2圧縮室を形成するための第1及び第2シリンダーボディーと、前記第1及び第2圧縮室の内部に設置される第1及び第2圧縮装置と、前記第1および第2圧縮装置を駆動するために前記第1及び第2圧縮室を貫通して設置される回転軸と、前記第1及び第2シリンダーボディーの間に介在される区画板と、前記区画板の反対側に設けられ、前記第1及び第2圧縮室の開口をそれぞれ閉鎖しながら前記回転軸を支持する第1及び第2軸支部材とを含むことを特徴とする。   Also, first and second cylinder bodies for forming the first and second compression chambers, first and second compression devices installed in the first and second compression chambers, and the first And a rotary shaft installed through the first and second compression chambers to drive the second compression device, a partition plate interposed between the first and second cylinder bodies, and the partition plate And first and second shaft support members that support the rotating shaft while closing the openings of the first and second compression chambers, respectively.

また、前記連通孔は、前記区画板に形成されることを特徴とする。   The communication hole is formed in the partition plate.

また、前記第1及び第2空洞部は、前記連通孔と対向する位置で、前記第1及び第2軸支部材の内面に形成されることを特徴とする。   The first and second cavities are formed on the inner surfaces of the first and second shaft support members at positions facing the communication holes.

また、前記第1及び第2圧縮装置は、前記第1及び第2圧縮室内の前記回転軸にそれぞれ反対方向に偏心される第1及び第2偏心部と、前記第1及び第2圧縮室の前記第1及び第2偏心部の外面にそれぞれ結合される第1及び第2リングピストンと、前記第1及び第2リングピストンの回転によって、半径方向に線状運動をしながら前記第1及び第2圧縮室の内部空間を区画する第1及び第2ベーンとを含むことを特徴とする。   The first and second compression devices include first and second eccentric portions that are eccentric in opposite directions with respect to the rotation shafts in the first and second compression chambers, and the first and second compression chambers, respectively. The first and second ring pistons coupled to the outer surfaces of the first and second eccentric parts, respectively, and the first and second ring pistons while performing linear motion in a radial direction by rotation of the first and second ring pistons. The first and second vanes that define the internal space of the two compression chambers are included.

また、前記連通孔及び前記第1及び第2空洞部の最大幅は、前記リングピストンの半径方向の厚さよりも小さいことを特徴とする。   The maximum width of the communication hole and the first and second cavities is smaller than the radial thickness of the ring piston.

また、本発明による多気筒回転圧縮機は、相互区画された第1及び第2圧縮室と、前記第1及び第2圧縮室内で反対方向に偏心された状態で圧縮動作を行う第1及び第2圧縮装置と、前記第1及び第2圧縮室の内部にそれぞれ連通される第1及び第2吸入口と、前記第1及び第2吸入口と隣接して位置され、前記第1及び第2圧縮室を連通させる連通孔とを含むことを特徴とする。   The multi-cylinder rotary compressor according to the present invention includes a first and a second compression chamber that are partitioned from each other, and a first and a second that perform a compression operation while being eccentric in opposite directions in the first and second compression chambers. Two compressors, first and second suction ports communicating with the first and second compression chambers, respectively, and adjacent to the first and second suction ports, the first and second suction ports And a communication hole communicating with the compression chamber.

本発明による多気筒回転圧縮機は、各圧縮室の吸入口の大きさが制限的である場合も、各吸入口を通して各圧縮室に吸入されるガスが連通孔を通して共有されるため、各圧縮室の吸入要求量が最大になる時点でも各圧縮室に吸入されるガス量を充分に確保することで、吸入損失を防止できるという効果がある。   In the multi-cylinder rotary compressor according to the present invention, the gas sucked into each compression chamber through each suction port is shared through the communication hole even when the size of the suction port of each compression chamber is limited. Even when the required suction amount of the chamber becomes maximum, it is possible to prevent a suction loss by sufficiently securing the amount of gas sucked into each compression chamber.

また、本発明は、各圧縮室へのガス吸入が円滑であるため、各吸入口の吸入流動抵抗による吸入騷音の発生を最小化できるという効果がある。   Further, the present invention has an effect of minimizing the generation of suction noise due to the suction flow resistance of each suction port because the gas suction into each compression chamber is smooth.

また、本発明は、各吸入口に隣接した位置で各圧縮室の内面に設けられる第1及び第2空洞部がヘルムホルツ共鳴器の役割をするため、吸入騷音を一層低減できるという効果がある。   In addition, the present invention has the effect of further reducing suction noise, since the first and second cavities provided on the inner surface of each compression chamber at positions adjacent to each suction port serve as Helmholtz resonators. .

以下、本発明の好ましい実施の形態を図面に基づいて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明による多気筒回転圧縮機は、図1に示すように、回転力を発生するために密閉容器10の内側上部に設置される電動機構部20と、密閉容器10の内側下部に設置され、 回転軸21を通して電動機構部20に連結される圧縮機構部30とを備える。   As shown in FIG. 1, the multi-cylinder rotary compressor according to the present invention is installed at an electric mechanism portion 20 installed at the upper part inside the sealed container 10 in order to generate a rotational force, and at an inner lower part of the sealed container 10, And a compression mechanism unit 30 connected to the electric mechanism unit 20 through the rotation shaft 21.

電動機構部20は、密閉容器10の内面に固定される円筒状の固定子22と、この固定子22の内部に回転自在に設置され、その中心部が回転軸21に結合される回転子23とを含む。   The electric mechanism unit 20 is a cylindrical stator 22 fixed to the inner surface of the hermetic container 10, and a rotor 23 that is rotatably installed inside the stator 22 and has a central portion coupled to the rotating shaft 21. Including.

圧縮機構部30は、図1乃至図3に示すように、円筒状の第1圧縮室31が内部に形成された上部の第1シリンダーボディー33と、円筒状の第2圧縮室32が内部に形成された下部の第2シリンダーボディー34と、ガスの圧縮動作を行うために第1圧縮室31および第2圧縮室32の内部にそれぞれ設置される第1及び第2圧縮装置40,50とを備える。電動機構部20から延長される回転軸21は、各圧縮室31,32内の圧縮装置40,50を動作するために、第1及び第2圧縮室31,32の中心を貫通する形態で設置される。   As shown in FIGS. 1 to 3, the compression mechanism section 30 includes an upper first cylinder body 33 in which a cylindrical first compression chamber 31 is formed, and a cylindrical second compression chamber 32 disposed therein. A lower second cylinder body 34 formed, and first and second compression devices 40 and 50 installed in the first compression chamber 31 and the second compression chamber 32, respectively, for performing a gas compression operation. Prepare. The rotating shaft 21 extended from the electric mechanism unit 20 is installed in a form penetrating through the centers of the first and second compression chambers 31 and 32 in order to operate the compression devices 40 and 50 in the compression chambers 31 and 32. Is done.

また、圧縮機構部30は、上部の第1圧縮室31と下部の第2圧縮室32とを区画するために、第1シリンダーボディー33と第2シリンダーボディー34との間に介在される区画板35と、第1圧縮室31の上側開口および第2圧縮室32の下側開口を閉鎖するとともに、回転軸21を支持するために、第1シリンダーボディー33の上部および第2シリンダーボディー34の下部にそれぞれ装着される第1及び第2軸支部材36,37とを含む。   Further, the compression mechanism section 30 is a partition plate interposed between the first cylinder body 33 and the second cylinder body 34 in order to partition the upper first compression chamber 31 and the lower second compression chamber 32. 35, and an upper opening of the first compression chamber 31 and a lower opening of the second compression chamber 32, and an upper portion of the first cylinder body 33 and a lower portion of the second cylinder body 34 for supporting the rotating shaft 21. And first and second shaft support members 36 and 37, respectively.

第1及び第2圧縮室31,32の内部に設置される第1及び第2圧縮装置40,50は、第1及び第2圧縮室31,32の回転軸21の外面に設けられた第1及び第2偏心部41,51と、その外面が各圧縮室31,32の内面に接した状態で第1及び第2偏心部41,51が回転するように、第1及び第2偏心部41,51の外面にそれぞれ回転自在に結合された第1及び第2リングピストン42,52と、第1及び第2リングピストン42,52の回転によって第1及び第2圧縮室31,32の半径方向に線状運動をしながら、各圧縮室31,32の内部空間を吸入側と吐出側とに区画する第1及び第2ベーン43,53とを含む(図2および図3を参照)。このとき、回転軸21の外面に設けられる第1偏心部41および第2偏心部51は、互いに反対方向に偏心される。よって、回転軸の両側が均衡を維持した状態で圧縮動作が行われるため、回転トルクの変化を最小化するとともに、振動発生を減少することができる。   The first and second compression devices 40, 50 installed inside the first and second compression chambers 31, 32 are the first provided on the outer surface of the rotating shaft 21 of the first and second compression chambers 31, 32. The first and second eccentric parts 41 and 51 and the first and second eccentric parts 41 and 51 rotate such that the first and second eccentric parts 41 and 51 rotate in a state where the outer surfaces thereof are in contact with the inner surfaces of the compression chambers 31 and 32. , 51 are coupled to the outer surfaces of the first and second ring pistons 42, 52, respectively, and the first and second ring pistons 42, 52 are rotated in the radial direction of the first and second compression chambers 31, 32. The first and second vanes 43 and 53 that divide the internal space of the compression chambers 31 and 32 into a suction side and a discharge side while performing linear motion (see FIGS. 2 and 3). At this time, the 1st eccentric part 41 and the 2nd eccentric part 51 which are provided in the outer surface of the rotating shaft 21 are eccentric in the mutually opposite direction. Therefore, since the compression operation is performed in a state where both sides of the rotating shaft are kept in balance, it is possible to minimize the change in the rotational torque and reduce the generation of vibration.

また、第1及び第2シリンダーボディー33,34には、その内部にガスを流入させるための第1及び第2吸入口61,62がそれぞれ形成され、これら吸入口61,62には、第1及び第2吸入管63,64がそれぞれ連結される。また、上部の第1軸支部材36および下部の第2軸支部材37には、加圧されたガスを吐出させるための第1吐出口65および第2吐出口66が形成される(図2および図3を参照)。図1において、符号13は、吸入配管11に設置されるアキュムレータを示し、12は、密閉容器10内の圧縮冷媒を外部に案内するための吐出配管をそれぞれ示している。   The first and second cylinder bodies 33 and 34 are formed with first and second suction ports 61 and 62 for allowing gas to flow into the first and second cylinder bodies 33 and 34, respectively. The second suction pipes 63 and 64 are connected to each other. Further, the upper first shaft support member 36 and the lower second shaft support member 37 are formed with a first discharge port 65 and a second discharge port 66 for discharging pressurized gas (FIG. 2). And see FIG. In FIG. 1, the code | symbol 13 shows the accumulator installed in the suction piping 11, and 12 has each shown the discharge piping for guiding the compressed refrigerant in the airtight container 10 outside.

この多気筒回転圧縮機は、電動機構部20の動作により、第1及び第2圧縮室31,32内の第1及び第2偏心部41,51が互いに反対位置を維持しながら矢印A方向に回転すると、第1及び第2リングピストン42,52が各圧縮室31,32内で偏心回転しながら第1及び第2吸入口61,62からガスを吸入し、第1及び第2吐出口65,66に圧縮ガスを吐出することで圧縮が行われる。   The multi-cylinder rotary compressor is operated in the direction of arrow A while the first and second eccentric portions 41 and 51 in the first and second compression chambers 31 and 32 maintain opposite positions by the operation of the electric mechanism unit 20. When rotating, the first and second ring pistons 42 and 52 suck gas from the first and second suction ports 61 and 62 while rotating eccentrically in the compression chambers 31 and 32, and the first and second discharge ports 65. , 66 is compressed by discharging compressed gas.

上記のようにガスの圧縮動作が行われるとき、各圧縮室31,32は、第1偏心部41と第2偏心部51とが互いに反対方向に偏心されるため、いずれか一側の吸入体積が他側よりも大きい状態を維持するが、このような現象は、二つの圧縮室31,32内で180度の位相差を有して交互に繰り返される。すなわち、図2に示すように、第1圧縮室31の吸入体積が増加した状態であると、図3に示すように、第2圧縮室32の吸入体積が減少する。また、この状態で、回転軸21が矢印A方向に180度さらに回転すると、第2圧縮室32の吸入体積が増加し、第1圧縮室31の吸入体積が減少する。このように、各圧縮室31,32の吸入体積が互いに反対の様態を維持するため、いずれか一側の圧縮室の吸入体積が増加してガスの吸入要求量が大きくなると、他側の圧縮室の吸入体積が減少してガスの吸入要求量が減少する。   When the gas compression operation is performed as described above, each of the compression chambers 31 and 32 has the first eccentric portion 41 and the second eccentric portion 51 which are eccentric in opposite directions, so that one of the suction volumes However, such a phenomenon is repeated alternately with a phase difference of 180 degrees in the two compression chambers 31 and 32. That is, as shown in FIG. 2, when the suction volume of the first compression chamber 31 is increased, the suction volume of the second compression chamber 32 is decreased as shown in FIG. In this state, when the rotating shaft 21 further rotates 180 degrees in the direction of arrow A, the suction volume of the second compression chamber 32 increases and the suction volume of the first compression chamber 31 decreases. As described above, the suction volumes of the compression chambers 31 and 32 are maintained in the opposite states. Therefore, when the suction volume of one of the compression chambers increases and the required suction amount of the gas increases, The suction volume of the chamber is reduced, and the required amount of gas suction is reduced.

また、各圧縮室31,32の吸入体積が急激に増加する時点では、各吸入口61,62を通したガスの吸入要求量が急激に増加する反面、各吸入口61,62の大きさが制限的であるため、吸入されるガスの量が不充分であって吸入損失が発生する。このような問題を解決するために、本発明は、図4および図5に示すように、二つの吸入口61,62に隣接する区画板35に連通孔71を備えており、この連通孔71によって第1および第2圧縮室31,32が互いに連通される。   Further, when the suction volume of each compression chamber 31, 32 increases rapidly, the required suction amount of gas through each suction port 61, 62 increases rapidly, but the size of each suction port 61, 62 is large. Due to the limitation, the amount of gas to be inhaled is insufficient and inhalation loss occurs. In order to solve such a problem, as shown in FIGS. 4 and 5, the present invention is provided with a communication hole 71 in the partition plate 35 adjacent to the two suction ports 61 and 62, and this communication hole 71. Thus, the first and second compression chambers 31 and 32 are communicated with each other.

その結果、いずれか一側の圧縮室の吸入体積が増加してガスの吸入要求量が大きくなると、相対的に吸入体積が小さくてガスの吸入要求量が少ない他側の圧縮室のガスは、連通孔71を通して吸入要求量(または吸入体積)の大きい圧縮室側に供給されるため、吸入損失を防止できる。すなわち、各圧縮室31,32の吸入口61,62の大きさが制限的である場合も、各吸入口61,62を通して各圧縮室31,32に吸入されるガスが連通孔71を通して共有されるため、各圧縮室31,32の吸入要求量が最大になる時点でも、各圧縮室31,32に吸入されるガス量を充分に確保することで、吸入損失を防止できる。   As a result, when the suction volume of the compression chamber on either side increases and the required amount of gas suction increases, the gas in the compression chamber on the other side with a relatively small suction volume and a low required gas suction amount becomes Since it is supplied to the compression chamber side through which the suction required amount (or suction volume) is large through the communication hole 71, suction loss can be prevented. That is, even when the suction ports 61 and 62 of the compression chambers 31 and 32 are limited in size, the gas sucked into the compression chambers 31 and 32 through the suction ports 61 and 62 is shared through the communication hole 71. Therefore, even when the required suction amount of each compression chamber 31, 32 is maximized, the suction loss can be prevented by sufficiently securing the amount of gas sucked into each compression chamber 31, 32.

例えば、第1圧縮室31の吸入体積が大きくなってガスの吸入要求量が急激に増加する場合、第1吸入口61を通して第1圧縮室31の内部に吸入されるガスだけでなく、第2吸入口62を通して第2圧縮室32の内部に流入されるガスの一部が連通孔71を通して第1圧縮室31の吸入側に流入されるため、第1圧縮室31の吸入損失が防止される。その反対に、第2圧縮室32の吸入体積が大きくなる場合、第1吸入口61を通して吸入されたガスの一部が連通孔71を通して第2圧縮室32に流入されるため、第2圧縮室32の吸入損失が防止される。   For example, when the suction volume of the first compression chamber 31 is increased and the gas suction request amount is rapidly increased, not only the gas sucked into the first compression chamber 31 through the first suction port 61 but also the second Part of the gas that flows into the second compression chamber 32 through the suction port 62 flows into the suction side of the first compression chamber 31 through the communication hole 71, so that suction loss of the first compression chamber 31 is prevented. . On the other hand, when the suction volume of the second compression chamber 32 is increased, a part of the gas sucked through the first suction port 61 flows into the second compression chamber 32 through the communication hole 71. 32 inhalation losses are prevented.

ここで、図4および図5に示すように、連通孔71は、二つの吸入口61,62に隣接する第1および第2圧縮室31,32内の区画板35に形成され、二つの圧縮室31,32を連通させる。また、図7に示すように、連通孔72は、区画板35だけでなく、二つのシリンダーボディー33,34の各圧縮室31,32の内壁側にも形成されるため、二つの吸入口61,62の出口が互いに連通され、本実施形態と同一の効果を発揮できる。しかしながら、図7の構成によると、二つの吸入口61,62の出口側を連通させるために、区画板35だけでなく、二つのシリンダーボディー33,34にも連通孔72を加工すべきであって、製造工程が煩雑になる。そのため、図4に示すように、連通孔71は、二つの圧縮室31,32の内部が区画板35によって直接連通されるように、区画板35に形成されることが好ましい。   Here, as shown in FIGS. 4 and 5, the communication hole 71 is formed in the partition plate 35 in the first and second compression chambers 31, 32 adjacent to the two suction ports 61, 62, and two compressions are made. The chambers 31 and 32 are connected. 7, the communication hole 72 is formed not only on the partition plate 35 but also on the inner wall side of the compression chambers 31 and 32 of the two cylinder bodies 33 and 34. , 62 are communicated with each other, and the same effect as the present embodiment can be exhibited. However, according to the configuration of FIG. 7, the communication holes 72 should be processed not only in the partition plate 35 but also in the two cylinder bodies 33 and 34 in order to communicate the outlet sides of the two suction ports 61 and 62. Thus, the manufacturing process becomes complicated. Therefore, as shown in FIG. 4, the communication hole 71 is preferably formed in the partition plate 35 so that the insides of the two compression chambers 31 and 32 are directly communicated by the partition plate 35.

また、この連通孔71は、図4に示すように、その最大幅が第1及び第2リングピストン42,52の半径方向の厚さよりも小さく形成されるべきである。もし、連通孔71の幅が二つのリングピストン42,52の厚さよりも大きいと、各リングピストン42,52が連通孔71に位置する時点で、圧縮ガスが各圧縮室31,32から各リングピストン42,52の内部空間に連通孔71を通して流れるため、圧縮効率が低下することになる。   Further, as shown in FIG. 4, the communication hole 71 should have a maximum width smaller than the radial thickness of the first and second ring pistons 42 and 52. If the width of the communication hole 71 is larger than the thickness of the two ring pistons 42, 52, the compressed gas flows from the compression chambers 31, 32 to the respective rings when the ring pistons 42, 52 are positioned in the communication holes 71. Since it flows through the communication hole 71 into the internal space of the pistons 42 and 52, the compression efficiency is lowered.

また、本発明による多気筒回転圧縮機は、吸入騷音を低減するために、各圧縮室31,32の内面から所定深さに陥没して形成される第1空洞部73および第2空洞部74を備える。これら第1及び第2空洞部73,74は、各吸入口61,62に隣接して連通孔71に対向する位置で、第1及び第2軸支部材36,37の内面にそれぞれ形成される。   Further, the multi-cylinder rotary compressor according to the present invention includes a first cavity portion 73 and a second cavity portion that are formed to be depressed to a predetermined depth from the inner surfaces of the compression chambers 31 and 32 in order to reduce suction noise. 74. These first and second cavities 73 and 74 are formed on the inner surfaces of the first and second shaft support members 36 and 37 at positions facing the communication holes 71 adjacent to the suction ports 61 and 62, respectively. .

このような構成によると、各圧縮室31,32の吸入初期段階で吸入ガスの流動抵抗によって騷音が発生するとき、第1及び第2空洞部73,74がヘルムホルツ共鳴器の役割をすることで、ガスの吸入騷音を低減するようになる。一般的なヘルムホルツ共鳴器は、小さな入口を備えた空洞からなるが、この小さな入口を通して流入される特定帯域の入射波が空洞の内部に入ると、その入射波と反対の波形を有する新しい反射波が発生し、この反射波が空洞の外部に出ながら入射波を消滅する原理によって、騷音および振動を減衰するようになる。   According to such a configuration, the first and second cavities 73 and 74 serve as Helmholtz resonators when noise is generated by the flow resistance of the suction gas at the initial suction stage of the compression chambers 31 and 32. As a result, the noise of gas inhalation is reduced. A typical Helmholtz resonator consists of a cavity with a small entrance, but when a specific band of incident waves flowing through the small entrance enters the interior of the cavity, a new reflected wave having a waveform opposite to that of the incident wave. The noise and vibration are attenuated by the principle that the reflected wave disappears while the reflected wave goes out of the cavity.

本発明では、第1及び第2空洞部73,74が、上述したヘルムホルツ共鳴器の役割をする。例えば、図6に示すように、第2リングピストン52が第2空洞部74を通過するとき、第2空洞部74の入口74aは、第2リングピストン52によって遮蔽された状態で部分的に開放される。このとき、部分的に開放される第2空洞部74の入口74aがヘルムホルツ共鳴器の小さな入口の役割をし、第2空洞部74の内部空間74bがヘルムホルツ共鳴器の空洞の役割をする。その結果、第2空洞部74は、ヘルムホルツ共鳴器の役割をしながら第2圧縮室32の吸入騷音を低減し、第1空洞部73も、上記のような原理によって第1圧縮室31の吸入騷音を低減する。   In the present invention, the first and second cavities 73 and 74 serve as the Helmholtz resonator described above. For example, as shown in FIG. 6, when the second ring piston 52 passes through the second cavity 74, the inlet 74 a of the second cavity 74 is partially opened while being shielded by the second ring piston 52. Is done. At this time, the entrance 74a of the second cavity 74 that is partially opened serves as a small entrance of the Helmholtz resonator, and the internal space 74b of the second cavity 74 serves as a cavity of the Helmholtz resonator. As a result, the second cavity portion 74 serves as a Helmholtz resonator to reduce the suction noise in the second compression chamber 32, and the first cavity portion 73 also has the principle of the first compression chamber 31 as described above. Reduce inhalation noise.

上記のような原理によると、第1空洞部73および第2空洞部74を各吸入口61,62に隣接して位置することなく、各圧縮室31,32から発生する騷音を低減するようになる。しかしながら、この回転圧縮機におけるガスの吸入に関連した騷音は、吸入流動抵抗が最も大きい各吸入口61,62側から発生することが多い。特に、この回転圧縮機は、吸入動作が開始される瞬間、各吸入口61,62を通して吸入されるガスの流動変化が大きいため、吸入動作初期の吸入騷音も大きい。したがって、本実施形態に示したように、吸入騷音の減衰効果を高めるために、第1空洞部73および第2空洞部74は、各吸入口61,62に隣接して位置されることが好ましい。   According to the principle as described above, noise generated from the compression chambers 31 and 32 is reduced without the first cavity 73 and the second cavity 74 being positioned adjacent to the suction ports 61 and 62. become. However, noise associated with gas suction in this rotary compressor often occurs from the suction ports 61 and 62 side having the largest suction flow resistance. In particular, since the rotary compressor has a large flow change of the gas sucked through the suction ports 61 and 62 at the moment when the suction operation is started, the suction noise in the initial stage of the suction operation is also large. Therefore, as shown in the present embodiment, the first cavity 73 and the second cavity 74 may be positioned adjacent to the suction ports 61 and 62 in order to enhance the attenuation effect of the suction noise. preferable.

本発明の一実施形態による多気筒回転圧縮機の構成を示した断面図である。It is sectional drawing which showed the structure of the multi-cylinder rotary compressor by one Embodiment of this invention. 図1のII-II’線断面図である。It is the II-II 'sectional view taken on the line of FIG. 図1のIII-III’線断面図である。FIG. 3 is a sectional view taken along line III-III ′ of FIG. 1. 図1のIV部の詳細図である。FIG. 4 is a detailed view of a part IV in FIG. 1. 本発明による多気筒回転圧縮機の連通孔及び第1及び第2空洞部の構成を示した斜視図である。It is the perspective view which showed the structure of the communicating hole and the 1st and 2nd cavity part of the multicylinder rotary compressor by this invention. 本発明による多気筒回転圧縮機のリングピストンが空洞部の一部を閉鎖した状態を示した図である。It is the figure which showed the state which the ring piston of the multicylinder rotary compressor by this invention closed a part of cavity. 本発明の他の実施形態による多気筒回転圧縮機の構成を示した断面図である。It is sectional drawing which showed the structure of the multi-cylinder rotary compressor by other embodiment of this invention.

符号の説明Explanation of symbols

10 密閉容器
11 吸入配管
12 吐出配管
13 アキュムレータ
20 電動機構部
21 回転軸
22 固定子
23 回転子
30 圧縮機構部
31,32 第1及び第2圧縮室
33,34 第1及び第2シリンダーボディー
35 区画板
36,37 第1及び第2軸支部材
40,50 第1及び第2圧縮装置
41,51 第1及び第2偏心部
42,52 リングピストン
61,62 吸入口
63,64 第1及び第2吸入管
71 連通孔
73,74 第1及び第2空洞部
DESCRIPTION OF SYMBOLS 10 Airtight container 11 Intake piping 12 Discharge piping 13 Accumulator 20 Electric mechanism part 21 Rotating shaft 22 Stator 23 Rotor 30 Compression mechanism parts 31 and 32 1st and 2nd compression chambers 33 and 34 1st and 2nd cylinder body 35 Partition Plates 36, 37 First and second shaft support members 40, 50 First and second compression devices 41, 51 First and second eccentric portions 42, 52 Ring pistons 61, 62 Suction ports 63, 64 First and second Suction pipe 71 communication holes 73, 74 first and second cavities

Claims (14)

相互区画された第1及び第2圧縮室と、前記第1及び第2圧縮室の内部にそれぞれ連通される第1及び第2吸入口と、前記第1及び第2吸入口に隣接して位置され、前記第1圧縮室と前記第2圧縮室とを連通させる連通孔とを含むことを特徴とする多気筒回転圧縮機。   Positioned adjacent to the first and second suction ports, the first and second suction chambers separated from each other, the first and second suction ports communicating with the insides of the first and second compression chambers, respectively. A multi-cylinder rotary compressor comprising a communication hole for communicating the first compression chamber and the second compression chamber. 前記連通孔に隣接した位置で、前記第1及び第2圧縮室の内面に所定深さに陥没して形成される第1及び第2空洞部をさらに含むことを特徴とする請求項1記載の多気筒回転圧縮機。   The first and second cavities formed in the inner surfaces of the first and second compression chambers at a predetermined depth at a position adjacent to the communication hole. Multi-cylinder rotary compressor. 前記第1及び第2空洞部は、前記連通孔に対向して位置されることを特徴とする請求項2記載の多気筒回転圧縮機。   The multi-cylinder rotary compressor according to claim 2, wherein the first and second cavities are positioned to face the communication hole. 前記第1及び第2圧縮室を形成するための第1及び第2シリンダーボディーと、前記第1及び第2圧縮室の内部に設置される第1及び第2圧縮装置と、前記第1および第2圧縮装置を駆動するために前記第1及び第2圧縮室を貫通して設置される回転軸と、前記第1及び第2シリンダーボディーの間に介在される区画板と、前記区画板の反対側に設けられ、前記第1及び第2圧縮室の開口をそれぞれ閉鎖しながら前記回転軸を支持する第1及び第2軸支部材とを含むことを特徴とする請求項3記載の多気筒回転圧縮機。   First and second cylinder bodies for forming the first and second compression chambers; first and second compression devices installed in the first and second compression chambers; 2 A rotary shaft installed through the first and second compression chambers to drive the compression device, a partition plate interposed between the first and second cylinder bodies, and opposite the partition plate 4. The multi-cylinder rotation according to claim 3, further comprising first and second shaft support members that are provided on a side and support the rotation shaft while closing the openings of the first and second compression chambers, respectively. Compressor. 前記連通孔は、前記区画板に形成され、前記第1及び第2空洞部は、前記連通孔に対向した位置で、前記第1及び第2軸支部材の内面に形成されることを特徴とする請求項4記載の多気筒回転圧縮機。   The communication hole is formed in the partition plate, and the first and second cavities are formed on the inner surfaces of the first and second shaft support members at positions facing the communication hole. The multi-cylinder rotary compressor according to claim 4. 前記第1及び第2圧縮装置は、前記第1及び第2圧縮室内の前記回転軸にそれぞれ反対方向に偏心される第1及び第2偏心部と、前記第1及び第2圧縮室の前記第1及び第2偏心部の外面にそれぞれ結合される第1及び第2リングピストンと、前記第1及び第2リングピストンの回転によって、半径方向に線状運動をしながら前記第1及び第2圧縮室の内部空間を区画する第1及び第2ベーンとを含むことを特徴とする請求項5記載の多気筒回転圧縮機。   The first and second compression devices include first and second eccentric portions that are eccentric in opposite directions to the rotation shafts in the first and second compression chambers, respectively, and the first and second compression chambers. First and second ring pistons coupled to outer surfaces of the first and second eccentric parts, respectively, and the first and second compressions while linearly moving in a radial direction by rotation of the first and second ring pistons. 6. The multi-cylinder rotary compressor according to claim 5, further comprising first and second vanes that define an internal space of the chamber. 前記連通孔及び前記第1及び第2空洞部の最大幅は、前記リングピストンの半径方向の厚さよりも小さいことを特徴とする請求項6記載の多気筒回転圧縮機。   The multi-cylinder rotary compressor according to claim 6, wherein a maximum width of the communication hole and the first and second cavities is smaller than a radial thickness of the ring piston. 前記第1及び第2圧縮室を形成するための第1及び第2シリンダーボディーと、前記第1及び第2圧縮室の内部に設置される第1及び第2圧縮装置と、前記第1及び第2圧縮装置を駆動するために前記第1及び第2圧縮室を貫通して設置される回転軸と、前記第1及び第2シリンダーボディーの間に介在される区画板とを含み、
前記連通孔は、前記第1及び第2吸入口に隣接する前記区画板に形成されることを特徴とする請求項1記載の多気筒回転圧縮機。
First and second cylinder bodies for forming the first and second compression chambers; first and second compression devices installed in the first and second compression chambers; A rotary shaft installed through the first and second compression chambers to drive the two compression devices, and a partition plate interposed between the first and second cylinder bodies,
The multi-cylinder rotary compressor according to claim 1, wherein the communication hole is formed in the partition plate adjacent to the first and second suction ports.
前記第1及び第2圧縮装置は、前記回転軸と反対方向に偏心されるように、前記第1及び第2圧縮室内の前記回転軸に設けられる第1及び第2偏心部と、前記第1及び第2圧縮室内の前記第1及び第2偏心部の外面にそれぞれ結合される第1及び第2リングピストンと、前記第1及び第2リングピストンの回転によって、半径方向に線状運動をしながら前記第1及び第2圧縮室の内部空間を区画する第1及び第2ベーンとを含むことを特徴とする請求項8記載の多気筒回転圧縮機。   The first and second compression devices are provided with first and second eccentric portions provided on the rotary shafts in the first and second compression chambers so as to be eccentric in a direction opposite to the rotary shaft, and the first And the first and second ring pistons coupled to the outer surfaces of the first and second eccentric portions in the second compression chamber, respectively, and the first and second ring pistons rotate in a linear motion in the radial direction. 9. The multi-cylinder rotary compressor according to claim 8, further comprising first and second vanes that divide an internal space of the first and second compression chambers. 前記連通孔及び前記第1及び第2空洞部の最大幅は、前記リングピストンの半径方向の厚さよりも小さいことを特徴とする請求項9記載の多気筒回転圧縮機。   The multi-cylinder rotary compressor according to claim 9, wherein a maximum width of the communication hole and the first and second cavities is smaller than a radial thickness of the ring piston. 相互区画された第1及び第2圧縮室と、前記第1及び第2圧縮室内で反対方向に偏心された状態で圧縮動作を行う第1及び第2圧縮装置と、前記第1及び第2圧縮室の内部にそれぞれ連通される第1及び第2吸入口と、前記第1及び第2吸入口に隣接して位置され、前記第1及び第2圧縮室を連通させる連通孔とを含むことを特徴とする多気筒回転圧縮機。   The first and second compression chambers that are partitioned from each other, the first and second compression devices that perform the compression operation in a state of being eccentric in opposite directions in the first and second compression chambers, and the first and second compression chambers A first suction port and a second suction port communicating with the interior of the chamber; and a communication hole located adjacent to the first and second suction ports and communicating with the first and second compression chambers. A featured multi-cylinder rotary compressor. 前記第1及び第2圧縮室の間を区画する区画板をさらに含み、
前記連通孔は、前記区画板に形成されることを特徴とする請求項11記載の多気筒回転圧縮機。
A partition plate for partitioning between the first and second compression chambers;
The multi-cylinder rotary compressor according to claim 11, wherein the communication hole is formed in the partition plate.
前記連通孔に隣接した位置で、前記第1及び第2圧縮室の内面に所定深さに陥没して形成される第1及び第2空洞部をさらに含むことを特徴とする請求項12記載の多気筒回転圧縮機。   13. The method according to claim 12, further comprising first and second cavities formed at a position adjacent to the communication hole and recessed to a predetermined depth on inner surfaces of the first and second compression chambers. Multi-cylinder rotary compressor. 前記第1及び第2空洞部は、前記連通孔に対向して位置されることを特徴とする請求項13記載の多気筒回転圧縮機。   The multi-cylinder rotary compressor according to claim 13, wherein the first and second cavities are positioned to face the communication hole.
JP2005188736A 2004-09-15 2005-06-28 Multi-cylinder rotary compressor Pending JP2006083844A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040073807A KR20060024934A (en) 2004-09-15 2004-09-15 Multi-cylinder type rotary compressor

Publications (1)

Publication Number Publication Date
JP2006083844A true JP2006083844A (en) 2006-03-30

Family

ID=36162549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188736A Pending JP2006083844A (en) 2004-09-15 2005-06-28 Multi-cylinder rotary compressor

Country Status (4)

Country Link
US (1) US20060056988A1 (en)
JP (1) JP2006083844A (en)
KR (1) KR20060024934A (en)
CN (1) CN1749569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386481B1 (en) * 2008-03-05 2014-04-18 엘지전자 주식회사 Hermetic compressor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052318A (en) * 2009-11-04 2011-05-11 株式会社电装 Compressor
DE102012112069A1 (en) * 2012-12-11 2014-06-12 Hella Kgaa Hueck & Co. pump
JP2016114049A (en) * 2014-12-15 2016-06-23 三星電子株式会社Samsung Electronics Co.,Ltd. Rotary compressor
JP6750286B2 (en) * 2016-04-13 2020-09-02 株式会社富士通ゼネラル Rotary compressor
US10030658B2 (en) * 2016-04-27 2018-07-24 Mark W. Wood Concentric vane compressor
US11480178B2 (en) 2016-04-27 2022-10-25 Mark W. Wood Multistage compressor system with intercooler
CN106168214A (en) * 2016-06-29 2016-11-30 珠海格力节能环保制冷技术研究中心有限公司 A kind of cylinder that turns increases enthalpy piston compressor and has its air conditioning system
US11339786B2 (en) 2016-11-07 2022-05-24 Mark W. Wood Scroll compressor with circular surface terminations
US11686309B2 (en) 2016-11-07 2023-06-27 Mark W. Wood Scroll compressor with circular surface terminations
CN107859623A (en) * 2017-10-23 2018-03-30 珠海格力节能环保制冷技术研究中心有限公司 Compressor and refrigeration system and air conditioner
CN108007025B (en) * 2017-11-20 2024-03-01 珠海格力节能环保制冷技术研究中心有限公司 Knockout, compressor, air conditioner system and have its air conditioner
KR101979450B1 (en) 2017-12-22 2019-05-16 엘지전자 주식회사 Rotary compressor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746085A (en) * 1980-09-03 1982-03-16 Matsushita Electric Ind Co Ltd Closed type rotary compressor
JPS5873993U (en) * 1981-11-12 1983-05-19 三菱電機株式会社 2 cylinder rotary compressor
US4537567A (en) * 1982-11-29 1985-08-27 Mitsubishi Denki Kabushiki Kaisha Rolling piston type compressor
JPS6270686A (en) * 1985-09-20 1987-04-01 Sanyo Electric Co Ltd Multicylinder rotary compressor
JPH0768951B2 (en) * 1987-01-20 1995-07-26 三菱重工業株式会社 Rotary compressor
JPH081182B2 (en) * 1987-02-19 1996-01-10 株式会社東芝 2-cylinder rotary compressor
JP2904572B2 (en) * 1990-10-31 1999-06-14 株式会社東芝 Multi-cylinder rotary compressor
JP3408005B2 (en) * 1995-01-30 2003-05-19 三洋電機株式会社 Multi-cylinder rotary compressor
TW336270B (en) * 1997-01-17 1998-07-11 Sanyo Electric Ltd Compressor and air conditioner
KR100286837B1 (en) * 1998-07-15 2001-05-02 구자홍 Resonator of a rotary compressor
JP2001132673A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Hermetic rotary compressor
CN1183329C (en) * 1999-11-05 2005-01-05 Lg电子株式会社 Sealed rotary compressor
JP2003269356A (en) * 2002-03-18 2003-09-25 Sanyo Electric Co Ltd Horizontal type rotary compressor
KR20050011541A (en) * 2003-07-23 2005-01-29 삼성전자주식회사 Variable capacity rotary compressor
KR20050031794A (en) * 2003-09-30 2005-04-06 삼성전자주식회사 Variable capacity rotary compressor
JP2006300048A (en) * 2005-03-24 2006-11-02 Matsushita Electric Ind Co Ltd Hermetic compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386481B1 (en) * 2008-03-05 2014-04-18 엘지전자 주식회사 Hermetic compressor

Also Published As

Publication number Publication date
US20060056988A1 (en) 2006-03-16
KR20060024934A (en) 2006-03-20
CN1749569A (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP2006083844A (en) Multi-cylinder rotary compressor
JPS61291797A (en) Rotary vane system pump
TWI518245B (en) Dry vacuum pump apparatus, exhaust unit, and silencer
JP2006083842A (en) Multi-cylinder compressor
JP4623089B2 (en) Screw compressor
KR20060024739A (en) Multi-cylinder type compressor
KR100315954B1 (en) Compressor
JP5263213B2 (en) Rotary compressor
JP2007040107A (en) Compressor
WO2021162039A1 (en) Compressor
JP5826686B2 (en) Gas compressor
JP2003278675A (en) Improved roots type rotary machine
JP2001280241A (en) Hermetically sealed compressor
JP6368165B2 (en) Vacuum pump device
JP6653732B2 (en) Vacuum pump unit
KR20070023152A (en) Multi-Cylinder Type Rotary Compressor
KR100844154B1 (en) Rotary compressor
CN107120275B (en) Compression mechanism and rotary compressor
CN216842226U (en) Compressor and cylinder thereof
JP2005226607A (en) Vane pump
JPH0821390A (en) Two-air cylinder rotary compressor
JP2017190762A (en) Compressor
JPH06257580A (en) Two-cylinder rotary compressor
KR200203908Y1 (en) Structure for reducing noise of rotary compressor
KR100351148B1 (en) Compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325