JPS6261794B2 - - Google Patents
Info
- Publication number
- JPS6261794B2 JPS6261794B2 JP13759279A JP13759279A JPS6261794B2 JP S6261794 B2 JPS6261794 B2 JP S6261794B2 JP 13759279 A JP13759279 A JP 13759279A JP 13759279 A JP13759279 A JP 13759279A JP S6261794 B2 JPS6261794 B2 JP S6261794B2
- Authority
- JP
- Japan
- Prior art keywords
- air passage
- wind turbine
- outer air
- passage forming
- roof
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000903 blocking effect Effects 0.000 claims description 16
- 238000010248 power generation Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Wind Motors (AREA)
Description
【発明の詳細な説明】 本発明は風車装置に関する。[Detailed description of the invention] The present invention relates to a wind turbine device.
従来の風車装置には各種の型式のものがある
が、それらの大部分は大きな鉄塔等に風車を取り
つけた型式のものである。したがつて、このよう
な風車装置では暴風などの強風、突風、乱流等か
ら風車を保護するための対策ならびに保守点検が
相当に困難であるという欠点がある。 There are various types of conventional wind turbine devices, but most of them are of the type in which the wind turbine is attached to a large steel tower or the like. Therefore, such a wind turbine device has the disadvantage that it is considerably difficult to take measures to protect the wind turbine from strong winds such as storms, gusts of wind, turbulence, etc., and to perform maintenance and inspection.
本発明の目的は、このような従来の風車装置に
おける技術上の難点を解消し、強風、乱流等から
風車を十分に保護することができると共に保守点
検も容易であり、また、風向の如何にかかわら
ず、効率よく発電可能な風車装置を提供すること
にある。 The purpose of the present invention is to solve the technical difficulties of such conventional wind turbine devices, to sufficiently protect the wind turbine from strong winds, turbulence, etc., to facilitate maintenance and inspection, and to enable the wind turbine to be easily maintained and inspected regardless of the wind direction. The purpose of the present invention is to provide a wind turbine device that can efficiently generate electricity regardless of the situation.
本発明は、上記の目的を達成するために、所定
間隔を置いて水平に配置された円環状の第1の床
と第1の屋根との間に垂直かつ放射状に多数の外
側風路形成用固定案内壁が設けられた円環体状の
外側風路形成構体部の内周部内に形成された円筒
状空間内に、風向方向に水平回転軸をもつた風車
の回転軸が向くように、風向指向機構と回動機構
とをそなえた風車回動機構部(風車、整流翼、案
内翼、風車および案内翼の可変ピツチ機構、風向
指向機構、等を含む)と風車に連結された風車回
転エネルギを他の動力に変換する動力変換機構部
が設けられていることを特徴とする。 In order to achieve the above object, the present invention provides a structure for forming a large number of external air channels vertically and radially between a first roof and a first floor in a circular shape, which are arranged horizontally at predetermined intervals. The rotation axis of the wind turbine having a horizontal rotation axis is directed in the direction of the wind direction, so that the rotation axis of the wind turbine is oriented in the cylindrical space formed within the inner peripheral part of the toroidal outer air passage forming structure provided with the fixed guide wall. A wind turbine rotation mechanism unit equipped with a wind direction directing mechanism and a rotating mechanism (including a wind turbine, a rectifying blade, a guide blade, a variable pitch mechanism for the wind turbine and guide blades, a wind direction directing mechanism, etc.) and a wind turbine rotation connected to the wind turbine. It is characterized by being provided with a power conversion mechanism section that converts energy into other power.
一般に、一方向に流れる流体中に円筒状物体を
置くときは、流体の当る正面には中心線の左右概
ね30゜の範囲に正圧、側面および背面には負圧が
生じ、かつ、側面の負圧は背面の負圧よりも大き
く、そのため外周に沿う逆流を生じ易く、多くの
場合、背面後方にカルマン渦を生じる。したがつ
て、円環状の第1の床および第1の屋根の間に垂
直かつ放射状に多数の外側風路形成用固定案内壁
が設けられた円環体状外側風路形成構体部の内周
部内に形成される円筒状空間内に風向にしたがつ
て自由に回転する風車回動機構部と、該風車に連
結された風車回転エネルギを他の動力に変換する
動力変換機構部を配置すれば、風上方向から外側
風路形成構体部に導入された正圧をもつた風は前
面側の外側風路形成用固定案内壁によつて収歛さ
れて風車回動機構部に達して、そこに配置されて
いる風車を回転させると共に負圧をもつた風の流
れは外側風路形成構体部の側面および背面から後
方に流れて行く。この正圧部と負圧部の境界は、
内筒状外面をもつた物体への層流の場合には、風
向正面より両側に角度にして約30゜の位置にあ
り、その近傍の圧力勾置は急岐であるが、本発明
のように、放射状の外側風路形成用固定案内壁を
周辺部に有し、内側の円筒状空間内に風車回動機
構部を有する円筒状空間の内部を流体が通過する
ようになつている場合には、流体抵抗、流速およ
び風車荷重等により一定ではないが、30゜より広
くなるのが一般である。また、自然風は、風の主
方向の層流に三次元的渦流が複雑に重畳されて、
或る場所での風向は主方向を中心に断えず不規則
に動揺するが、風車回動機構部はこの風向変化に
後れて追従することになる。したがつて、正圧、
負圧の境界は確定し硬い。この時間的、場所的に
動揺する圧力勾配の乱れを避けるために、回動自
在な風車回動機構部の外周部に風車水平回転軸方
向を基準にして、その両側の中心角で約30゜±10
゜から90゜±10゜の間に放射状の外側風路形成用
固定案内壁からの風の流出入を遮断するための外
側風路形成構体部の内周面に近接する断面円弧状
外側風路遮断壁と該遮断壁の両側縁を前記風車回
動機構部内で結ぶ内側風路形成壁とからなる一対
の内側風路形成壁柱を設け、それらの間に整流
翼、風車案内翼等を設ければ、風力を効果的に取
り出すことができる。なお、本発明装置の設置環
境条件により、外側風路形成構体部の外径はその
内径の1.5倍以上に適宜選ぶことが望ましい。 Generally, when a cylindrical object is placed in a fluid flowing in one direction, positive pressure is generated on the front surface where the fluid hits, within a range of approximately 30 degrees to the left and right of the center line, negative pressure is generated on the sides and back, and The negative pressure is larger than the negative pressure on the back surface, so it tends to cause a backflow along the outer circumference, and in many cases, a Karman vortex is generated behind the back surface. Therefore, the inner periphery of the toroidal outer air passage forming structure section in which a large number of fixed guide walls for forming an outer air passage are provided vertically and radially between the annular first floor and the first roof. If a wind turbine rotation mechanism section that rotates freely according to the wind direction and a power conversion mechanism section that converts the wind turbine rotation energy connected to the wind turbine into other power are arranged in a cylindrical space formed inside the section. The wind with positive pressure introduced from the windward direction into the outer air passage forming structure is collected by the outer air passage forming fixed guide wall on the front side, reaches the wind turbine rotation mechanism, and is blown there. While rotating the wind turbine disposed in the wind turbine, the flow of wind having a negative pressure flows rearward from the side and back surfaces of the outer air passage forming structure. The boundary between this positive pressure part and negative pressure part is
In the case of laminar flow to an object with an inner and cylindrical outer surface, the angle is approximately 30 degrees on both sides from the front of the wind direction, and the pressure gradient in the vicinity is steep, but as in the present invention, In a case where the fluid passes through a cylindrical space having a fixed guide wall for forming a radial outer air passage at the periphery and a wind turbine rotation mechanism inside the inner cylindrical space. is not constant depending on fluid resistance, flow velocity, wind turbine load, etc., but it is generally wider than 30°. In addition, natural wind has three-dimensional eddies superimposed on the laminar flow in the main direction of the wind.
Although the wind direction at a certain location fluctuates irregularly around the main direction, the wind turbine rotation mechanism follows this change in wind direction. Therefore, positive pressure,
The boundaries of negative pressure are fixed and hard. In order to avoid this disturbance of the pressure gradient, which fluctuates in time and place, the outer periphery of the rotatable wind turbine rotation mechanism is set at a central angle of about 30° on both sides with reference to the wind turbine's horizontal rotation axis direction. ±10
An outer air passage having an arcuate cross section close to the inner circumferential surface of the outer air passage forming structure for blocking air inflow and outflow from the radial outer air passage forming fixed guide wall between 90° and 90° ± 10°. A pair of inner air passage forming wall columns are provided, each consisting of a blocking wall and an inner air passage forming wall connecting both side edges of the blocking wall within the wind turbine rotation mechanism, and a rectifier blade, a wind turbine guide blade, etc. are provided between them. If so, wind power can be effectively extracted. Note that, depending on the installation environmental conditions of the device of the present invention, it is desirable to appropriately select the outer diameter of the outer air passage forming structure to be at least 1.5 times its inner diameter.
また、上記の整流翼、案内翼は必らずしも必要
ではなく、上記円環状外側風路形成構体部の各外
側風路内に整流翼、案内翼を設けるようにしても
よい。 Moreover, the above-mentioned straightening vanes and guide vanes are not necessarily necessary, and a straightening vane and a guide vane may be provided in each outer air passage of the annular outer air passage forming structure.
以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.
実施例 1
第1図A,Bは本発明の一実施例の概略説明図
であり、図Aは図BのB−B断面図、図Bは図A
のA−A断面図である。Embodiment 1 FIGS. 1A and 1B are schematic explanatory diagrams of an embodiment of the present invention, and FIG.
It is an AA sectional view of.
所定の間隔を置いて水平に配置された円環状の
第1の床2と第1の屋根3の間に垂直かつ放射状
に所定の中心角をもたせて多数の外側風路形成用
固定案内壁4を設けた外側風路形成構体部1の内
側に形成された円筒状空間5内に、後述する風車
13と発電機とからなる風車発電機構部6が収納
されている。 A large number of fixed guide walls 4 for forming external air passages are provided vertically and radially at a predetermined center angle between an annular first floor 2 and a first roof 3 which are arranged horizontally at a predetermined interval. A wind turbine power generation mechanism section 6 consisting of a wind turbine 13 and a generator, which will be described later, is housed in a cylindrical space 5 formed inside the outer air passage forming structure section 1 provided with a wind turbine.
ここで、第1の屋根3の外径は第1の床2の外
径より大きくして外側風路形成用固定案内壁4の
上端部から廂状に突出させ、雨や雪の内部への侵
入を防ぐようにしてもよい。さらに、隣接する固
定案内壁4の間に形成された外側風路7の一部ま
たは全部を閉鎖するためのシヤツターなどの扉を
外側風路7の入口部に設けるか、あるいは固定案
内壁4の一部に蝶番を設けて外側風路7をふさぐ
ことのできる開閉可能なドア形式とし、豪雨や豪
雪の際の雨や雪の外側風路7内への侵入を防いだ
り、風車発電機構部6の保守、点検に際しての外
側風路7を遮断したりするようにしてもよい。 Here, the outer diameter of the first roof 3 is made larger than the outer diameter of the first floor 2 and protrudes from the upper end of the fixed guide wall 4 for forming an outer air passage to prevent rain and snow from entering the interior. It may also be designed to prevent intrusion. Furthermore, a door such as a shutter for closing part or all of the outer air passage 7 formed between adjacent fixed guide walls 4 is provided at the entrance of the outer air passage 7, or The door has a hinge that can be opened and closed to block the outside air passage 7, and prevents rain or snow from entering the outside air passage 7 during heavy rain or heavy snow. The outside air passage 7 may be shut off during maintenance and inspection.
風車発電機構部6は円環状の第1の床2および
第1の屋根3の内径よりやや小さい直径の円板状
の第2の床8および第2の屋根9が前記第1の床
2と第1の屋根3の間隔と同一間隔で配置され、
両者の間は断面円弧状の外側風路遮断壁101と
該外側風路遮断壁101の両側縁を内側で結ぶ内
側風路形成壁102からなる内側風路形成壁柱1
0および複数本の支柱11によつて結合されてお
り、左右2ケの壁柱10の中間に風車13の回転
軸が水平となるように該風車が連結された発電機
(図示せず)が内設されている風車発電機構部1
2が整流翼14、案内翼15などによつて支持さ
れた構造を有し、さらに、円板状の第2の床8と
第2の屋根9はそれぞれの中心に設けた回転軸1
6,17が外側風路形成構体部1の第1の床2お
よび第1の屋根3から中心方向に延ばされた支持
円板または支持腕18,19に取りつけた軸受2
0,21によつて支持され、全体が外側風路形成
構体部1内周部内の円筒状空間5内で自由に回動
できるように構成されると共に円板状第2の屋根
9の回転軸17を上方に延ばし、これに風車13
の回転軸と同一方向をもつた風向翼22が取りつ
けられており、風車13が常に風上方向に向くよ
うになつている。ここで、内側風路形成壁柱10
は風車13の水平回転軸を中心としてその両側の
中心角で約30゜±10゜から90゜±10゜の間を塞ぐ
ように設けられており、この間にある外側風路形
成用固定案内壁4の構成する外側風路7をその内
周面側の円弧状外側風路遮断壁101とその両側
縁を内側で結ぶ内側風路形成壁102からなる内
側風路形成壁柱10で遮断する。この遮断効果は
遮断された外側風路7のこれに対応する内周部を
閉塞したのと類似の効果を生じ、外側風路形成構
体部1の風下における負圧を助長し、渦流を少な
くする。また、風車13の効率を高めるために
は、通常の流体機械の概念に従つて前記風車13
および案内翼15の翼の可変ピツチ機構等を設け
ることもできる。 The wind turbine power generating mechanism section 6 has an annular first floor 2 and a disc-shaped second floor 8 and a second roof 9, each having a diameter slightly smaller than the inner diameter of the first roof 3, and the first floor 2. arranged at the same intervals as the intervals of the first roof 3,
Between them is an inner air passage forming wall column 1 consisting of an outer air passage blocking wall 10 1 having an arcuate cross section and an inner air passage forming wall 10 2 connecting both side edges of the outer air passage blocking wall 10 1 on the inside .
0 and a plurality of pillars 11, and a generator (not shown) to which the windmill 13 is connected so that the axis of rotation of the windmill 13 is horizontal is located between the two left and right wall pillars 10. Internally installed wind turbine power generation mechanism section 1
2 is supported by rectifying blades 14, guide blades 15, etc., and furthermore, the disk-shaped second floor 8 and the second roof 9 are supported by a rotating shaft 1 provided at the center of each.
6 and 17 are bearings 2 attached to support disks or support arms 18 and 19 extending toward the center from the first floor 2 and first roof 3 of the outer air passage forming structure 1;
0, 21, and is configured so that the entire structure can freely rotate within the cylindrical space 5 within the inner circumference of the outer air passage forming structure 1, and the rotation axis of the disc-shaped second roof 9. Extend 17 upwards and attach windmill 13 to it.
A wind direction blade 22 is attached that has the same direction as the rotation axis of the windmill 13, so that the windmill 13 always faces upwind. Here, the inner air passage forming wall column 10
are provided so as to cover a central angle between approximately 30°±10° and 90°±10° on both sides of the horizontal rotation axis of the wind turbine 13, and a fixed guide wall for forming an outer air passage between these The outer air passage 7 constituted by 4 is blocked by an inner air passage forming wall column 10 consisting of an arcuate outer air passage blocking wall 10 1 on the inner peripheral surface side and inner air passage forming walls 10 2 connecting both side edges thereof on the inside. do. This blocking effect produces an effect similar to that of blocking the corresponding inner peripheral portion of the blocked outer air passage 7, which promotes negative pressure in the lee of the outer air passage forming structure 1 and reduces vortex flow. . In addition, in order to increase the efficiency of the wind turbine 13, the wind turbine 13 may be
It is also possible to provide a variable pitch mechanism for the guide blades 15.
このような風車装置においては、外側風路形成
構体部、風車と発電機からなる風車発電機構部の
床、屋根等を乱流、突風、強風等に耐える鉄筋コ
ンクリート、鉄板等で構築でき、それらの内部に
風車等が収納されているので、風車等は、乱流や
風向の急変に伴うコリオリの力等にほんろうされ
ることなく、風力により有効に発電することがで
きる。 In such a wind turbine device, the outer air passage forming structure, the floor, roof, etc. of the wind turbine power generation mechanism consisting of the wind turbine and the generator can be constructed of reinforced concrete, iron plates, etc. that can withstand turbulence, gusts, strong winds, etc. Since a windmill or the like is housed inside, the windmill or the like is not affected by the Coriolis force caused by turbulence or sudden changes in wind direction, and can effectively generate electricity using wind power.
実施例 2
第2図A,Bは本発明の他の実施例の概略説明
図であり、図Aは図BのD−D断面図、図Bは図
AのC−C断面図である。図において第1図と対
応する部分は同一符号で示した。Embodiment 2 FIGS. 2A and 2B are schematic illustrations of another embodiment of the present invention, in which FIG. A is a sectional view taken along line DD in FIG. B, and FIG. In the figure, parts corresponding to those in FIG. 1 are designated by the same reference numerals.
図において、1は水平に配置された円環状の第
1の床2と第1の屋根3との間に垂直かつ放射状
に多数の外側風路形成用固定案内壁4が設けられ
た円環体状外側風路形成構体部、5は円環体状外
側風路形成構体部1の内周部内に形成された円筒
状空間、6は円板状の第2の床8と第2の屋根9
との間を2ケの外側風路遮断壁101と内側風路
形成壁102からなる内側風路形成壁柱10、複
数本の支柱11によつて結合され、2ケの壁柱1
0の間に整流翼14と案内翼15によつて風車1
3の回転軸が水平になるように風車13と発電機
が取りつけられている風車発電機構部である。こ
こまでの構造は第1図のものとほぼ同じである。
本実施例において第1図のものと異なるところは
風車発電機構部6の回転機構であり、この場合
は、円板状第2の床8の下側に円形レール23が
敷かれた円形台24があると同時に円板状第2の
床8の下面周辺部に円形レール23に合致するよ
うに車輪25が取りつけられており、さらに円板
状第2の屋根9の上面には風車13の回転軸方向
をもつた風向翼22が設けられ、風車発電機構部
6が風向に従つて自由に回転できるようになつて
いる。 In the figure, 1 is a toric body in which a large number of fixed guide walls 4 for forming outer air passages are provided vertically and radially between a horizontally arranged annular first floor 2 and a first roof 3. 5 is a cylindrical space formed within the inner peripheral part of the toroidal outer air passage forming structure 1; 6 is a disc-shaped second floor 8 and a second roof 9;
The two wall pillars 1 are connected by an inner air passage forming wall column 10 consisting of two outer air passage blocking walls 101 and an inner air passage forming wall 102 , and a plurality of supports 11.
The wind turbine 1 is
This is a wind turbine power generation mechanism section in which a wind turbine 13 and a generator are installed so that the rotation axis of the wind turbine 3 is horizontal. The structure up to this point is almost the same as that in FIG.
What differs from the one in FIG. 1 in this embodiment is the rotation mechanism of the wind turbine power generation mechanism section 6. In this case, a circular platform 24 on which a circular rail 23 is laid under the disk-shaped second floor 8 is used. At the same time, wheels 25 are attached to the periphery of the lower surface of the disc-shaped second floor 8 so as to match the circular rails 23, and wheels 25 are mounted on the upper surface of the disc-shaped second roof 9 to accommodate the rotation of the windmill 13. Wind direction blades 22 having an axial direction are provided so that the wind turbine power generating mechanism section 6 can freely rotate according to the wind direction.
実施例 3
出力を増すためには、第1図または第2図に示
した風車装置を風向翼を除いてその複数個を積み
重ねて、円環体状外側風路形成構体部1を相互に
固着すると共に風車発電機構部6も相互に回転可
能に連結した上、最上段の風車発電機構部6のみ
に風向翼22を設ければよい。第1図の形の装置
を積み重ねた形式の装置を第3図に示した。Embodiment 3 In order to increase the output, a plurality of the wind turbine devices shown in FIG. 1 or 2 are stacked on top of each other, excluding the wind direction blades, and the toroidal outer air passage forming structure parts 1 are fixed to each other. At the same time, the wind turbine power generation mechanism sections 6 are also rotatably connected to each other, and the wind direction blades 22 may be provided only on the wind turbine power generation mechanism section 6 at the uppermost stage. FIG. 3 shows an apparatus in which the apparatuses shown in FIG. 1 are stacked one on top of the other.
実施例 4
第4図は積み重ね方式の他の実施例の概略説明
図である。この実施例では他の実施例のように風
車13と発電機とを直結せず、風車13の回転を
歯車機構26を介して、下方に置かれた発電機又
は他の回転機械等27に直結する垂直回転軸28
に伝えるようにしたものである。この場合も1個
宛分離して使用することもできる。ここで、6′
は風車回転伝達機構部である。Embodiment 4 FIG. 4 is a schematic explanatory diagram of another embodiment of the stacking method. In this embodiment, unlike other embodiments, the windmill 13 is not directly connected to a generator, but the rotation of the windmill 13 is directly connected to a generator or other rotating machine 27 placed below via a gear mechanism 26. Vertical rotation axis 28
This is what I tried to convey to you. In this case, it is also possible to separate and use one piece. Here, 6′
is the wind turbine rotation transmission mechanism.
なお、本発明の装置において、風車の水平回転
軸を風上方向に向けるために、前記のような風向
翼を用いずに、別途に設けた風向検知器を用い、
この信号により方向制御を行なうこともできる。 In addition, in the device of the present invention, in order to orient the horizontal axis of rotation of the wind turbine in the upwind direction, a separately provided wind direction detector is used instead of using the wind direction blades as described above.
Directional control can also be performed using this signal.
以下本発明の特徴や実用に際しての多少の変形
などについて述べる。 The features of the present invention and some modifications in practical use will be described below.
1 外側風路形成構体部は鉄筋コンクリートや鉄
板で構築できるので、強風、突風、乱流等に対
して、内側に設けられている風車発電機構部ま
たは風車回転機構部を十分に保護すると共に風
車に有効な正圧、負圧を供給し、風を整流、収
歛して効果を高めることができる。1. Since the outer air passage forming structure can be constructed of reinforced concrete or steel plates, it can sufficiently protect the wind turbine power generation mechanism or wind turbine rotation mechanism installed inside from strong winds, gusts, turbulence, etc., and also protect the wind turbine. It can supply effective positive and negative pressure and rectify and converge the wind to enhance its effectiveness.
2 風車発電機構部または風車回転機構部は軽く
風向に順応して回転し、風力を動力に変換する
能率が大きい。2. The wind turbine power generation mechanism or wind turbine rotation mechanism rotates lightly in accordance with the wind direction, and has high efficiency in converting wind power into power.
3 風車の回転翼等は、一般に、その回転に伴う
遠心力や流体力学的な諸要素に基づく複雑な運
動も加わる上、材料強度的にも限界があり、し
たがつて大形化にも限界がある。これに対し
て、本発明の装置は、第3図、第4図に示した
ように、複数個のものを積み重ね、個々の風車
の出力を合成することなどにより、設置面積を
節約することができるし、また、地表より高い
所の風を利用するなどにより、経済的効果も高
めることができる。3 Wind turbine rotors, etc. generally undergo complex movements due to centrifugal force and hydrodynamic factors that accompany their rotation, and there are limits to their material strength, so there is a limit to increasing their size. There is. In contrast, the device of the present invention, as shown in FIGS. 3 and 4, can save installation space by stacking multiple wind turbines and combining the outputs of individual wind turbines. It is possible to do so, and the economic effects can also be increased by making use of wind from higher places than the ground.
4 外側風路形成構体部は垂直の外側風路形成用
固定案内壁以外に固定案内壁間の風路に水平の
翼を加えたり、異物の侵入を防ぐため網を設け
たり、補強材を挿入してもよい。4 In addition to the vertical fixed guide walls for forming external air channels, the outer air channel forming structure section adds horizontal wings to the air channels between the fixed guide walls, installs a net to prevent the intrusion of foreign objects, and inserts reinforcing materials. You may.
5 外側風路形成構体部等を複数個の部分に分け
て作り、これらを現地に運んでから組み立てる
組立構造とすれば、狭い場所への設置や運搬の
便、量産の利益などを期待できる。5 If an assembly structure is adopted in which the outer air passage forming structure is made in multiple parts and these parts are transported to the site and then assembled, it can be expected to be easier to install and transport in narrow spaces, and to benefit from mass production.
6 外側風路形成構体部は、設置場所の風の方向
に主方向があつたり、近くに風の障害物がある
場合等には、これを変形して、主方向に効果的
になるよう変形することも可能である。また、
放射状外側風路形成構体部の床および屋根を周
辺方向に向かつて徐々に拡げて風路への流入を
滑らかになる等の効果がある。6. If the main direction of the outside air passage forming structure is in the direction of the wind at the installation location, or if there are wind obstacles nearby, it can be deformed to be more effective in the main direction. It is also possible to do so. Also,
This has the effect of gradually expanding the floor and roof of the radial outer air passage forming structure toward the periphery, thereby smoothing the flow into the air passage.
7 外側風路形成構体部の隣接する固定案内壁が
構成する外側風路の全部または一部を遮断する
扉をすべての外側風路に設ければ、豪雨、豪
雪、暴風などの内部への侵入防止、内部の保守
点検の際の作業員の危険防止に役立つ。7. If all outer air channels are equipped with doors that block all or part of the outer air channels formed by the adjacent fixed guide walls of the outer air channel forming structure, heavy rain, heavy snow, and strong winds can prevent entry into the interior. prevention and helps prevent danger to workers during internal maintenance and inspection.
8 風車は一般に風切りの音響を発し易く、か
つ、この防止や遮音は困難である。これに対し
て、本発明の装置は、床、屋根、固定案内壁、
整流翼、案内翼等の表面材質、形状等の選択に
より、音響を著しく軽減し得る利点もまた大き
い。8 Wind turbines generally tend to emit wind noise, and it is difficult to prevent or insulate the noise. In contrast, the device of the present invention can be used for floors, roofs, fixed guide walls,
There is also a great advantage that sound can be significantly reduced by selecting the surface material, shape, etc. of the rectifier vanes, guide vanes, etc.
第1図乃至第4図は本発明による風力発電装置
の概略説明図である。
図において、1……円環体状外側風路形成構体
部、2……円環状第1の床、3……円環状第1の
屋根、4……放射状外側風路形成用固定案内壁、
5……円筒状空間、6……風車発電機構部、6′
……風車回転伝達機構部、7……外側風路、8…
…円板状第2の床、9……円板状第2の屋根、1
01……外側風路遮断壁、102……内側風路形
成壁、10……内側風路形成壁柱、11……支
柱、12……風車発電機部、13……風車、14
……整流翼、15……案内翼、16……第2の床
8の中心に設けられた回転軸、17……第2の屋
根9の中心に設けられた回転軸、18……円環状
第1の床2から中心方向に延ばされた軸受支持用
の腕または円板、19……円環状第1の屋根3か
ら中心方向に延ばされた腕または円板、20,2
1……軸受、22……風向翼、23……円形レー
ル、24……円形台、25……車輪、26……歯
車機構、27……発電機、28……垂直回転軸。
1 to 4 are schematic explanatory diagrams of a wind power generator according to the present invention. In the figure, 1...A toric outer air passage forming structure part, 2... Annular first floor, 3... Annular first roof, 4... Fixed guide wall for forming a radial outer air passage,
5... Cylindrical space, 6... Wind turbine power generation mechanism section, 6'
... Wind turbine rotation transmission mechanism section, 7 ... Outer air passage, 8 ...
... Disc-shaped second floor, 9... Disc-shaped second roof, 1
0 1 ... Outer air passage blocking wall, 10 2 ... Inner air passage forming wall, 10... Inner air passage forming wall pillar, 11... Support column, 12... Wind turbine generator part, 13... Wind turbine, 14
. . . Rectifier blade, 15 . Bearing supporting arm or disc extending toward the center from the first floor 2, 19... Arm or disc extending toward the center from the annular first roof 3, 20, 2
DESCRIPTION OF SYMBOLS 1... Bearing, 22... Wind vane, 23... Circular rail, 24... Circular stand, 25... Wheel, 26... Gear mechanism, 27... Generator, 28... Vertical rotating shaft.
Claims (1)
定の内径と外径をもつた円環状の第1の床と第1
の屋根との間に垂直かつ放射状に配置された所定
数の外側風路形成用固定案内壁が設けられている
円環体状の外側風路形成構体部と、該円環体状外
側風路形成構体部の内周部内に形成されている円
筒状空間内に該円筒状空間の外径よりも小さい外
径をもち、前記第1の床と第1の屋根との間の間
隔と同一間隔で配置され、該外側風路形成構体部
の中心軸と中心が一致する円板状の第2の床と第
2の屋根とを有し、かつ該円板状の第2の床と第
2の屋根との間を該両者の対応する円周上で結
び、該第2の床と第2の屋根の直径を含む垂直な
平面に対して対称に前記外側風路形成構体部の前
記外側風路形成用固定案内壁により形成されてい
る外側風路を該外側風路形成構体部の内周面側で
遮断するように配置された断面円弧状の外側風路
遮断壁と該外側風路遮断壁の両側縁間を該外側風
路遮断壁の内面側で結ぶ所定の曲面をもつた内側
風路形成壁とからなる一対の内側風路形成壁柱が
前記第2の床と第2の屋根との間に配置、固定さ
れており、さらに該一対の内側風路形成壁柱の間
に形成されている前記内側風路内に前記円環体状
外側風路形成構体部の中心軸を通る水平回転軸を
有する風車と該風車の回転軸に連結された発電機
が配置、固定されている風車発電機構部との2部
からなる主構体部の1個または同軸に積み重ねら
れた該主構体部の複数個と、前記主構体部を構成
する前記風車発電機構部を単独で、または複数個
を一体として、該主構体部を構成する1個または
複数個の前記外側風路形成構体部の内周面に形成
されている前記円筒状空間内で、該円筒状空間の
中心軸を中心として回動可能とするように設けら
れた前記風車発電機構部の回動機構と、前記風車
発電機構部を該風車発電機構部内に設けられた前
記風車の水平回転軸方向を風上方向に向けるため
の風向指向機構部とを含むことを特徴とする風車
装置。 2 所定の間隔を置いて水平に配置され、かつ所
定の内径と外径をもつた円環状の第1の床と第1
の屋根との間に垂直かつ放射状に配置された所定
数の外側風路形成用固定案内壁が設けられている
円環体状の外側風路形成構体部と、該円環体状外
側風路形成構体部の内周部内に形成されている円
筒状空間内に該円筒状空間の外径よりも小さい外
径をもち、前記第1の床と第1の屋根との間の間
隔と同一間隔で配置され、該外側風路形成構体部
の中心軸と中心が一致する円板状の第2の床と第
2の屋根とを有し、かつ該円板状の第2の床と第
2の屋根との間を該両者の対応する円周上で結
び、該第2の床と第2の屋根の直径を含む垂直な
平面に対して対称に前記外側風路形成構体部の前
記外側風路形成用固定案内壁により形成されてい
る外側風路を該外側風路形成構体部の内周面側で
遮断するように配置された断面円弧状の外側風路
遮断壁と該外側風路遮断壁の両側縁間を該外側風
路遮断壁の内面側で結ぶ所定の曲面をもつた内側
風路形成壁とからなる一対の内側風路形成壁柱が
前記第2の床と第2の屋根との間に配置、固定さ
れており、さらに該一対の内側風路形成壁柱の間
に形成されている前記内側風路内に前記円環体状
外側風路形成構体部の中心軸を通る水平回転軸を
有する風車が配置され、該風車の水平回転軸が前
記円筒状空間の中心軸と一致する垂直回転軸と回
転伝達機構を介して連結されている風車回転伝達
機構部との2部からなる主構体部の1個または同
軸に積み重ねられ、かつ前記垂直回転軸を共用す
る該主構体部の複数個と、前記主構体部を構成す
る前記風車回転伝達機構部を単独でまたは複数個
を一体として、該主構体部を構成する1個または
複数個の前記外側風路形成構体部の内周面内に形
成されている前記円筒状空間内で、該円筒状空間
の中心軸を中心として回動可能とするように設け
られた前記風車回転伝達機構部の回動機構と、前
記風車回転伝達機構部から出た前記垂直回転軸に
連結された回転エネルギを他の動力に変換する動
力変換機構部と、前記風車回転機構部を該風車回
転機構部内に設けられた前記風車の水平回転軸方
向を風上方向に向けるための風向指向機構部とを
含むことを特徴とする風車装置。[Claims] 1. An annular first floor arranged horizontally at a predetermined interval and having a predetermined inner diameter and outer diameter;
a toric-shaped outer air passage forming structure having a predetermined number of fixed guide walls for forming an outer air passage arranged vertically and radially between the roof thereof; and the toric-shaped outer air passage. A cylindrical space formed within the inner periphery of the forming structure part, which has an outer diameter smaller than the outer diameter of the cylindrical space, and has an interval that is the same as the interval between the first floor and the first roof. and has a disk-shaped second floor and a second roof whose centers coincide with the central axis of the outer air passage forming structure, and the disk-shaped second floor and the second roof. and the roof of the second floor on their corresponding circumferences, and connect the outside air passage forming structure of the outside air passage forming structure symmetrically with respect to a perpendicular plane that includes the diameters of the second floor and the second roof. An outer air passage blocking wall having an arcuate cross section and arranged to block the outer air passage formed by the path forming fixed guide wall on the inner peripheral surface side of the outer air passage forming structure; and the outer air passage blocking wall. A pair of inner air passage forming wall columns comprising an inner air passage forming wall having a predetermined curved surface connecting both side edges of the wall on the inner surface side of the outer air passage blocking wall are connected to the second floor and the second roof. and further passing through the central axis of the toroidal outer air passage forming structure within the inner air passage formed between the pair of inner air passage forming wall pillars. One of the main structure parts consisting of a wind turbine having a horizontal rotation axis and a wind turbine power generation mechanism part in which a generator connected to the rotation axis of the wind turbine is arranged and fixed, or the main structure parts stacked coaxially. and one or more of the wind turbine power generating mechanism parts constituting the main structure part, either singly or integrally, and one or more of the outer air passage forming structure parts forming the main structure part. A rotation mechanism of the wind turbine power generation mechanism part provided so as to be rotatable about the central axis of the cylindrical space within the cylindrical space formed on the inner peripheral surface; and the wind turbine power generation mechanism. A wind turbine device comprising: a wind direction directing mechanism section for orienting a horizontal rotation axis direction of the wind turbine provided in the wind turbine power generation mechanism section in an upwind direction. 2 An annular first floor arranged horizontally at a predetermined interval and having a predetermined inner diameter and outer diameter;
a toric-shaped outer air passage forming structure having a predetermined number of fixed guide walls for forming an outer air passage arranged vertically and radially between the roof thereof; and the toric-shaped outer air passage. A cylindrical space formed within the inner periphery of the forming structure part, which has an outer diameter smaller than the outer diameter of the cylindrical space, and has an interval that is the same as the interval between the first floor and the first roof. and has a disk-shaped second floor and a second roof whose centers coincide with the central axis of the outer air passage forming structure, and the disk-shaped second floor and the second roof. and the roof of the second floor on their corresponding circumferences, and connect the outside air passage forming structure of the outside air passage forming structure symmetrically with respect to a perpendicular plane that includes the diameters of the second floor and the second roof. An outer air passage blocking wall having an arcuate cross section and arranged to block the outer air passage formed by the path forming fixed guide wall on the inner peripheral surface side of the outer air passage forming structure; and the outer air passage blocking wall. A pair of inner air passage forming wall columns comprising an inner air passage forming wall having a predetermined curved surface connecting both side edges of the wall on the inner surface side of the outer air passage blocking wall are connected to the second floor and the second roof. and further passing through the central axis of the toroidal outer air passage forming structure within the inner air passage formed between the pair of inner air passage forming wall pillars. A wind turbine having a horizontal rotation axis is disposed, and the horizontal rotation axis of the wind turbine coincides with the central axis of the cylindrical space, and a vertical rotation axis and a wind turbine rotation transmission mechanism part are connected via a rotation transmission mechanism. One or more of the main structure parts that are stacked coaxially and share the vertical rotation axis, and one or more of the wind turbine rotation transmission mechanism parts that constitute the main structure part. within the cylindrical space formed within the inner circumferential surface of one or more of the outer air passage forming structures constituting the main structure, with the central axis of the cylindrical space being the center. a rotation mechanism of the wind turbine rotation transmission mechanism provided so as to be able to rotate as a rotation mechanism; and a power that converts rotational energy into other power connected to the vertical rotation shaft coming out of the wind turbine rotation transmission mechanism. A wind turbine device comprising: a conversion mechanism section; and a wind direction directing mechanism section for orienting the horizontal rotation axis of the wind turbine provided in the wind turbine rotation mechanism section in an upwind direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13759279A JPS5664169A (en) | 1979-10-26 | 1979-10-26 | Wind fan device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13759279A JPS5664169A (en) | 1979-10-26 | 1979-10-26 | Wind fan device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5664169A JPS5664169A (en) | 1981-06-01 |
JPS6261794B2 true JPS6261794B2 (en) | 1987-12-23 |
Family
ID=15202298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13759279A Granted JPS5664169A (en) | 1979-10-26 | 1979-10-26 | Wind fan device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5664169A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4857424B1 (en) * | 2011-02-22 | 2012-01-18 | 滿國 高田 | Wind power generator |
-
1979
- 1979-10-26 JP JP13759279A patent/JPS5664169A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5664169A (en) | 1981-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7172386B2 (en) | Wind and solar power plant with variable high speed rotor trains | |
US4379236A (en) | Windmill generator apparatus | |
RU2268396C2 (en) | Method and device for generating electric power by converting energy of compressed air flow | |
US8459930B2 (en) | Vertical multi-phased wind turbine system | |
US7753644B2 (en) | Vertical multi-phased wind turbine system | |
US9453494B2 (en) | Building integrated wind energy power enhancer system | |
KR101383849B1 (en) | Omni-directional wind turbine | |
US6270308B1 (en) | Wind generator | |
US6590300B1 (en) | Cyclonic or anti-cyclonic conversion tower | |
US6114773A (en) | Hydraulic turbine assembly | |
CN104471239A (en) | Vertical axis wind and hydraulic turbine with flow control | |
US8403623B2 (en) | Wind energy power enhancer system | |
JP2007536454A (en) | Wind turbine for power generation | |
US10280900B1 (en) | Omnidirectional building integrated wind energy power enhancer system | |
WO2011155471A1 (en) | Wind/water turbine with rotational resistance reduced by wind vane blade | |
CA3127618C (en) | Vertical axis wind turbine | |
US9273665B1 (en) | Dual wind energy power enhancer system | |
RU2638120C1 (en) | Wind turbine plant | |
JP2003097416A (en) | Aggregate of wind power generation device | |
JPS6261794B2 (en) | ||
KR101363889B1 (en) | Vertical shaft wind power generation | |
JP2003097415A (en) | Aggregate of wind power generation device | |
GB2097477A (en) | Revolving windmill generator apparatus | |
RU2166665C1 (en) | Windmill | |
CN103147927A (en) | Controllable helical vacuum magnetic suspension wind power system with Fresnel lens arrays |