JPS6261711A - Method for controlling tension of hot rolling mill - Google Patents

Method for controlling tension of hot rolling mill

Info

Publication number
JPS6261711A
JPS6261711A JP60198564A JP19856485A JPS6261711A JP S6261711 A JPS6261711 A JP S6261711A JP 60198564 A JP60198564 A JP 60198564A JP 19856485 A JP19856485 A JP 19856485A JP S6261711 A JPS6261711 A JP S6261711A
Authority
JP
Japan
Prior art keywords
tension
stands
stand
temperature
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60198564A
Other languages
Japanese (ja)
Inventor
Shingoro Fukuoka
新五郎 福岡
Kaisuke Shiroyama
城山 魁助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60198564A priority Critical patent/JPS6261711A/en
Publication of JPS6261711A publication Critical patent/JPS6261711A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To permit the control of the tension between stands without the need for installing a detector to the mid-way stands by correcting the peripheral speed of rolls so as to apply the stress to negate the calculated tension between the mid-way stands to the adjacent stands. CONSTITUTION:The size and temp. of a material 14 entering the stand 1H on the inlet side of roughing mill 18, the size and the temp. of the material 14 emitted from the stand 4V on the outlet side and the peripheral speed and draft of the rolls of the respective stands are detected. The temp. of the material in the mid-way stands 2V, 3H is estimated by calculation from the sizes and temps. of the materials and the peripheral speeds and drafts of the rolls. The tension between the adjacent stands at such estimated temp. is calculated by using the matrix for the coefft. of influence. The peripheral speed is so corrected as to apply the stress to negate the tension between the mid-way stands calculated by suing the inverse matrix for the part where the roll peripheral speed influences the tension between the adjacent stands in the matrix for the coefft. of influence in the stage of calculating the above-mentioned stand. The tension is thus controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、隣合うスタンドの圧延ロールが直交するよう
にタンデムに配列して線材を熱間圧延する熱間圧延機の
張力制御方法に関し、特に銅線の如き非鉄の熱間圧延機
の粗ミルスタンド内の張力を制御する方法に関するもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a tension control method for a hot rolling mill that hot-rolls a wire rod by arranging rolling rolls of adjacent stands in tandem so as to cross each other at right angles. In particular, the present invention relates to a method for controlling tension in a rough mill stand of a hot rolling mill for non-ferrous metals such as copper wire.

(従来技術) 一般に、鉄鋼の線材を圧延する際にその形状を制御する
ためにスタンド間の張力を制御することが行なわれてい
る。この目的のために一般に採用されている張力制御方
法ではスタンド間の張力はロードセルを用いて検出され
、この張力信号はコンピュータに入力されて断面積当り
の応力に換算され、所定の張力が得られるようにロール
周速を修正している。しかし、非鉄の熱間圧延機、特に
粗ミル数スタンドはロールを冷却する目的で圧延油が大
量にかけられるためにカバーが施されており、このため
途中のスタンドに検出器を設置することが困難であり、
実際には検出器は設置されていないことが殆どである。
(Prior Art) Generally, when rolling a steel wire, the tension between stands is controlled to control the shape of the wire. In the tension control method commonly adopted for this purpose, the tension between the stands is detected using a load cell, and this tension signal is input into a computer and converted into stress per cross-sectional area to obtain the predetermined tension. The roll circumferential speed is corrected as follows. However, nonferrous hot rolling mills, especially rough mill stands, are covered with a large amount of rolling oil to cool the rolls, making it difficult to install detectors on intermediate stands. and
In most cases, no detector is actually installed.

このように非鉄の熱間圧延機では鉄鋼の熱間圧延機のよ
うに途中のスタンド間の張力を直接検出することができ
ないので張力を制御することができなかった。
In this way, in non-ferrous hot rolling mills, unlike steel hot rolling mills, it is not possible to directly detect the tension between intermediate stands, and therefore the tension cannot be controlled.

(発明の目的) 本発明の目的は、途中のスタンドに検出器を設置するこ
となくその張力を制御することができる熱間圧延機の張
力制御方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a tension control method for a hot rolling mill that can control the tension without installing a detector on an intermediate stand.

(発明の構成) 本発明に係る熱間圧延機の張力制御方法は。(Structure of the invention) A method for controlling tension in a hot rolling mill according to the present invention.

隣合うスタンドの圧延ロールが直交するようにタンデム
に配列して線材を熱間圧延する熱間圧延機の隣合うスタ
ンド間の張力を制御するために、入口側のスタンドに入
る材料の寸法と温度、出口側スタンドから出る材料の寸
法と温度及び各スタンドのロール周速と圧下率を検出し
In order to control the tension between adjacent stands of a hot rolling mill that hot-rolls wire rods by arranging the rolling rolls of adjacent stands in tandem so that they are perpendicular to each other, the dimensions and temperature of the material entering the stand on the inlet side are controlled. , detect the dimensions and temperature of the material coming out of the exit side stand, as well as the roll peripheral speed and rolling reduction rate of each stand.

この材料の寸法、温度、ロール周速及び圧下率から途中
のスタンドでの材料の温度を計算により推定し、この推
定温度での隣合うスタンド間の張力を影響係数行列を用
いて計算し、この張力の計算に際して影響係数行列のう
ちロール周速が隣合うスタンド間の張力に影響する部分
の逆行列を用い、このようにして計算された途中のスタ
ンド間の張力を打消す応力を隣合うスタンド間に与える
ようにそのロール周速を修正することを特徴としている
The temperature of the material at intermediate stands is estimated by calculation from the material dimensions, temperature, roll circumferential speed, and rolling reduction rate, and the tension between adjacent stands at this estimated temperature is calculated using an influence coefficient matrix. When calculating tension, we use the inverse matrix of the part of the influence coefficient matrix where the roll circumferential speed affects the tension between adjacent stands, and calculate the stress that cancels out the tension between the intermediate stands calculated in this way by applying the stress to the adjacent stands. The feature is that the roll circumferential speed is corrected so as to give the same speed.

このようにすると、途中のスタンドに張力を直接検出す
る検出器を設置することなく制御することができること
が解る。
It can be seen that by doing this, control can be performed without installing a detector that directly detects tension on an intermediate stand.

(実施例) 次に本発明の張力制御方法を面を参照して詳細に説明す
る。第1図は本発明の方法が適用される熱間圧延機10
の一例を示し、この熱間圧延機10は鋳造機12から鋳
造された銅母材14をバープレバレージョンユニット1
6を介して受入れて銅母材14を粗圧延きする数スタン
ド、図示の実施例では4スタンドIH,2V、。
(Example) Next, the tension control method of the present invention will be explained in detail with reference to the following. FIG. 1 shows a hot rolling mill 10 to which the method of the present invention is applied.
An example is shown in which this hot rolling mill 10 transfers a copper base material 14 cast from a casting machine 12 to a bar precipitation unit 1.
Several stands, in the illustrated embodiment, four stands IH, 2V, receive the copper base material 14 through the rollers 6 and rough-roll the copper base material 14.

3H,4Vから成る粗ミル18から成っている。尚、i
’Vjは垂直ロールを有するスタンドを示し、i’Hj
は水平ロールを有するスタンドを示す、この粗ミル18
によって形成された銅ロッド14Aは仕上ミル20によ
って銅荒引線14Bまで圧延され、洗浄機22によって
洗浄された後コイラ24に巻取られる。
It consists of a coarse mill 18 made of 3H, 4V. Furthermore, i
'Vj indicates a stand with vertical roll, i'Hj
This coarse mill 18 shows a stand with horizontal rolls.
The copper rod 14A thus formed is rolled to a copper rough wire 14B by a finishing mill 20, cleaned by a washer 22, and then wound around a coiler 24.

本発明の張力制御方法は、粗ミル18の入口側のスタン
ドIHに入る材料(銅母材)14の寸法と温度、出口側
のスタンド4Vから出る材料14の寸法と温度及び各ス
タンドのロール周速と圧下率を検出し、これらの材料の
寸法、温度、ロール周速及び圧下率から途中のスタンド
2V、3Hの材料の温度を計算により推定し。
The tension control method of the present invention includes the dimensions and temperature of the material (copper base material) 14 entering the stand IH on the inlet side of the rough mill 18, the dimensions and temperature of the material 14 coming out of the stand 4V on the outlet side, and the roll circumference of each stand. The speed and rolling reduction rate are detected, and the temperature of the material at intermediate stands 2V and 3H is estimated by calculation from the dimensions, temperature, roll circumferential speed, and rolling reduction rate of these materials.

この推定温度での隣合うスタンド間の張力を影響係数行
列を用いて計算し、この張力の計算に際して影響係数行
列のうちロール周速が隣合うスタンド間の張力に影響す
る部分の逆行列を用い、このようにして計算された途中
のスタンド間の張力を打消す応力を隣合うスタンド間に
与えるようにそのロール周速を修正して張力を制御する
The tension between adjacent stands at this estimated temperature is calculated using an influence coefficient matrix, and when calculating this tension, the inverse matrix of the part of the influence coefficient matrix where the roll circumferential speed affects the tension between adjacent stands is used. The tension is controlled by modifying the roll circumferential speed so as to apply a stress between adjacent stands that cancels out the tension between intermediate stands calculated in this way.

これを第2図のフローチャートを用いて更に詳細にのべ
ると、先ず標準データとして最適圧延条件での各スタン
ドでの材料高さHとロール周速Pとをそれぞれ検出器H
s 、Hpによって検出し、また入口側スタンドIH及
び出口側スタンド4■での材料巾Wと温度Tとを検出器
Ws、Wtによって検出し、これらをコンピュータ26
に入力する。尚、材料高さHは設定時のロールキャップ
にミルジャンプを考慮した値とする。コンピュータ26
はこれらの入力値から第3図に示す影響係数行列(B)
を計算によって求める。影響係数は次のようにして求め
られる。即ち、第iスタンドから出る材料の断面積をA
i、巾をbi、高さをhi、材料速度をUi、ロール周
速をvi、をψi、張力応力をσi、平均変形抵抗をk
iとすると1次の関係が成立つ。
To describe this in more detail using the flowchart in Figure 2, first, as standard data, the material height H and roll circumferential speed P at each stand under optimal rolling conditions are measured using the detector H.
Also, the material width W and temperature T at the inlet stand IH and the outlet stand 4 are detected by the detectors Ws and Wt, and these are detected by the computer 26.
Enter. Note that the material height H is set to a value that takes into account mill jumps in the roll cap at the time of setting. computer 26
is the influence coefficient matrix (B) shown in Figure 3 from these input values.
is determined by calculation. The influence coefficient is determined as follows. That is, the cross-sectional area of the material coming out of the i-th stand is A
i, width bi, height hi, material speed Ui, roll peripheral speed vi, ψi, tensile stress σi, average deformation resistance k
When i is set, a linear relationship holds true.

[マスフロー一定] AAi/Ai + ΔVi/Vi + Aψi/(1+
LPi)霜ΔAo/Ao+ΔUo/Do = −−−(
1)[巾広がり] Δbi/bi−Δhi−+/hi−を −に1(Δbi−1/bi−1)−BfΔσi/ki−
BbΔσi/ki−1+CΔT−−−−−−−−−一(
2)[先進率] Δψi/(1+ψυ雪Fi(Δbi−+/l)i +l
−Δhi/hi)◆FfΔσi/ki−FbΔσi−1
/ki−1÷GΔ丁−−−−−−−−−−−−〜−−〜
−一(3)[断面積] ΔAi/Ai =αiΔbi/bi+βiΔhi/hi
 −−−尚、上式でKi、Bf、Bb、Fi、Ff、F
b、αi、βlはそれぞれ定数であり、このうちfはフ
ロントを、bはバックを示す、これらの式(1)乃至(
4)の4n+1個の連立方程式がnスタンドの連続圧延
の変動量を決定する式である。
[Constant mass flow] AAi/Ai + ΔVi/Vi + Aψi/(1+
LPi) Frost ΔAo/Ao+ΔUo/Do = ---(
1) [Width spread] Δbi/bi−Δhi−+/hi− to −1(Δbi−1/bi−1)−BfΔσi/ki−
BbΔσi/ki-1+CΔT−−−−−−−−1(
2) [Advanced rate] Δψi/(1+ψυ snow Fi(Δbi-+/l)i +l
−Δhi/hi)◆FfΔσi/ki−FbΔσi−1
/ki-1 ÷ GΔ ding−−−−−−−−−−−−−−−
-1 (3) [Cross-sectional area] ΔAi/Ai = αiΔbi/bi+βiΔhi/hi
---In addition, in the above formula, Ki, Bf, Bb, Fi, Ff, F
b, αi, and βl are constants, and f represents the front and b represents the back.
The 4n+1 simultaneous equations in 4) are equations that determine the amount of variation in continuous rolling of n stands.

(3n+2)元の外乱変数列を (h ) = (Δbo/bo 、  Δho/ho 
、Δh/h、−−−−−Δhn/hn、ΔV、/V、、
−−−ΔVn/Vn、ΔTl−−−ΔTn) また、3n応答変数列を (b)iΔbl/bl 、 −−−Δbn/bn、Δσ
l/kl。
(3n+2) The original disturbance variable sequence is (h) = (Δbo/bo, Δho/ho
,Δh/h,---Δhn/hn,ΔV,/V,,
---ΔVn/Vn, ΔTl---ΔTn) Also, the 3n response variable sequence is (b) iΔbl/bl, ---Δbn/bn, Δσ
l/kl.

−m−Δσn−1/kn−1,ΔUo/Uo 、Δψ1
/(1+$1)、−−一Δ%/(1+ψJl))で表す
と。
-m-Δσn-1/kn-1, ΔUo/Uo, Δψ1
/(1+$1), −−1Δ%/(1+ψJl)).

(b)と(h)との関係は3n行、3n+2列の行列(
B)を使って次のように表される。
The relationship between (b) and (h) is a matrix with 3n rows and 3n+2 columns (
B) can be expressed as follows.

(b) = (B) ・ (h) −−−−−−(5)
行列(B)の各要素は影響係数と呼ばれるものであり、
外乱が与えられれば応答が算出される、式(5)は式(
1)乃至(4)を行列を使って書き代えただけであるの
で式(1)乃至(4−)の各係数が実験によって求めら
れれば行列(B)は計算で求められる。圧延機の機構上
圧下車を変更することは困難であるので外乱としては入
口側と出口側のスタンドの材料巾と温度とを考える。第
3図で四角で囲まれた部分はロール周速が隣合うスタン
ド間の張力に影響する部分(B2)であり、その逆列が
(B2) である、第3図の例ではこの(B2)’は第
4図に示すようになる。コンピュータ26は入口側(第
1)と出口側(第2)とのスタンドの材料巾と温度との
検出値を受け、標準状態との比較を行なって材料巾の変
動分Δbo、Δb4と温度の変動分ΔTi、ΔT+を計
算する(第2図の第2段階)、この変化分と影響係数行
列とからスタンド間張力の増加分が計算される。第2と
第3とのスタンドでの温度は未知であるので最初は第1
と第4とのスタンドの温度変化分Δ丁7.Δ丁±から直
線近似によってΔT2.ΔT3を求め、Δboに対して
Δb4が計算と実測とが位置するまでΔ翫ΔT3を修正
する。この修正が済んだ状態が実際の圧延状態であると
考え、この条件でスタンド間の張力増加分Δσiを算出
する(第2図の第3段階)、第5図は圧延条件の変化の
一例を示す。この例では第1と第4とのスタンドの温度
がそれぞれo、os、o、o3(5%、3χ)上昇し、
また第1と第4とのスタンドの材料巾が0゜05.0.
015増加した状態で第2と第3とのスタンドは0.0
29.0.024上昇し、スタンド間の張力は第1と第
2と第3とのスタンドの出口側で0.039.0.2B
、0.050それぞれ減少したことを示している。
(b) = (B) ・ (h) −−−−−−(5)
Each element of matrix (B) is called an influence coefficient,
If a disturbance is given, the response is calculated, Equation (5) is transformed into Equation (
Since 1) to (4) are simply rewritten using matrices, if each coefficient of equations (1) to (4-) is determined by experiment, matrix (B) can be determined by calculation. Since it is difficult to change the rolling machine due to the mechanism of the rolling mill, the material width and temperature of the stands on the inlet and outlet sides are considered as disturbances. The area surrounded by a square in Figure 3 is the area (B2) where the roll circumferential speed affects the tension between adjacent stands, and the opposite row is (B2). )' becomes as shown in FIG. The computer 26 receives the detected values of the material width and temperature of the stands on the inlet side (first) and outlet side (second), compares them with the standard state, and calculates the fluctuations Δbo and Δb4 in the material width and the temperature. The fluctuations ΔTi and ΔT+ are calculated (second step in FIG. 2), and the increase in the tension between the stands is calculated from the fluctuations and the influence coefficient matrix. Since the temperatures at the second and third stands are unknown, the temperature at the first stand is unknown.
Temperature change of stand 4 and 7. By linear approximation from ΔT2. ΔT3 is determined, and ΔT3 is corrected until Δb4 is located between the calculated value and the actual measurement value with respect to Δbo. The state after this correction is considered to be the actual rolling state, and the tension increase Δσi between the stands is calculated under these conditions (third step in Figure 2). Figure 5 shows an example of changes in rolling conditions. show. In this example, the temperatures of the first and fourth stands increase by o, os, o, o3 (5%, 3χ), respectively,
Also, the material width of the first and fourth stands is 0°05.0.
The second and third stands are 0.0 with an increase of 015.
29.0.024 rise, and the tension between the stands is 0.039.0.2B on the exit side of the first, second, and third stands.
, 0.050, respectively.

第2図のフローチャートの第4の段階ではこれらの張力
の減少をなくすようにロール周速を修正する。即ち、ス
タンド間の張力を打消すような応力をかけるのに必要な
ロール周速修正量を第3図の逆行列(B2) を使用し
て求める、第6図はこのロール周速周速修正量を示す。
In the fourth step of the flowchart of FIG. 2, the roll circumferential speed is corrected so as to eliminate these decreases in tension. In other words, the amount of roll peripheral speed correction required to apply stress that cancels out the tension between the stands is determined using the inverse matrix (B2) in Figure 3. Figure 6 shows this roll peripheral speed correction. Indicate quantity.

第6図の左辺の第1項は逆行列(B2)  であり、第
2項は(σi)であり、右辺はロール修正量(ΔVt)
を示す、この例では第2と第3と第4とのスタンドのロ
ール周速をそれぞれ0゜6%、0.9%、0.14%そ
れぞれ遅くするように修正することを示している。
The first term on the left side of Figure 6 is the inverse matrix (B2), the second term is (σi), and the right side is the roll correction amount (ΔVt).
This example shows that the roll peripheral speeds of the second, third, and fourth stands are modified to be slower by 0.6%, 0.9%, and 0.14%, respectively.

第7図はこのようにして修正した結果を示し、この図か
ら解るようにスタンド間の張力変化Δσiが零になった
代りに巾広がり変化分Δbiが若干増加したことを示す
FIG. 7 shows the result of such correction, and as can be seen from this figure, the tension change Δσi between the stands became zero, but the width spread change Δbi slightly increased.

尚、上記実施例では材料の変形が温度に依存するところ
が大きい銅線の圧延についてのべたが、同様の性質を宥
する他の金属についても係数を若干修正するだけで本発
明を適用することができる。
In the above embodiments, the rolling of copper wire is described where the deformation of the material is largely dependent on temperature, but the present invention can also be applied to other metals that have similar properties by just slightly modifying the coefficients. can.

(発明の効果) 本発明によれば、上記のように、スタンド内に検出器を
設置することなくスタンド間の張力を最良の状態に保つ
ことができ、その結果圧延による表面欠陥の発生率が低
下し、荒引線の傷を相当に低減することができる実益が
ある。
(Effects of the Invention) According to the present invention, as described above, it is possible to maintain the tension between the stands in the best condition without installing a detector inside the stand, and as a result, the incidence of surface defects due to rolling is reduced. There is a practical benefit of being able to considerably reduce the number of scratches on the rough lines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される熱間圧延機の概略系統図、
第2図は本発明に係る熱間圧延機の張力制御方法の上面
図及び正面図、第3図は影響係数行列の一例を示す図、
第4図乃至第7図はそれぞれ圧延条件の変化、ロール修
正値及び修正結果の一例を示す図である。 10−−−−一熱間圧延機、14−−−−−荒引線、1
8−−一−−粗ミル。 篤I邸 ’1128
FIG. 1 is a schematic system diagram of a hot rolling mill to which the present invention is applied;
FIG. 2 is a top view and a front view of the tension control method for a hot rolling mill according to the present invention, and FIG. 3 is a diagram showing an example of an influence coefficient matrix.
FIGS. 4 to 7 are diagrams showing examples of changes in rolling conditions, roll correction values, and correction results, respectively. 10-----1 hot rolling mill, 14-----rough drawing line, 1
8--1--Rough mill. Atsushi Residence '1128

Claims (1)

【特許請求の範囲】[Claims] 隣合うスタンドの圧延ロールが直交するようにタンデム
に配列して線材を熱間圧延する熱間圧延機の隣合うスタ
ンド間の張力を制御する方法において、入口側のスタン
ドに入る材料の寸法と温度、出口側スタンドから出る材
料の寸法と温度及び各スタンドのロール周速と圧下率を
検出し、前記材料の寸法、温度、ロール周速及び圧下率
とから途中のスタンドでの材料の温度を計算により推定
し、前記推定温度での隣合うスタンド間の張力を影響係
数行列を用いて計算し、前記張力の計算に際して前記影
響係数行列のうちロール周速が隣合うスタンド間の張力
に影響する部分の逆行列を用い、このようにして計算さ
れた途中のスタンド間の張力を打消す応力を前記隣合う
スタンド間に与えるようにそのロール周速を修正するこ
とを特徴とする熱間圧延機の張力制御方法。
In a method of controlling the tension between adjacent stands of a hot rolling mill in which wire rods are hot rolled by arranging rolling rolls of adjacent stands in tandem orthogonal to each other, the dimensions and temperature of the material entering the stand on the entrance side , Detect the dimensions and temperature of the material coming out of the exit side stand, as well as the roll circumferential speed and rolling reduction rate of each stand, and calculate the temperature of the material at intermediate stands from the material dimensions, temperature, roll circumferential speed, and rolling reduction rate. and calculate the tension between adjacent stands at the estimated temperature using an influence coefficient matrix, and when calculating the tension, calculate the portion of the influence coefficient matrix in which the roll circumferential speed influences the tension between adjacent stands. A hot rolling mill characterized in that the circumferential speed of the rolls is modified to apply a stress between the adjacent stands that cancels out the tension between the intermediate stands calculated in this way using the inverse matrix of Tension control method.
JP60198564A 1985-09-10 1985-09-10 Method for controlling tension of hot rolling mill Pending JPS6261711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198564A JPS6261711A (en) 1985-09-10 1985-09-10 Method for controlling tension of hot rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60198564A JPS6261711A (en) 1985-09-10 1985-09-10 Method for controlling tension of hot rolling mill

Publications (1)

Publication Number Publication Date
JPS6261711A true JPS6261711A (en) 1987-03-18

Family

ID=16393277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198564A Pending JPS6261711A (en) 1985-09-10 1985-09-10 Method for controlling tension of hot rolling mill

Country Status (1)

Country Link
JP (1) JPS6261711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223089A (en) * 1991-03-04 1993-06-29 Nissin Kagaku Kenkyusho Co., Ltd. Method of deinking waste paper using a fatty acid polyoxyalkylene ester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223089A (en) * 1991-03-04 1993-06-29 Nissin Kagaku Kenkyusho Co., Ltd. Method of deinking waste paper using a fatty acid polyoxyalkylene ester

Similar Documents

Publication Publication Date Title
CN104923568B (en) A kind of control method for preventing thin strip cold rolling process broken belt
US3934438A (en) Method of long-edge shape control for tandem rolling mill
CA1152189A (en) Method fo automatically controlling width of slab during hot rough-rolling thereof
JPH05317941A (en) Method for controlling water cooling for barsteel and wire rod
JPS6261711A (en) Method for controlling tension of hot rolling mill
US3468145A (en) Billet mill wherein the rolling gap is controlled during the penultimate pass and fixed during the final pass
JP3175560B2 (en) Thickness / width control method in hot rolling
JP3348409B2 (en) Method for controlling crown and shape of rolling mill
JPS5922604B2 (en) Finishing temperature predictive control rolling method for hot strips
JPH0655322B2 (en) Rolling method for strip
KR790001893B1 (en) Shape control method for tandem rolling mill
JPH08187504A (en) Manufacture of tapered steel sheet
JPS626713A (en) Temperature control method for rolling stock in outlet side of hot rolling mill
JPS6238711A (en) Rolling control device
JPH0813369B2 (en) Hot rolling line for bars
JPS60240322A (en) Controlling method of rolling dimension of metallic rod material
JPH024365B2 (en)
JP3040044B2 (en) Method of controlling width of hot rolled steel sheet
JPH0441010A (en) Method for controlling edge drop in cold rolling
JPH07178427A (en) Method for controlling width of sheet in hot rolling
JP2602370B2 (en) Dimension control method for bar and wire rod rolling
JPS62158511A (en) Shape control method for plate rolling
JPH0659488B2 (en) Initial setting method for continuous hole rolling
JPH08192210A (en) Method for controlling width in rolling mill
JPH05269527A (en) Method for controlling flat shape of metallic strip