JPS6261165B2 - - Google Patents

Info

Publication number
JPS6261165B2
JPS6261165B2 JP13047879A JP13047879A JPS6261165B2 JP S6261165 B2 JPS6261165 B2 JP S6261165B2 JP 13047879 A JP13047879 A JP 13047879A JP 13047879 A JP13047879 A JP 13047879A JP S6261165 B2 JPS6261165 B2 JP S6261165B2
Authority
JP
Japan
Prior art keywords
temperature
reference voltage
circuit
crystal resonator
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13047879A
Other languages
Japanese (ja)
Other versions
JPS5654111A (en
Inventor
Toshuki Misawa
Tatsuji Asakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP13047879A priority Critical patent/JPS5654111A/en
Publication of JPS5654111A publication Critical patent/JPS5654111A/en
Publication of JPS6261165B2 publication Critical patent/JPS6261165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は温度特性が近似的に2次曲線で与えら
れる水晶振動子の頂点温度の量産ばらつきを初期
調整する回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit for initially adjusting mass production variations in peak temperature of a crystal resonator whose temperature characteristics are approximately given by a quadratic curve.

まず、本発明の背景及び目的について述べる。
水晶発振式ウオツチ等の発振回路に用いられる音
叉型水晶振動子は第1図aに実線で示すような近
似的に2次曲線で与えられる発振周波数対温度特
性を有する。同図でθは放物線の頂点に相当す
る温度を表わす。(以下θを頂点温度と呼ぶ。)
第2図は時計用集積回路内に温度センサーを設け
て第1図に実線で示す温度特性を補正する場合の
温度検出部のブロツク図である。同時で、201
は温度センサー、202は比較器、203はカウ
ンタ及びデコーダ、204は201で得られたア
ナログの温度信号をデイジタル値に変換するため
の参照電位を与える参照電圧発生回路である。同
図の温度検出部の働きは、203を掃引すること
により信号213のレベルを順次変化させ、信号
212の反転を検出することにより203の掃引
を止めてアナログの温度信号211をデイジタル
信号214に変換することである。第2図の温度
検出回路を時計の歩度緩急に利用する場合、デイ
ジタル信号214に応じて分周回路に論理緩急を
施す。この際、第1図に示す水晶振動子の温度特
性特に頂点温度θが設計値からずれると歩度の
緩急が正確に行われないという問題が生ずる。現
在量産されている音叉型水晶振動子の頂点温度は
±4℃程度のばらつきを含んでおりこれは正確な
歩度緩急を行う際に大きな支障をきたす。
First, the background and purpose of the present invention will be described.
A tuning fork type crystal resonator used in an oscillation circuit such as a crystal oscillation type watch has an oscillation frequency versus temperature characteristic approximately given by a quadratic curve as shown by the solid line in FIG. 1a. In the figure, θ 0 represents the temperature corresponding to the apex of the parabola. (Hereinafter, θ 0 will be referred to as the peak temperature.)
FIG. 2 is a block diagram of a temperature detection section when a temperature sensor is provided in a timepiece integrated circuit to correct the temperature characteristics shown by the solid line in FIG. 1. At the same time, 201
202 is a temperature sensor, 202 is a comparator, 203 is a counter and decoder, and 204 is a reference voltage generation circuit that provides a reference potential for converting the analog temperature signal obtained in 201 into a digital value. The function of the temperature detection section in the figure is to sequentially change the level of the signal 213 by sweeping the signal 203, and by detecting the inversion of the signal 212, stop the sweep of the signal 203 and convert the analog temperature signal 211 into a digital signal 214. It is about converting. When the temperature detection circuit shown in FIG. 2 is used to adjust the rate of a clock, the frequency dividing circuit is logically adjusted in accordance with the digital signal 214. At this time, if the temperature characteristics of the crystal resonator shown in FIG. 1, particularly the peak temperature θ 0 , deviates from the design value, a problem arises in that the rate is not adjusted accurately. The peak temperature of currently mass-produced tuning fork type crystal oscillators includes a variation of about ±4° C., which poses a major hindrance to accurate rate adjustment.

本発明の目的は、上述の欠点を除去し頂点温度
の量産ばらつきに起因する歩度暖急の誤差を十分
に小さな量に抑えることである。
An object of the present invention is to eliminate the above-mentioned drawbacks and to suppress errors in rate heating and suddenness caused by mass production variations in peak temperature to a sufficiently small amount.

本発明は第2図の参照電圧発生回路204の部
分に頂点温度調整回路を設けるものである。第3
図に従来構成による第2図204の構成例を示
す。第3図の例では参照電位を与える節点が7
点、負電源電位を与える節点が1点設けられてい
る。同図で303乃至309は集積化された抵
抗、311は正電源、319は負電源、312乃
至318は参照電位を与える節点、319は負電
源電位を与える節点であり、321乃至328は
第2図203のカウンタの掃引によつて順次同時
に1個に限り導通するように設定されているアナ
ログ・スイツチ(例えばトランスミツシヨンゲー
ト、またはトランスフアーゲート)である。ま
た、入力端子331からは基準電位が供給され演
算増幅器301の働きにより節点315に該基準
電位が伝えられる。一方MOS電界効果トランジ
スタ(以下MOSFETと略記する。)302は節点
315が供給された基準電位となるように抵抗3
03乃至309に電流を流す。
The present invention provides a peak temperature adjustment circuit in the reference voltage generation circuit 204 shown in FIG. Third
The figure shows an example of the configuration of FIG. 2 204 according to a conventional configuration. In the example in Figure 3, the number of nodes that provide the reference potential is 7.
One node is provided to provide a negative power supply potential. In the figure, 303 to 309 are integrated resistors, 311 is a positive power supply, 319 is a negative power supply, 312 to 318 are nodes that provide a reference potential, 319 are nodes that provide a negative power supply potential, and 321 to 328 are nodes that provide a negative power supply potential. These are analog switches (for example, transmission gates or transfer gates) that are sequentially set to conduct only one at a time by the sweep of the counter in FIG. 203. Further, a reference potential is supplied from the input terminal 331, and the reference potential is transmitted to the node 315 by the operation of the operational amplifier 301. On the other hand, a MOS field effect transistor (hereinafter abbreviated as MOSFET) 302 is connected to a resistor 3 so that a node 315 is at the supplied reference potential.
03 to 309.

以上の働きにより節点332には312乃至3
19のうち選択されている節点に相当する参照電
位が得られ、第2図202の比較器の入力端子へ
と伝えられる。節点312乃至318に生ずる参
照電位はそれぞれ温度に対応しており、例えば3
12が43℃、313が37℃、314が31℃、31
5が25℃、316が19℃、317が13℃、318
が7℃のようになる。時計の歩度調整を行う場
合、論理緩急は、第2図214のデイジタル値で
表わされた温度信号に従つて、あらかじめ定めら
れたリードオンリーメモ(以下ROMと略記す
る。)の内容を読み出すことにより成される。こ
の際、緩急の度合いを与える前記ROMの内容は
例えば頂点温度が25℃である水晶振動子に合わせ
て設定される。ところが、先にも述べたように量
産された水晶振動子の頂点温度には最大で±4℃
程度のばらつきが含まれている。頂点温度が設計
値(ROMにあらかじめ書き込まれている設定
値)からずれた場合の歩度緩急の誤差について第
1図a,bを用いて説明しよう。頂点温度の設計
値をθとする。
Due to the above operation, the node 332 has 312 to 3
A reference potential corresponding to the selected node of 19 is obtained and transmitted to the input terminal of the comparator 202 in FIG. The reference potentials generated at the nodes 312 to 318 each correspond to the temperature, for example, 3
12 is 43℃, 313 is 37℃, 314 is 31℃, 31
5 is 25℃, 316 is 19℃, 317 is 13℃, 318
becomes like 7℃. When adjusting the rate of a clock, the logical adjustment is to read out the contents of a predetermined read-only memo (hereinafter abbreviated as ROM) according to the temperature signal represented by the digital value shown in FIG. 2 214. It is done by. At this time, the content of the ROM that provides the degree of speed is set, for example, in accordance with a crystal resonator whose peak temperature is 25°C. However, as mentioned earlier, the peak temperature of mass-produced crystal units has a maximum temperature of ±4℃.
Contains varying degrees of variation. Let's use Figures 1a and 1b to explain the error in rate slowing/slowing when the peak temperature deviates from the design value (setting value written in advance in the ROM). Let the design value of the peak temperature be θ 0 .

第1図aは頂点温度が設計値に等しい水晶振動
子に関するもので、実際は論理緩急を施さない場
合、点線は論理緩急を施した場合の温度特性であ
る。次に、用いる水晶振動子の頂点温度がθ
(θ≠θ)であつたとする。この場合の温度
特性は第1図bのようになり誤つた緩急が施され
る結果となる。
Figure 1a relates to a crystal oscillator whose peak temperature is equal to the design value, and the dotted line shows the temperature characteristics when no logical moderation is applied, whereas the dotted line shows the temperature characteristics when logical moderation is applied. Next, the peak temperature of the crystal oscillator used is θ 1
Assume that (θ 1 ≠θ 0 ). In this case, the temperature characteristics will be as shown in FIG. 1b, resulting in incorrect speed and speed being applied.

第1図bから明らかなように、頂点温度がθ
―θだけずれることは温度センサーがθ―θ
だけ誤つて温度を検出することと等価である。
As is clear from Figure 1b, the peak temperature is θ 1
- θ A deviation of 0 means that the temperature sensor is θ 1 - θ
This is equivalent to detecting the temperature incorrectly by 0 .

そこで、本発明では、頂点温度がθ―θ
けずれた水晶振動子に対しては、第2図204の
回路で与えられる、参照電位を温度に換算してθ
―θに相当する分だけずらす働きをする微調
整回路を設ける。即ち、第3図において、設計時
における各節点に対する温度設定が312−43
℃、313−37℃、314−31℃、315−25
℃、316−19℃、317−13℃、318−7℃
であり、これが頂点温度25℃の水晶振動子に合わ
せて設計されたものであるとするとき、頂点温度
が312−45℃、313−39℃、314−33℃、
315−27℃、316−21℃、317−15℃、、
318−9℃となるように微調整を施せばよい。
Therefore, in the present invention, for a crystal resonator whose apex temperature deviates by θ 1 - θ 0 , the reference potential given by the circuit 204 in FIG. 2 is converted into temperature.
A fine adjustment circuit is provided that works to shift the amount by an amount corresponding to 1 - θ 0 . That is, in Fig. 3, the temperature setting for each node at the time of design is 312-43
℃, 313-37℃, 314-31℃, 315-25
℃, 316-19℃, 317-13℃, 318-7℃
If this is designed for a crystal resonator with a peak temperature of 25℃, the peak temperatures are 312-45℃, 313-39℃, 314-33℃,
315-27℃, 316-21℃, 317-15℃,
Fine adjustment may be made so that the temperature becomes 318-9°C.

第4図に本発明の頂点温度調整回路の実施例を
示す。同図は、水晶振動子の頂点温度を例えば21
℃,23℃,25℃,27℃のように4段階で調整する
場合の例である。
FIG. 4 shows an embodiment of the apex temperature adjustment circuit of the present invention. The figure shows that the peak temperature of the crystal resonator is, for example, 21
This is an example of adjusting the temperature in four stages such as ℃, 23℃, 25℃, and 27℃.

第4図で各記号の意味は次の通りである。The meaning of each symbol in FIG. 4 is as follows.

401……演算増幅器 402〜403……MOS電界効果トランジス
タ(以下MOSFETと略記) 404〜405……頂点温度調整用のセルで一
例を第5図に示す。
401...Operation amplifier 402-403...MOS field effect transistor (hereinafter abbreviated as MOSFET) 404-405...Cell for top temperature adjustment, an example of which is shown in FIG.

406……プログラマブル・リードオンリーメ
モリ(以下、PROMと略記する。) 411〜412及び421〜427……集積化
された抵抗 441〜448……第2図203のカウンタの
掃引により順次同時に一個に限り導通するアナロ
グスイツチ(例えばトランスミツシヨンゲート,
トランスフアーゲート) 451……基準電圧が供給される節点 458……431〜438のうち選択されてい
る節点の電位が得られる節点 454……正電源 438……負電源 第4図の回路において抵抗411〜412の抵
抗値をそれぞれR11〜R12,抵抗421〜427の
抵抗値をそれぞれR21〜R27とするとき、接点43
1〜438がそれぞれ第3図の接点312〜31
9に対応するためには各抵抗は次の条件を満たす
ように設計されなくてはならない。
406...Programmable read-only memory (hereinafter abbreviated as PROM) 411-412 and 421-427...Integrated resistors 441-448...Sequentially limited to one at a time by the sweep of the counter 203 in FIG. Analog switches that conduct (e.g. transmission gates,
transfer gate) 451... Node to which the reference voltage is supplied 458... Node from which the potential of the node selected from 431 to 438 is obtained 454... Positive power supply 438... Negative power supply Resistor in the circuit of Fig. 4 When the resistance values of the resistors 411 to 412 are respectively R 11 to R 12 and the resistance values of the resistors 421 to 427 are R 21 to R 27 respectively, the contact 43
1 to 438 are contacts 312 to 31 in FIG. 3, respectively.
9, each resistor must be designed to satisfy the following conditions.

11/R12=R21+R22+R23/R24
25+R26+R27……(1) また、第3図の抵抗303〜309の抵抗値を
それぞれR03〜R09とするとき、 R03/R21=R04/R22=R05/R23
06/R24=R07/R25=R08/R26=R
09/R27……(2) MOSFET402〜403及び第5図の514は
飽和領域で動作するように設計されるためゲート
電圧により制御される電圧制御電流源として働
く。
R 11 /R 12 =R 21 +R 22 +R 23 /R 24 +
R 25 +R 26 +R 27 (1) When the resistance values of resistors 303 to 309 in FIG. 3 are respectively R 03 to R 09 , R 03 /R 21 =R 04 /R 22 =R 05 / R 23 =
R 06 /R 24 =R 07 /R 25 =R 08 /R 26 =R
09 /R 27 (2) MOSFETs 402 to 403 and 514 in FIG. 5 are designed to operate in the saturation region, so they function as voltage-controlled current sources controlled by the gate voltage.

第5図で511はトランスミツシヨンゲート、
512はインバータ、513は511がオフのと
き514のゲート電圧をハイに固定するための
MOSFETであり、504は正電源、501,5
02,503はそれぞれ第4図の453,455
(または456),457に接続される。いま水晶
振動子がその頂点温度により21℃のもの、23℃
のもの、25℃のもの、27℃のものと4グループに
分類されており、MOSFET402及び抵抗41
1及び412は節点452の電位が温度25℃に対
応するように、また抵抗421〜427は各節点
と温度が431−43℃、432−37℃、433−
31℃、434−25℃、435−19℃、436−13
℃、437−7℃と対応するように設計されてい
るものとする。もし、実際に用いる水晶振動子の
頂点温度が25℃であれば節点434の電位が25℃
となるように404,405の活性・非活性の組
み合せを定めPROM406に書き込む。抵抗列の
分割点431〜438の位置は頂点温度25℃の水
晶振動子に合わせて設計されているのでこのとき
は各節点の電位は正確に温度に対応し、抵抗列4
21〜427に流れる電流をi、節点438とt
℃に対応する節点との間の抵抗値をRtとする
と、 節点434の電位 ……iR25(3) t℃に対応する節点の電位 ……iRt(4) となる。次に、用いる水晶振動子の頂点温度が23
℃であるときは節点434の電位が23℃に対応す
るように404,405の活性・非活性を調整し
て抵抗列421〜427に流れる電流を△iだけ
減らさなくてはならない。このとき、 節点434の電位 ……(i―△i)R25(5) t−2℃に対応する節点の電位
……(i―△i)Rt(6) となる。(3),(5)より△iR25は2℃に相当する電圧
である。従つて、式(6)で表わされる電位は正確に
はt−2℃に対応せずt−2(Rt/R25)℃に対
応する。
In Figure 5, 511 is the transmission gate.
512 is an inverter, 513 is for fixing the gate voltage of 514 to high when 511 is off.
MOSFET, 504 is the positive power supply, 501,5
02 and 503 are respectively 453 and 455 in Figure 4
(or 456), 457. Currently, the crystal oscillator has a peak temperature of 21℃ and 23℃.
It is classified into 4 groups: 25℃, 27℃, MOSFET 402 and resistor 41.
1 and 412 so that the potential at the node 452 corresponds to a temperature of 25°C, and the resistors 421 to 427 are set so that the potential at the node 452 corresponds to a temperature of 431-43°C, 432-37°C, and 433-427.
31℃, 434-25℃, 435-19℃, 436-13
℃, 437-7℃. If the peak temperature of the crystal oscillator actually used is 25℃, the potential of node 434 is 25℃.
A combination of activation and deactivation of 404 and 405 is determined and written into the PROM 406 so that The positions of dividing points 431 to 438 in the resistor array are designed to match the crystal oscillator with a peak temperature of 25°C, so in this case, the potential at each node corresponds accurately to the temperature, and the resistor array 4
The current flowing through nodes 21 to 427 is i, and the nodes 438 and t
Letting Rt be the resistance value between the node corresponding to t°C, the potential at the node 434 is iR 25 (3) and the potential at the node corresponding to t°C is iRt(4). Next, the peak temperature of the crystal oscillator used is 23
℃, the current flowing through the resistor strings 421 to 427 must be reduced by Δi by adjusting the activation/deactivation of 404 and 405 so that the potential of node 434 corresponds to 23°C. At this time, the potential of the node 434...(i-△i)R 25 (5) The potential of the node corresponding to t-2℃
...(i-△i)Rt(6). From (3) and (5), △iR 25 is a voltage equivalent to 2°C. Therefore, the potential expressed by equation (6) does not exactly correspond to t-2°C, but corresponds to t-2(Rt/R 25 )°C.

ところで第4図の回路を時計用水晶振動子の温
度補正に応用する場合、対象とする温度範囲は−
10℃〜50℃程度である。更に、第2図201の温
度センサーに集積化された抵抗を用いるものとす
れば同図211に得られる温度信号は25℃の時を
中心に±20%以内の範囲で変化する。従つて、
Rt/R25も±20%以内の範囲で変化するものと考
えてよい。
By the way, when applying the circuit shown in Figure 4 to the temperature correction of a watch crystal oscillator, the target temperature range is -
The temperature is about 10℃ to 50℃. Furthermore, if an integrated resistor is used in the temperature sensor 201 in FIG. 2, the temperature signal obtained in 211 in FIG. 2 will vary within a range of ±20% around 25°C. Therefore,
Rt/R 25 can also be considered to vary within a range of ±20%.

以上より、検出温度に見込まれる最大誤差は2
℃の頂点温度調整を施した場合に0.4℃、4℃の
頂点温度調整を施した場合に0.8℃である。この
検出誤差が時計の精度に与える影響は最悪の場合
(−10℃の状態に放置するというような場合)で
0.03(秒/日)であり、これは十分に小さい量と
みなせる。なお、ここに述べた例のように頂点温
度調整を4段階で行う場合必要なPROMのビツト
数は2である。一般に頂点温度調整が2n1乃至
nの段階で成されている場合必要なPROMのビ
ツト数はnである。
From the above, the maximum error expected in the detected temperature is 2
The temperature is 0.4°C when the peak temperature is adjusted to 4°C, and 0.8°C when the peak temperature is adjusted to 4°C. This detection error affects the accuracy of the clock in the worst case (such as when it is left at -10°C).
0.03 (seconds/day), which can be considered a sufficiently small amount. Incidentally, when the apex temperature is adjusted in four stages as in the example described here, the number of PROM bits required is two. Generally, when the apex temperature adjustment is performed in steps of 2 n -1 to 2 n , the number of PROM bits required is n.

本発明は、時計用集積回路内に温度センサーを
設け、論理緩急を施すことにより水晶振動子に対
する温度補正を行う際に水晶振動子の頂点温度の
ばらつきに起因する誤差を著しく減少させる効果
を有する。
The present invention has the effect of significantly reducing errors caused by variations in the peak temperature of the crystal oscillator when temperature correction is performed on the crystal oscillator by providing a temperature sensor in a watch integrated circuit and applying logic adjustment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは水晶振動子の温度特性及び論理緩急
を施した場合の補正された温度特性を示し、同図
bは水晶振動子の頂点温度のずれの様子を示す。
第2図は温度検出回路のブロツク図の一例であ
る。第3図は従来構成を示し、第4図及び第5図
は本発明の実施例を示す。
FIG. 1a shows the temperature characteristics of the crystal resonator and the corrected temperature characteristics when applying the theoretical adjustment, and FIG. 1b shows the deviation of the peak temperature of the crystal resonator.
FIG. 2 is an example of a block diagram of a temperature detection circuit. FIG. 3 shows a conventional configuration, and FIGS. 4 and 5 show an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 温度検出回路を用いることにより近似的な2
次曲線の温度特性を有する水晶振動子の温度補償
を行なう水晶振動子の温度補償回路において、前
記温度検出回路は、温度センサー201と、参照
電圧発生回路204と、該参照電圧発生回路が出
力する参照電圧のレベルを選択するカウンタ20
3と、前記温度センサーの出力と前記参照電圧と
を比較して前記カウンタの内容を設定する比較器
202とを備え、前記参照電圧発生回路は、複数
の抵抗421〜427を直列接続して成る抵抗列
と、該抵抗列に直列接続されるMOSFET514
を含み互いに並列接続される複数の電流源回路4
04,405と、前記MOSFETの活性、非活性
を記憶する記憶回路406とを有し、前記水晶振
動子の頂点温度に応じて前記MOSFETの活性、
非活性を設定して成り、前記カウンタにより選択
された前記抵抗列の節点から前記参照電圧を供給
することを特徴とする水晶振動子の温度補償回
路。
1 Approximate 2 by using a temperature detection circuit
In a temperature compensation circuit for a crystal resonator that performs temperature compensation for a crystal resonator having temperature characteristics according to the following curve, the temperature detection circuit includes a temperature sensor 201, a reference voltage generation circuit 204, and a voltage output from the reference voltage generation circuit. Counter 20 for selecting the level of reference voltage
3, and a comparator 202 that compares the output of the temperature sensor and the reference voltage to set the contents of the counter, and the reference voltage generation circuit is formed by connecting a plurality of resistors 421 to 427 in series. A resistor string and a MOSFET 514 connected in series to the resistor string.
A plurality of current source circuits 4 connected in parallel to each other including
04, 405, and a memory circuit 406 that stores the activation and inactivation of the MOSFET, and stores the activation and inactivation of the MOSFET according to the peak temperature of the crystal resonator.
1. A temperature compensation circuit for a crystal resonator, characterized in that the reference voltage is supplied from a node of the resistor string selected by the counter.
JP13047879A 1979-10-09 1979-10-09 Top temperature adjusting circuit for quartz oscillator Granted JPS5654111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13047879A JPS5654111A (en) 1979-10-09 1979-10-09 Top temperature adjusting circuit for quartz oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13047879A JPS5654111A (en) 1979-10-09 1979-10-09 Top temperature adjusting circuit for quartz oscillator

Publications (2)

Publication Number Publication Date
JPS5654111A JPS5654111A (en) 1981-05-14
JPS6261165B2 true JPS6261165B2 (en) 1987-12-19

Family

ID=15035200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13047879A Granted JPS5654111A (en) 1979-10-09 1979-10-09 Top temperature adjusting circuit for quartz oscillator

Country Status (1)

Country Link
JP (1) JPS5654111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107268U (en) * 1989-02-14 1990-08-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107268U (en) * 1989-02-14 1990-08-27

Also Published As

Publication number Publication date
JPS5654111A (en) 1981-05-14

Similar Documents

Publication Publication Date Title
US3938316A (en) Temperature compensated electronic timepiece
US4453834A (en) Electronic timepiece with temperature compensation
US6294962B1 (en) Circuit(s), architecture and method(s) for operating and/or tuning a ring oscillator
US3806741A (en) Self-biasing technique for mos substrate voltage
US4380745A (en) Digitally controlled temperature compensated oscillator system
US4272840A (en) Semiconductor integrated circuit for a timepiece
US3999370A (en) Temperature compensated electronic timepiece
US6729755B1 (en) Low power, cost effective, temperature compensated real time clock and method of clocking systems
US4465379A (en) Temperature detector circuit for timepiece
JPS6261165B2 (en)
US5999063A (en) Temperature-compensated crystal oscillator using square-law converter circuits for lower and higher temperature sides
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
JPS6261164B2 (en)
JPS6261163B2 (en)
JP2736431B2 (en) Crystal oscillator temperature compensation circuit
CN109710015B (en) Gate delay stabilizing circuit and method
JPH06216705A (en) Variable delaying circuit
JPS6226436B2 (en)
US11336268B2 (en) Integrated circuit comprising at least one ring oscillator and method for controlling an operation of the oscillator
US4128993A (en) Zero adjustment in an electronic timepiece
JPS6121854Y2 (en)
JPS6132604A (en) Temperature compensation type electronic timepiece
JPS59182390A (en) Temperature detecting circuit of electronic timepiece
JPS58179387A (en) Frequency temperature compensating circuit of electronic clock
JPH0786888A (en) Delay time control circuit