JPS6132604A - Temperature compensation type electronic timepiece - Google Patents

Temperature compensation type electronic timepiece

Info

Publication number
JPS6132604A
JPS6132604A JP15479484A JP15479484A JPS6132604A JP S6132604 A JPS6132604 A JP S6132604A JP 15479484 A JP15479484 A JP 15479484A JP 15479484 A JP15479484 A JP 15479484A JP S6132604 A JPS6132604 A JP S6132604A
Authority
JP
Japan
Prior art keywords
circuit
temperature
data
primary
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15479484A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Terajima
義幸 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15479484A priority Critical patent/JPS6132604A/en
Publication of JPS6132604A publication Critical patent/JPS6132604A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/023Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes
    • H03L1/025Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes and a memory for digitally storing correction values

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To perform stable, wide-range temperature compensation by composing the electronic timepiece of a storage circuit which supplies a corrected value to a temperature information correcting circuit, a logical circuit which generates a primary and a secondary coefficient, etc., for the output data of the temperature information correcting circuit and temperature, and an oscillation circuit and a frequency dividing circuit which performs logical speeding-up and slowing-down operation. CONSTITUTION:The analog output of a temperature detecting circuit 207 is converted into digital information by an A-D converting circuit. An error of the temperature detecting circuit and an error of the A-D converting circuit are added to said information, so it is corrected into digital data as to each integrated circuit chip. This corrected value is written in the storage circuit 202 composed of an EPROM temporarily and the corrected data is stored in a primary and secondary correcting circuit 203 and converted on axial symmetry basis about the peak temperature of crystal, thereby making primary and secondary corrections. The primary correction substitutes the tertiary correction. The high-order 3-4 bits of the obtained biary data are led to the frequency dividing circuit 205 as they are to perform speeding-up and slowing-down operation.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は水晶振動子の温度による周波数偏差を補正して
高精度の電子時計を実現するものであるO〔従来技術〕 、第1図に従来の温度補償形高精度時計回路のブロック
図を示す。温度検知回路103で温度に比例したアナロ
グ情報をA−D変換回路104でデジタル情報に変換す
る。その後温度検知回路は個々にバラツキを持つため、
温度情報補正回路でバラツキを補正する0時計用32K
Hzの水晶振動子は温度に対して二次の係数が支配的で
あるため、パルス巾変調回路106で二乗回路を構成し
て水晶発振回路の発振周波数を変化させていたOところ
が温度情報は発振回路に帰還されて大きな容量切換を行
なうため、発振回路が不安定になり、広い温度範囲での
補償が困難であった0まだ水晶には温度に対する三次特
性が含まれ、完全に二次補正を行なったとしても、常温
±20℃以上では周波数偏差が大きくなる。
[Detailed Description of the Invention] [Technical Field] The present invention corrects the frequency deviation caused by the temperature of a crystal oscillator to realize a highly accurate electronic timepiece. A block diagram of a compensated high-precision clock circuit is shown. Analog information proportional to temperature is converted by a temperature detection circuit 103 into digital information by an A-D conversion circuit 104. After that, since the temperature detection circuit has individual variations,
32K for 0 clock that corrects variations with temperature information correction circuit
Since the Hz crystal resonator has a dominant quadratic coefficient with respect to temperature, the pulse width modulation circuit 106 constitutes a square circuit to change the oscillation frequency of the crystal oscillation circuit. Since large capacitance switching is performed by feedback to the circuit, the oscillation circuit becomes unstable and compensation over a wide temperature range is difficult. Even if this is done, the frequency deviation will become large at room temperature ±20° C. or higher.

〔目 的〕〔the purpose〕

本発明はこれらの欠点を除去してより安定で広範囲の温
度!償を行なうものである0 〔概 要〕 第2図は本発明によるブロック図である0温度検知回路
207からのアナログ出力はA−D変換回路206でデ
ジタル情報に変換される0この情報は温度検知回路の誤
差、A、7D変換回路の誤差が加算されるため、集積回
路1チツプずつデジタルデータに補正を行なう。この補
正値は一且EPROM (Erasabi!、a Pr
ofratntnabλg ReadOrl、y Me
mory )などで構成される記憶回路202に書き込
ま糺補正されたデータは一次、二次補正回路206で記
憶される。水晶の頂点温度に対して線対称に変換された
後、−次、二次補正を行なう。−次補正は三次補正の代
用とする0ここで得られたバイナリのデータの上位6〜
4ビツトは、そのまま分周回路205に導き論理緩急を
行なう。下位数ビットはパルスのdstyに変換して、
発振回路204の容量、帰還抵抗などの定数の切換を行
なう。これらの温度補償システムは周波数をある時間(
例えば10秒)の平均値として観測したとき、広い温度
範囲にわたって高い精度を保つ〇 〔実施例〕 第3図に本発明の実施例を示す。ブロック301は第2
図でのブロック201に対応し温度情報補正回路である
。以下それぞれ第2図に対応し302(=202)は記
憶回路、303(=203)は水晶振動子−次、二次補
正回路、304 (=204)は発振回路、505 (
=205 )は分周回路である。A−D変換器からの出
力は第4図に示したように周期が温度に比例している。
The present invention eliminates these drawbacks and provides more stability over a wide range of temperatures! [Overview] Figure 2 is a block diagram according to the present invention. The analog output from the temperature detection circuit 207 is converted into digital information by the A-D conversion circuit 206. This information is Since the errors of the detection circuit and the errors of the A and 7D conversion circuits are added, the digital data is corrected for each integrated circuit chip. This correction value is one EPROM (Erasabi!, a Pr
ofratntnabλg ReadOrl,y Me
The data written to the storage circuit 202 and made up of a memory circuit 202, etc., is stored in the primary and secondary correction circuits 206. After being converted to line symmetry with respect to the peak temperature of the crystal, -order and quadratic corrections are performed. −Order correction is a substitute for cubic correction 0 The top 6 of the binary data obtained here
The 4 bits are directly led to the frequency divider circuit 205 to perform logic adjustment. The lower several bits are converted to pulse dsty,
Constants such as the capacitance and feedback resistance of the oscillation circuit 204 are switched. These temperature compensation systems change the frequency over time (
For example, when observed as an average value over a period of 10 seconds), high accuracy is maintained over a wide temperature range. [Embodiment] FIG. 3 shows an embodiment of the present invention. Block 301 is the second
It corresponds to block 201 in the figure and is a temperature information correction circuit. 2, 302 (=202) is a memory circuit, 303 (=203) is a crystal oscillator-order, secondary correction circuit, 304 (=204) is an oscillation circuit, and 505 (
=205) is a frequency dividing circuit. The period of the output from the AD converter is proportional to the temperature as shown in FIG.

この出力をプリセッタブル・ダウンカウンタ306,3
07に入力すルト、IPROM=312で設定した数値
コードに比例したパルス巾を持つ信号が得られる。ここ
では数値コードを変化させることにより温度に対する傾
きを可変することができる0ANDゲート608で16
KI(zの信号と(温釦X(数値フード)のパルス巾の
信号は加算され、温度情報は16KHzのパルス数に変
換される。
This output is sent to the presettable down counter 306, 3.
07, a signal having a pulse width proportional to the numerical code set by IPROM=312 is obtained. Here, by changing the numerical code, the slope with respect to temperature can be varied.
The signal of KI(z) and the pulse width signal of the (warm button

この信号は更に309〜311で構成されるプリセッタ
ブル・ダウンカウンタに導かれてパルス数のカウントを
行なう。
This signal is further guided to a presettable down counter composed of 309 to 311 to count the number of pulses.

ここでダウンカウントを行なう際、頂点温度(水晶のも
つ二次特性の頂点の温度)のときパルス数が0となるよ
うな調整をE’PROM512で行なう。更に第5図に
示すように頂点流度に対して同じ温度だけ離れると同一
温度情報となるような調整°も行なう。
When down-counting here, the E'PROM 512 is adjusted so that the number of pulses becomes 0 at the peak temperature (temperature at the peak of the secondary characteristics of the crystal). Furthermore, as shown in FIG. 5, adjustments are made so that the same temperature information is obtained when the temperature is the same distance from the peak flow rate.

次にこの情報を九とすると水晶振動子−次二次補正回路
303において、以下に述べるように頂点温度より高い
温度ではs(n十&)、頂点温度より低い温度ではn(
n−’&)に変換される。
Next, assuming that this information is 9, in the crystal oscillator-order secondary correction circuit 303, as described below, at a temperature higher than the peak temperature, s(n + &), and at a temperature lower than the peak temperature, n(
n-'&).

315.316はプログラム分周回路である。温度情報
がnの場合はn分周回路として働く。319はカウンタ
311の出力に従ってんの加算および、減算を行なう。
315 and 316 are program frequency dividing circuits. When the temperature information is n, it works as an n frequency divider circuit. 319 performs addition and subtraction according to the output of the counter 311.

従って317,318は(n十k)(s−k)の分周回
路として動作し・総合的にみると九(%十k)1%(n
 −”、 k )の演算を行なったことになる。この演
算では二乗処理をするため、元のデータを常ビットとす
ると2mビットの長さになってしまう。このため下位前
ビットを切り捨て、上位筑ビットを取り出すようにA’
NDゲート620を設ける。最終データは第6図のよう
になりバイナリコードでアップカウンタ321〜324
に蓄積される。これらのデータ中下位数ビットは水晶発
振回路304の帰還抵抗325.326を制御してゲイ
ンを変え、出力周波数の調整を行なう。また上位3〜4
ビツトは分周回路305に導き論理緩急を行なう。
Therefore, 317 and 318 operate as (n0k) (s-k) frequency divider circuits, and when viewed comprehensively, 9 (%10k) 1% (n
−”, k). This operation performs squaring, so if the original data is constant bits, the length becomes 2m bits. Therefore, the lower previous bits are truncated and the upper bits are A' as if taking out the chikubit.
An ND gate 620 is provided. The final data will be as shown in Figure 6, with up counters 321 to 324 in binary code.
is accumulated in The middle and lower several bits of these data control the feedback resistors 325 and 326 of the crystal oscillation circuit 304 to change the gain and adjust the output frequency. Also top 3-4
The bits are led to a frequency divider circuit 305 for logical adjustment.

本温度補償システムによる周波数一温度特性は次の式で
与えられる。
The frequency-temperature characteristic of this temperature compensation system is given by the following equation.

f=β(T−θwhx )2+r (T−θMAI)3
  Aここで、 β:水晶振動子二次温度係数 γ:三 NI:最終捕正値の上位ビット値 N2:      の下位mビット値 θMAW :頂点温度 〔効 果〕 本システムの効果としては次のようなことが掲げられる
。一つは記憶回路を積極的に使用したことにより、*u
sv法を使用することに対して面積の増加がないことで
ある。EiFROMとしてXi A M OS (Fl
loatint−2ate Avaλanchetnj
trction Metαn 0xide E3emi
condsctor)を使い1これらのアドレスをアク
セスするものとして内部の分周回路を利用した。このた
めFAMO3にデータを書き込む場合、アドレス設定は
ラスト端子を兼用すると、高電圧印加端子1個でよl/
)。
f=β(T-θwhx)2+r(T-θMAI)3
A: Here, β: Crystal oscillator secondary temperature coefficient γ: 3NI: Upper bit value of final captured value N2: Lower m bit value θMAW: Vertex temperature [Effect] The effects of this system are as follows. Things are mentioned. One is by actively using the memory circuit, *u
There is no increase in area versus using the sv method. Xi A M OS (Fl
loatint-2ate Avaλanchetnj
traction Metαn Oxide E3emi
The internal frequency divider circuit was used to access these addresses. Therefore, when writing data to FAMO3, if the last terminal is also used for address setting, only one high voltage application terminal is required.
).

二つめは水晶振動子の三次温度係数を一次によって簡易
補正を行なうことである。oMAX±10℃ぐらいの温
度範囲では特に三次係数は問題とならないが、θMAX
±20℃を越えると急激に三次係数による周波数偏差が
大きくなる。本システムは広範囲の温度でも高精度を保
つ。
The second method is to perform a simple correction of the third-order temperature coefficient of the crystal resonator using the first order. The third-order coefficient is not a problem in the temperature range of oMAX ± 10℃, but θMAX
When the temperature exceeds ±20°C, the frequency deviation due to the third-order coefficient suddenly increases. The system maintains high accuracy over a wide range of temperatures.

三つめは周波数の補正を水晶発振回路と分周回路で行な
うことである。水晶発振回路のみで周波数補正を行なう
と、大きな容量切換が必要で、発振回路の消費電流の増
加、切換ノイズの混入など回路が不安定となる。また分
局部だけで論理緩急による周波数補正を行なうと、補正
タイミングが2〜5分以上となり、時計体とした場合通
常のクォーツテスタが使用できな、い。本システムは両
方に補正をかけることにより、より安定な発振回路、広
温度範囲にわたる高精度化、さらに簡単なメインテナン
スを実現している。
The third method is to correct the frequency using a crystal oscillation circuit and a frequency dividing circuit. If frequency correction is performed using only the crystal oscillator circuit, large capacitance switching is required, resulting in increased current consumption of the oscillation circuit, introduction of switching noise, and other instability in the circuit. Furthermore, if frequency correction is performed by logical slowing and slowing only in the branch part, the correction timing will be longer than 2 to 5 minutes, making it impossible to use a normal quartz tester when used as a watch body. By correcting both, this system achieves a more stable oscillation circuit, higher accuracy over a wide temperature range, and easier maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:従来の高精度電子時計回路のブロック図 第2図:本発明によるブロック図 第3図:本発明による実施例を示す回路図第4図:温度
センサの特性を示す同 第5図二温度情報補正回路出力特性を示す同第6叉:水
晶振動子の一次、二次補正回路の出力特性を示す図 101.204,304・・・水晶発振回路102.2
05,505・・・分周回路103.2’07・・・温
度検知回路 104.206・・・A−D変換回路 105.201.301・・・温度情報補正回路106
・・・パαス巾変調回路 202.502・・・記憶回路 203.303・・・水晶振動子−次二次補正回路30
6.307.3097311,313゜314〜318
,321〜324.330.331・・・・・・・・・
フリップフロップ308.320・・・AND回路 612・・・FAMO5 325,326−MOS ト5ンジスタ327・・・イ
ンバータ 628・・・水晶振動子 329・・・抵抗 以上
Figure 1: Block diagram of a conventional high-precision electronic timepiece circuit Figure 2: Block diagram according to the present invention Figure 3: Circuit diagram showing an embodiment according to the present invention Figure 4: Figure 5 showing the characteristics of a temperature sensor 6th fork showing the output characteristics of the two-temperature information correction circuit: Figures 101, 204, 304, and 304 showing the output characteristics of the primary and secondary correction circuits of the crystal oscillator 102.2
05,505... Frequency division circuit 103.2'07... Temperature detection circuit 104.206... A-D conversion circuit 105.201.301... Temperature information correction circuit 106
...Path width modulation circuit 202.502...Memory circuit 203.303...Crystal oscillator-order secondary correction circuit 30
6.307.3097311,313°314~318
,321~324.330.331...
Flip-flop 308, 320...AND circuit 612...FAMO5 325,326-MOS transistor 327...Inverter 628...Crystal oscillator 329...Resistance or higher

Claims (1)

【特許請求の範囲】[Claims] 温度検知回路、アナログ温度情報をデジタルに変換する
A−Dコンバータ、デジタル情報のバラツキを補正する
ための温度情報補正で構成される高精度電子時計におい
て、前記温度情報補正回路に対し補正値を与える記憶回
路と前記温度情報補正回路の出力データを温度に対する
一次、二次などの係数を発生させる論理回路と、前記論
理回路の出力のデータに従って周波数が変化する発振回
路と、前記論理回路の別なデータに従って論理緩急を行
なう分周回路とで構成されたことを特徴とする温度補償
形電子時計。
In a high-precision electronic watch that includes a temperature detection circuit, an A-D converter that converts analog temperature information into digital, and a temperature information correction for correcting variations in digital information, a correction value is provided to the temperature information correction circuit. A memory circuit, a logic circuit that generates linear, quadratic, etc. coefficients for temperature based on the output data of the temperature information correction circuit, an oscillation circuit whose frequency changes according to the output data of the logic circuit, and another of the logic circuits. A temperature-compensated electronic timepiece characterized by comprising a frequency dividing circuit that performs logical adjustment according to data.
JP15479484A 1984-07-24 1984-07-24 Temperature compensation type electronic timepiece Pending JPS6132604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15479484A JPS6132604A (en) 1984-07-24 1984-07-24 Temperature compensation type electronic timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15479484A JPS6132604A (en) 1984-07-24 1984-07-24 Temperature compensation type electronic timepiece

Publications (1)

Publication Number Publication Date
JPS6132604A true JPS6132604A (en) 1986-02-15

Family

ID=15592036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15479484A Pending JPS6132604A (en) 1984-07-24 1984-07-24 Temperature compensation type electronic timepiece

Country Status (1)

Country Link
JP (1) JPS6132604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128854B2 (en) 2015-08-28 2018-11-13 Seiko Epson Corporation Oscillation circuit, electronic apparatus, and moving object
US10135391B2 (en) 2015-08-28 2018-11-20 Seiko Epson Corporation Oscillation circuit, electronic apparatus, and moving object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128854B2 (en) 2015-08-28 2018-11-13 Seiko Epson Corporation Oscillation circuit, electronic apparatus, and moving object
US10135391B2 (en) 2015-08-28 2018-11-20 Seiko Epson Corporation Oscillation circuit, electronic apparatus, and moving object

Similar Documents

Publication Publication Date Title
US4448549A (en) Temperature sensing device
US6294962B1 (en) Circuit(s), architecture and method(s) for operating and/or tuning a ring oscillator
EP2109024B1 (en) Semiconductor device with temperature compensation circuit
US3938316A (en) Temperature compensated electronic timepiece
JPS6310370B2 (en)
JPS59122112A (en) Temperature stabilized stop-restarting oscillator
JPS5815982B2 (en) Analog ↓-digital conversion circuit
US3999370A (en) Temperature compensated electronic timepiece
JPS6132604A (en) Temperature compensation type electronic timepiece
JPS587584A (en) Electronic timepiece with temperature compensation
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
JPS58223088A (en) Electronic time piece with temperature compensation
US6181192B1 (en) Constant voltage circuit comprising temperature dependent elements and a differential amplifier
JP2736431B2 (en) Crystal oscillator temperature compensation circuit
JP2975411B2 (en) Temperature compensated piezoelectric oscillator
JPS59105720A (en) Generating circuit of crystal reference signal
JPH04259986A (en) Semiconductor memory device
JPS5816363B2 (en) crystal clock
JPH0955624A (en) Temperature compensated crystal oscillator
JPS58205887A (en) Frequency temperature compensating circuit of electronic timepiece
JPS6261163B2 (en)
JPH01259220A (en) Sensor signal processor
JP2750886B2 (en) Temperature sensitive voltage generating circuit and temperature compensating element using the same
JPS6218828A (en) Temperature compensation type piezoelectric oscillator
JPS6261165B2 (en)