JPS6260885B2 - - Google Patents

Info

Publication number
JPS6260885B2
JPS6260885B2 JP57113973A JP11397382A JPS6260885B2 JP S6260885 B2 JPS6260885 B2 JP S6260885B2 JP 57113973 A JP57113973 A JP 57113973A JP 11397382 A JP11397382 A JP 11397382A JP S6260885 B2 JPS6260885 B2 JP S6260885B2
Authority
JP
Japan
Prior art keywords
section
power
lsm
train
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57113973A
Other languages
Japanese (ja)
Other versions
JPS596702A (en
Inventor
Jiro Mizuno
Masahiko Okai
Azusa Miura
Yoshifumi Mochinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP57113973A priority Critical patent/JPS596702A/en
Publication of JPS596702A publication Critical patent/JPS596702A/en
Publication of JPS6260885B2 publication Critical patent/JPS6260885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • B60L15/005Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes for control of propulsion for vehicles propelled by linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Description

【発明の詳細な説明】 本発明は、リニアモータ式鉄道において、列車
の推進に複数個の電力変換器を用いたき電方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a feeding method using a plurality of power converters for propulsion of a train in a linear motor railway.

従来の粘着方式による鉄道は、速度の限界が
300Km/h台にあると言われており、また高速度
域における騒音、振動公害問題も顕著であるとさ
れている。これらの問題を解決するために、リニ
アモータ推進、磁気浮上による低公害の高速輪送
機関の開発が進められている。
Railways using conventional adhesive systems have a speed limit.
It is said that the speed is around 300 km/h, and noise and vibration pollution problems are said to be significant in the high speed range. In order to solve these problems, development of low-pollution high-speed wheel transmission engines using linear motor propulsion and magnetic levitation is underway.

従来、同期型リニアモータ(LSMと称する)
推進による磁気浮上式鉄道では、LSM地上コイ
ルへの電力供給は、二重き電方法により行われて
いる。
Conventionally, synchronous linear motor (referred to as LSM)
In propulsion-based maglev trains, power is supplied to the LSM ground coil by a dual-feeding method.

第1図は従来の二重き電方法の回路図である。 FIG. 1 is a circuit diagram of a conventional dual feeding method.

図において(N−1)、N、(N+1)は各々の
セクシヨンの番号を示す。この二重き電方法で
は、き電区間の中央部に変電所を配置し、列車変
度に応じて周波数を連続的に可変できる三相電力
変換器(以下、電力変換器と呼ぶ)1,2を2台
用いて、LSM地上コイル群へき電している。
LSM地上コイル群は、前記セクシヨン毎に区分
され、各々のき電区分スイツチ3,4,5,6を
介してそれぞれ交互に、き電線7,8と接続され
ている。
In the figure, (N-1), N, and (N+1) indicate the numbers of the respective sections. In this double feeding method, a substation is placed in the center of the feeding section, and three-phase power converters (hereinafter referred to as power converters) 1 and 2 that can continuously vary the frequency according to train fluctuations are installed. Two units are used to supply power to the LSM ground coil group.
The LSM ground coil groups are divided into sections, and are alternately connected to feeder lines 7 and 8 via feeder section switches 3, 4, 5, and 6, respectively.

第1図によれば、列車がNセクシヨンに存在す
る場合、NセクシヨンのLSM地上コイル群に接
続されたき電区分スイツチ4が投入され、Nセク
シヨンのLSM地上コイル群とき電線7が結ば
れ、電力変換器1よりNセクシヨンのLSM地上
コイル群へ電力の供給が行われる。次に列車が
(N+1)セクシヨンへ進入してくるのに備え
て、(N+1)セクシヨンのき電区分スイツチ5
を投入し、(N+1)セクシヨンのLSM地上コイ
ル群へは、電力変換器2より通電する。さらに列
車が進行し、(N+1)セクシヨンに渡り終える
と、電力変換器1の電流を零に絞つてから、Nセ
クシヨンのき電区分スイツチ4を開放し、Nセク
シヨンのLSM地上コイル群への通電を止める。
その後、(N+2)セクシヨンのき電区分スイツ
チ6を投入して、(N+2)セクシヨンのLSM地
上コイル群へ通電して、列車が(N+2)セクシ
ヨンへ進入してくるのに備える。このように列車
がセクシヨンを通過する毎に、電力変換器1,2
から交互にLSM地上コイル群へ電力を供給する
方法が、従来の二重き電方法である。
According to FIG. 1, when the train is in the N section, the feeder classification switch 4 connected to the LSM ground coil group of the N section is turned on, and when the LSM ground coil group of the N section is connected, the electric wire 7 is connected, and the electric power is Power is supplied from the converter 1 to the LSM ground coil group of the N section. Next, in preparation for the train entering the (N+1) section, turn on the feeder classification switch 5 of the (N+1) section.
, and the LSM ground coil group in the (N+1) section is energized from the power converter 2. As the train progresses further and crosses over to the (N+1) section, the current in the power converter 1 is reduced to zero, and then the feeding section switch 4 of the N section is opened, and the LSM ground coil group of the N section is energized. stop.
After that, the feeding section switch 6 of the (N+2) section is turned on to energize the LSM ground coil group of the (N+2) section in preparation for the train entering the (N+2) section. In this way, each time the train passes through a section, power converters 1 and 2
The conventional double feeding method is to alternately supply power from the LSM to the LSM ground coil group.

しかし、この二重き電方法に於いて、列車の推
進力を増加させるためには、LSM地上コイルタ
ーン数を増やす方法と、LSM地上コイルは変え
ないで、電力変換器からのき電電流を増やす方法
が考えられるが、前者については、LSM地上コ
イルの絶縁耐力を上げることに限界があるため、
電力変換器からのき電電流を大きくしなければな
らず、き電線の太径化や、き電線損失の増大とな
る。また電力変換器も大容量なものが必要とな
る。
However, in this dual feeding method, in order to increase the propulsion force of the train, there are two methods: increasing the number of turns of the LSM ground coil, and increasing the feeding current from the power converter without changing the LSM ground coil. There are several possible methods, but for the former, there is a limit to increasing the dielectric strength of the LSM ground coil.
The feeding current from the power converter must be increased, resulting in an increase in the diameter of the feeder line and an increase in feeder loss. Also, a large capacity power converter is required.

さらに、き電区分スイツチ、き電線、電力変換
器等の故障時、通電されないセクシヨンができ、
当該セクシヨンには電力が供給されないため、
LSMの推力が零となり、このセクシヨンへ列車
が進入した場合に走行特性上の衝撃が大きく、乗
り心地が悪くなる。しかも、この故障したセクシ
ヨンに列車が止つている場合を考えると、列車を
動かすためには、LSM地上コイル推進以外の何
らかの方法が必要となる。
Furthermore, in the event of a failure in the feeder section switch, feeder line, power converter, etc., some sections will not be energized.
Since there is no power supplied to the section,
When the thrust of the LSM becomes zero and a train enters this section, the impact on the running characteristics becomes large and the ride becomes uncomfortable. Furthermore, considering the case where the train is stopped on this broken section, some method other than LSM ground coil propulsion is required to move the train.

本発明は、二重き電方法に比べて、電力変換器
の単機容量を小さくできること。電力変換器の総
設備容量を小さくできること。さらに車両界磁に
対しLSM地上コイルを2分割することで、二重
系のシステムを構成し、効率的で信頼度の高いき
電システムを提供するものである。
According to the present invention, the capacity of a single power converter can be reduced compared to the dual feeding method. The total installed capacity of power converters can be reduced. Furthermore, by dividing the LSM ground coil into two for the vehicle field, a dual system is constructed, providing an efficient and highly reliable power feeding system.

すなわち、本発明はリニアモータ式鉄道におけ
る列車推進用電力供給方法において、夫々独立し
て直列接続された2組のLSM地上コイル群を2
セクシヨン分の所定長さ毎に区分してこれを1つ
のき電区間とするとともに、これら区分されたき
電区間を相対的に1セクシヨン分だけずらせて配
置し、列車が位置するセクシヨンを含む前記き電
区間を2台の電力変換器で通電するとともに、他
の1台でき電区間の切換を行うことを特徴とした
ものである。
That is, the present invention provides a method for supplying electric power for train propulsion in a linear motor railway, in which two sets of LSM ground coils each independently connected in series are connected to each other in series.
The sections are divided into sections with a predetermined length, and this is defined as one feeding section, and these divided feeding sections are relatively shifted by one section, and the sections including the section where the train is located are arranged. This system is characterized in that two power converters energize the power section, while the other power converter switches the power section.

以下、本発明を図面に従つて説明する。 The present invention will be explained below with reference to the drawings.

第2図は本発明の一実施例を示す三重き電方法
の回路図である。第2図において、夫々独立して
直列接続された2組のLSM地上コイル群を(N
−1)、N、(N+1)、(N+2)のように所定間
隔のセクシヨンに区分し、2セクシヨン分を1つ
のき電区間とするとともに、これらき電区間を相
対的に1セクシヨン分だけずらせて配置、すなわ
ち前記2組のLSM地上コイル群のうちの一方の
き電区間を他方のき電区間と1セクシヨン分だけ
ずらせて配置している。したがつて、従来の二重
き電方法の2倍のセクシヨン長に亘つて、LSM
地上コイルが区分されることにより、2セクシヨ
ン分の長さが1つのき電区間を形成し、しかも1
セクシヨン分だけ重復したような状態が形成され
る。
FIG. 2 is a circuit diagram of a triple feeding method showing an embodiment of the present invention. In Figure 2, two sets of LSM ground coils each independently connected in series are shown (N
-1), N, (N+1), (N+2) are divided into sections with predetermined intervals, two sections are considered as one feeding section, and these feeding sections are relatively shifted by one section. In other words, one feeding section of the two LSM ground coil groups is shifted from the other feeding section by one section. Therefore, LSM
By dividing the ground coil, the length of two sections forms one feeding section, and
A state is formed in which the number of sections overlaps.

また第2図のごとく、前記両LSM地上コイル
群に形成された各々のき電区間は、き電区分スイ
ツチ9,10,11,12、次いでき電線16,
17,18を経て三相電力変換器13,14,1
5および三相電源19に接続されている。このと
き各き電線16,17,18は、両LSM地上コ
イル群のうちの一方のLSM地上コイル群のき電
区間と他方のLSM地上コイル群のき電区間とを
交互に1セクシヨンおきに、き電区間毎に備えら
れたき電区分スイツチ9,10,11,12を介
して夫々接続しており、後述するように列車の進
行に従つて、該当するき電区分スイツチを順次開
閉することにより所定のセクシヨンを通電するこ
とができる。換言すれば、列車が位置するセクシ
ヨンを含むき電区間を2台の電力変換器で通電す
るとともに、他の1台でき電区間の切換を行うも
のである。
Further, as shown in FIG. 2, each feeding section formed in both LSM ground coil groups includes feeding section switches 9, 10, 11, 12, then feeding lines 16,
17, 18 to three-phase power converter 13, 14, 1
5 and a three-phase power supply 19. At this time, each of the feeder lines 16, 17, and 18 alternately alternates the feeding section of one of the LSM ground coil groups and the feeding section of the other LSM ground coil group every other section. They are connected to each other through feeder classification switches 9, 10, 11, and 12 provided in each feeding section, and as described later, the corresponding feeder classification switches are sequentially opened and closed as the train progresses. Certain sections can be energized. In other words, two power converters energize the section including the section where the train is located, while the other converter switches the section.

本発明は上記のような構成において、2台の電
力変換器を使用して、き電することにより列車に
推力を得る。
In the above configuration, the present invention uses two power converters to supply electricity to obtain thrust to the train.

たとえば、列車がNセクシヨンを走行中のとき
はき電区分スイツチ10,11が投入された状態
になつており電力変換器14,15の2台の変換
器からNセクシヨン、および(N+1)セクシヨ
ンの片方のLSM地上コイル群へ電力が供給され
ている。さらに(N+1)セクシヨンへの列車進
入に備えて、き電区分スイツチ12を投入するこ
とにより(N+1)セクシヨン部のLSM地上コ
イル群の残りの片方へ電力変換器13より通電を
して待つ。列車が(N+1)セクシヨンへ渡り終
えると、Nセクシヨン部のLSM地上コイル群へ
通電しているうちのき電線17のき電区分スイツ
チ10を切り、NセクシヨンのLSM地上コイル
群の片方のみ、通電を止める。その後(N+2)
セクシヨンのLSM地上コイル群へ電力変換器1
4より通電して列車のセクシヨン進入に備える。
以上のように、本発明による三重き電方法では常
に1セクシヨン当たり、2台の電力変換器を使つ
て電力を供給し、残りの1台の電力変換器で列車
走行中の1つ先のセクシヨンに通電を行うことに
なつている。
For example, when the train is running on the N section, the feeder section switches 10 and 11 are in the ON state, and the two power converters 14 and 15 feed the N section and (N+1) section. Power is being supplied to one LSM ground coil group. Furthermore, in preparation for the train to enter the (N+1) section, the feeding section switch 12 is turned on to energize the remaining one of the LSM ground coil groups in the (N+1) section from the power converter 13 and wait. When the train finishes crossing to the (N+1) section, the feeder classification switch 10 of the feeder line 17 that is energized to the LSM ground coil group in the N section is turned off, and only one of the LSM ground coil groups in the N section is energized. stop. After that (N+2)
Power converter 1 to section LSM ground coil group
4 to prepare for the train to enter the section.
As described above, in the triple feeder method according to the present invention, two power converters are always used to supply power to each section, and the remaining power converter is used to supply power to the next section while the train is running. It is scheduled to be energized.

本発明によれば、列車が次のセクシヨンへ進入
するのに備えての通電区間が、従来の二重き電方
法に比べて、1セクシヨン分だけ長くなつてお
り、さらに3台の電力変換器を使うため、き電に
伴う電力損失が大きくなることが予想されるが、
列車推進力を2台の電力変換器で分担しているた
め、電力変換器1台当りの推進力は二重き電方法
に比べて半分となり、列車走行による逆起電力が
半分に軽減される。したがつてコイルの絶縁耐力
を二重き電方法と同一とした場合、LSM地上コ
イルの巻数を増やして、電力変換器からの通電電
流を小さくすることができる。たとえば、LSM
地上コイルターン数を二重き電方法の2倍のター
ン数に設計するならば、電力変換器からの通電電
流は二重き電方法に比べて半分となり、さらに、
セクシヨン長、LSMコイル配置を二重き電並に
すれば、き電に伴う電力損失の増加を抑えること
ができる。また通電電流が半分となることによ
り、電力変換器単機容量が抑えられ3台を合わせ
た総合容量で二重き電方法のときの設備容量以下
に押えることができる。また変電所設備容量を二
重き電方法と同じ大きさだとすれば、二重き電方
法よりも大きな推力特性を得ることができる。
According to the present invention, the energized section for the train to enter the next section is longer by one section than in the conventional double energizing method, and three power converters are required. Although it is expected that the power loss associated with feeding will be large due to the
Since the train propulsion force is shared between two power converters, the propulsion force per power converter is halved compared to the dual feeding method, and the back electromotive force caused by train running is reduced by half. Therefore, if the dielectric strength of the coil is the same as in the double feeding method, the number of turns of the LSM ground coil can be increased to reduce the current flowing from the power converter. For example, LSM
If the number of turns of the ground coil is designed to be twice that of the double feeding method, the current flowing from the power converter will be half that of the double feeding method, and furthermore,
By making the section length and LSM coil arrangement similar to that of double feeding, it is possible to suppress the increase in power loss associated with feeding. Furthermore, by halving the energizing current, the capacity of a single power converter can be suppressed, and the total capacity of three converters can be kept below the installed capacity in the case of the double energization method. Furthermore, if the substation equipment capacity is the same as that of the double feeding method, it is possible to obtain larger thrust characteristics than the double feeding method.

しかも、本発明によればき電区分スイツチの投
入不能あるいは、き電線、電力変換器等の故障が
発生しても、セクシヨンには健全な電力変換器か
ら1/2の電力が供給されているため、二重き電方
法のように無通電となるようなことはなく、当該
セクシヨンに列車が進入しても列車に与える衝撃
を小さくすることができる。さらに、当該セクシ
ヨンに列車が止つていても、先の理由のように、
1/2の電力が与えられるので、リニアモータの機
能が失なわれることもない。
Moreover, according to the present invention, even if the feeder section switch cannot be turned on or a failure occurs in the feeder line, power converter, etc., 1/2 of the power is supplied to the section from the healthy power converter. Therefore, unlike the double energization method, there is no possibility of non-energization, and even if a train enters the section, the impact on the train can be reduced. Furthermore, even if the train is stopped in the section, as mentioned above,
Since 1/2 the power is given, the linear motor does not lose its functionality.

第3図は電力変換器1台1相についての列車負
荷時の等価回路である。20は電力変換器の出力
電圧EsV、23は列車の逆起電力EmV、21は
き電線のインピーダンス(抵抗RΩ、リアクタ
ンスLH)、22はLSM地上コイルのインピー
ダンス(抵抗RmΩ、リアクタンスLmH)を示
す。以上の値を二重き電方法のときの値とする
と、二重き電方法での電圧方程式は、電力変換器
1台当り、 Es=Em+(R+Rm)Im+jω(L+Lm)
Im で示され、変換器1台当りの全電力量は P2+jQ2=3×Es×Im=〔EmIm+(R+Rm)Im2+jω(L+Lm)Im2〕×3 となる。一方、三重き電方法において、例えば、
LSM地上コイルの巻数を2倍にすれば、電力変
換器1台当りの通電電流は半分ですむので、
LSM地上コイルに流れる電流密度を一定の条件
で、コイルを設計するならば、コイルのリアクタ
ンスは4倍、抵抗は4倍となるので、三重き電方
法の場合の電力変換器1台1相当りの電圧方程式
は、 Es=Em+(R+4Rm)Im/2+jω(L+4Lm)Im/2 となり、列車走行に要する電力量は、電力変換器
1台につき P+jQ=〔EmIm/2+(R+4Rm)(Im/2)+jω(L+4Lm)(Im/2)〕×3 =〔EmIm/2+(R/4+Rm)Im2+jω(L/4+Lm)Im2〕×3 となる。よつて、2台の電力変換器の電力量とし
ては P3+jQ3=〔EmIm+(R/2+2Rm)Im2+jω(L/2+2Lm)Im2〕×3 となる。これより、二重き電の場合と比較して、
LSM地上コイル分の損失は増えるが、き電線の
損失は減少し、全体の電力量としては大差はな
い。
FIG. 3 is an equivalent circuit for one power converter and one phase when the train is loaded. 20 is the output voltage EsV of the power converter, 23 is the back electromotive force EmV of the train, 21 is the impedance of the feeder line (resistance RΩ, reactance LH), and 22 is the impedance of the LSM ground coil (resistance RmΩ, reactance LmH). If the above values are the values for the double feeding method, the voltage equation for the double feeding method is: Es=Em+(R+Rm)Im+jω(L+Lm) per power converter
Im, and the total electric power per converter is P 2 +jQ 2 =3×Es×Im=[EmIm+(R+Rm)Im 2 +jω(L+Lm)Im 2 ]×3. On the other hand, in the triple feeding method, for example,
By doubling the number of turns of the LSM ground coil, the current per power converter can be halved.
If the coil is designed with a constant current density flowing through the LSM ground coil, the reactance of the coil will be 4 times higher and the resistance will be 4 times higher. The voltage equation is Es=Em+(R+4Rm)Im/2+jω(L+4Lm)Im/2, and the amount of power required for train running is P+jQ=[EmIm/2+(R+4Rm)(Im/2) per power converter. 2 +jω(L+4Lm)(Im/2) 2 ]×3 = [EmIm/2+(R/4+Rm) Im 2 +jω(L/4+Lm) Im 2 ]×3. Therefore, the power amount of the two power converters is P 3 +jQ 3 = [EmIm+(R/2+2Rm) Im 2 +jω(L/2+2Lm) Im 2 ]×3. From this, compared to the case of double feeding,
Although the loss of the LSM ground coil increases, the loss of the feeder line decreases, and there is no significant difference in the overall power consumption.

同様にき電区分スイツチ切換に伴う電力は、二
重き電方法が Ps2+jQ2=〔(R+Rm)Im2+jω(L+Lm)Im2〕×3 となり、また三重き電方法が Ps3+jQs3=〔(R+4Rm)(Im/2)+jω(L+4Lm)(Im/2)〕×3 =〔(R/4+Rm)Im2+jω(L/4+Lm)Im2〕×3 となる。これにより、二重き電方法と比較して三
重き電方法では、列車が変電所より離れているほ
ど、き電線の損失が少ないといえる。
Similarly, the power associated with switching the feeding classification switch is Ps 2 + jQ 2 = [(R + Rm) Im 2 + jω (L + Lm) Im 2 ] x 3 for the double feeding method, and Ps 3 + jQs 3 = for the triple feeding method. [(R+4Rm)(Im/2) 2 +jω(L+4Lm)(Im/2) 2 ]×3=[(R/4+Rm) Im2 +jω(L/4+Lm) Im2 ]×3. As a result, compared to the double feeding method, it can be said that in the triple feeding method, the farther the train is from the substation, the lower the loss in the feeder line.

一方、電力変換器1台当りの容量は二重き電方
法が2台で電力を供給しているのに対し三重き電
方法は3台で供給しているので、二重き電方法に
比べ、単機容量は小さくなる。
On the other hand, the capacity per power converter is higher than that of a single converter, as compared to the double feeding method, which uses two converters to supply power, the triple feeding method uses three converters to supply power. Capacity becomes smaller.

すなわち、単純に推進に必要な電力のみで比較
すると、電力変換器1台当りの電力量は二重き電
方法がP12=3EmImに対し、三重き電方法では電
流が1/2となることから、P13=3EmIm/2=
3/2・EmImとなり、約1/2の単機容量とな
る。さらに電力変換器の全設備容量は二重変電方
法が3EmIm×2台=6EmImに対し、三重き電方
法は3/2EmIm×3台=9/2EmImであり、三重き電方 法が二重き電方法の約3/4の設置容量となり、電
力変換器の設備上からも経済的となる。
In other words, if we simply compare only the power required for propulsion, the amount of power per power converter is P 12 = 3EmIm for the double feeding method, whereas the current for the triple feeding method is 1/2. , P 13 =3EmIm/2=
It will be 3/2・EmIm, and the single machine capacity will be about 1/2. Furthermore, the total installed capacity of the power converter is 3EmIm x 2 units = 6EmIm for the double substation method, while 3/2EmIm x 3 units = 9/2EmIm for the triple feeding method. The installed capacity is approximately 3/4 of that of the previous model, making it economical in terms of power converter equipment.

以上説明したように、本発明によれば電力の損
失を抑えて、電力変換器単機容量を小さくし、走
行特性上の欠点を解消できるものである。
As described above, according to the present invention, power loss can be suppressed, the capacity of a single power converter can be reduced, and drawbacks in driving characteristics can be solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の二重き電方法の回路図、第2図
は本発明の一実施例を示す三重き電方法の回路
図、第3図は本発明の電力変換器1台1相につい
ての列車負荷時の等価回路図である。 1,2,13,14,15……三相電力変換
器、3,4,5,6,9,10,11,12……
き電区分スイツチ、7,8,16,17,18…
…き電線、19……三相電源。
Fig. 1 is a circuit diagram of a conventional double feeding method, Fig. 2 is a circuit diagram of a triple feeding method showing an embodiment of the present invention, and Fig. 3 is a circuit diagram of a single power converter of the present invention for one phase. It is an equivalent circuit diagram when a train is loaded. 1, 2, 13, 14, 15... three-phase power converter, 3, 4, 5, 6, 9, 10, 11, 12...
Feeding power classification switch, 7, 8, 16, 17, 18...
...feeder line, 19...three-phase power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 リニアモータ式鉄道における列車推進用電力
供給方法において、夫々独立して直列接続された
2組のLSM地上コイル群を2セクシヨン分の所
定長さ毎に区分してこれを1つのき電区間とする
とともに、これら区分されたき電区間を相対的に
1セクシヨン分だけずらせて配置し、列車が位置
するセクシヨンを含む前記き電区間を2台の電力
変換器で通電するとともに、他の1台でき電区間
の切換を行うことを特徴とするリニアモータ式鉄
道の三重き電による電力供給方法。
1. In a power supply method for train propulsion in linear motor railways, two sets of LSM ground coils, each independently connected in series, are divided into predetermined lengths for two sections, and these are treated as one feeding section. At the same time, these divided feeder sections are relatively shifted by one section, and the feeder section including the section where the train is located is energized by two power converters, while the other one is energized. A power supply method using a triple feeder for a linear motor type railway characterized by switching between electrical sections.
JP57113973A 1982-07-02 1982-07-02 Power supplying method by triple current feeding of linear motor type railway Granted JPS596702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113973A JPS596702A (en) 1982-07-02 1982-07-02 Power supplying method by triple current feeding of linear motor type railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113973A JPS596702A (en) 1982-07-02 1982-07-02 Power supplying method by triple current feeding of linear motor type railway

Publications (2)

Publication Number Publication Date
JPS596702A JPS596702A (en) 1984-01-13
JPS6260885B2 true JPS6260885B2 (en) 1987-12-18

Family

ID=14625849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113973A Granted JPS596702A (en) 1982-07-02 1982-07-02 Power supplying method by triple current feeding of linear motor type railway

Country Status (1)

Country Link
JP (1) JPS596702A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266807U (en) * 1985-10-17 1987-04-25
JPH04295203A (en) * 1991-03-20 1992-10-20 Mitsubishi Electric Corp Controller for linear synchronous motor
DE102004054919A1 (en) * 2004-11-10 2006-05-11 Transrapid International Gmbh & Co. Kg Method and device for operating a magnetic levitation vehicle

Also Published As

Publication number Publication date
JPS596702A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
US4689530A (en) Power supply apparatus for linear motor
US7362014B2 (en) Method and arrangement for operating a magnetically levitated vehicle
CN107161034B (en) A kind of power supply system of magnetic suspension train
US6411049B1 (en) Method and apparatus for operating a magnet vehicle
WO1997045288A3 (en) An electric drive system for vehicles
CN100491155C (en) Device for driving magnetic vehicle
US4039910A (en) Dynamoelectric machine
JPS6143947B2 (en)
CN110071678B (en) Stator section winding step changing method for long stator linear synchronous motor of medium-speed magnetic suspension train
JPS6260885B2 (en)
JPH05304702A (en) Shorter feeding-section multiplex feeding method
US4039922A (en) Method of converting phase and frequency using a dynamo-electric machine
JP3276604B2 (en) Propulsion coil feeding circuit for magnetic levitation railway
JP3116952B2 (en) Power supply method of bogie type linear motor
JPS5939961B2 (en) In-car power supply for ultra-high-speed magnetic levitation trains
Azukizawa Optimum linear synchronous motor design for high speed ground transportation
JPH0763201B2 (en) Power supply device for linear motor
WO2002042112A1 (en) A traction power supply system
JP2984935B2 (en) Configuration method of power supply circuit of linear motor type railway
JPH01248905A (en) Split feeder circuit for superconducting magnetic levitation railroad
JPH04193007A (en) Quintuple power supply method
Hata What Drives Electric Multiple Units?
DE2723889A1 (en) On-board power supply for linear induction train - has inductive coupling to track and three phase coils supplied with magnetic fields from superconductive windings
CN114759758A (en) Long-stator linear motor stator segment parallel power supply connection circuit and switch switching method thereof
JP2645822B2 (en) Train propulsion power supply