JPS5939961B2 - In-car power supply for ultra-high-speed magnetic levitation trains - Google Patents

In-car power supply for ultra-high-speed magnetic levitation trains

Info

Publication number
JPS5939961B2
JPS5939961B2 JP53065737A JP6573778A JPS5939961B2 JP S5939961 B2 JPS5939961 B2 JP S5939961B2 JP 53065737 A JP53065737 A JP 53065737A JP 6573778 A JP6573778 A JP 6573778A JP S5939961 B2 JPS5939961 B2 JP S5939961B2
Authority
JP
Japan
Prior art keywords
coil
power supply
levitation
train
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53065737A
Other languages
Japanese (ja)
Other versions
JPS54157205A (en
Inventor
健 藤本
武彦 岩花
直樹 牧
保 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53065737A priority Critical patent/JPS5939961B2/en
Publication of JPS54157205A publication Critical patent/JPS54157205A/en
Publication of JPS5939961B2 publication Critical patent/JPS5939961B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 本発明は超電導磁石を搭載した超高速浮上列車の車内電
源装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of an in-vehicle power supply device for an ultra-high-speed floating train equipped with superconducting magnets.

第1図は超高速浮上列車において推進コイルの電機子反
作用磁束を利用する非接触車内電源装置を得る従来例の
構成図を示す。
FIG. 1 shows a configuration diagram of a conventional example for obtaining a non-contact in-vehicle power supply device that utilizes the armature reaction magnetic flux of a propulsion coil in an ultra-high-speed floating train.

車体1に設けられる超電導コイル2によって作られる磁
束を用いて。
Using the magnetic flux created by the superconducting coil 2 provided in the vehicle body 1.

地上3に設けられる推進コイル4、案内コイル5及び浮
上コイル6に流れる電流との相互作用により推進力、案
内力(左右復元力)及び浮上刃が得られる。
A propulsive force, a guiding force (horizontal restoring force), and a levitating blade are obtained by interaction with the currents flowing through the propulsion coil 4, the guide coil 5, and the levitation coil 6 provided on the ground 3.

ここで、推進コイル4に対向して車上1に誘導給電用コ
イル7を設置し、推進コイル4が発生する電機子反作用
磁束の高調波成分(一般に時間的3倍調波になる。
Here, an induction power supply coil 7 is installed on the vehicle 1 opposite the propulsion coil 4, and a harmonic component (generally a third harmonic in time) of the armature reaction magnetic flux generated by the propulsion coil 4 is generated.

)によって誘導給電用コイル7に発生する誘起電圧を電
力変換器8を介して螢光灯、冷房機等の車内電源負荷9
に給電する。
), the induced voltage generated in the induction power supply coil 7 is transmitted to the in-vehicle power supply load 9 such as a fluorescent light or air conditioner via a power converter 8.
to supply power.

第2図は推進コイル4と誘導給電用コイル7の配置例を
示すもので、推進コイル4は120°ピツチの三相一層
集中巻がコイル取付は容易さの点から用いられており、
誘導給電用コイル7としても同様に取付は容易さの点か
ら60°ピツチのヨ相一層集中巻コイルが用いられる場
合を示す。
Fig. 2 shows an example of the arrangement of the propulsion coil 4 and the induction power feeding coil 7. The propulsion coil 4 uses three-phase single-layer concentrated winding with a pitch of 120° for ease of coil installation.
Similarly, from the viewpoint of ease of installation, a horizontal phase single concentrated winding coil with a pitch of 60° is used as the induction power feeding coil 7.

したがって、2極ピッチ2γ間に、推進コイル4はU、
V、Wと3個2極分、誘導給電用コイル7はR,S、T
が2セット分つまり4極分存在する。
Therefore, between the two pole pitches 2γ, the propulsion coil 4 is U,
V, W, three poles, induction power supply coil 7 is R, S, T
There are two sets of , that is, four poles.

これは推進コイル4の反作用磁束の空間2倍調波C空間
調波のうち2倍調波が最大となる。
This means that the second harmonic of the spatial harmonic C of the reaction magnetic flux of the propulsion coil 4 is the largest.

)が誘導給電用コイル7に時間3倍調波の誘起電圧を発
生させるからである。
) generates a time triple harmonic induced voltage in the induction power feeding coil 7.

次に、従来例における誘導給電用コイル7に誘導される
有効出力について計算する。
Next, the effective output induced in the induction power feeding coil 7 in the conventional example will be calculated.

推進コイルとして1.8m長X0.7m幅、ピッチ2.
1m、起磁力(実効値)9KAT/コイル、誘導給電用
コイルとして0.95m長X0.8m幅、ピッチ1.0
5m。
The propulsion coil is 1.8m long x 0.7m wide, pitch 2.
1m, magnetomotive force (effective value) 9KAT/coil, 0.95m length x 0.8m width, pitch 1.0 as an induction power supply coil
5m.

両コイル中心間のギャップを0.12mとすると誘導給
電用コイル1ターンに鎖交する時間3倍調波磁束は実効
値で3.7 (mWb )となる。
When the gap between the centers of both coils is 0.12 m, the time triple harmonic magnetic flux interlinking with one turn of the induction feeding coil has an effective value of 3.7 (mWb).

そこで、誘導給電用コイルのコイル配列を2X5(=1
0ターン)とすると、500Xm/hで浮上走行する2
5m長の1車両に誘起される相電圧は次のようにして求
められる。
Therefore, we decided to change the coil arrangement of the induction power supply coil to 2×5 (=1
0 turn), the vehicle will float at 500Xm/h2
The phase voltage induced in one 5 m long vehicle is determined as follows.

誘導給電コイルに誘起される電圧eは次式で表わされる
The voltage e induced in the induction feeding coil is expressed by the following equation.

こ\で、Nは誘導給電コイルのターン数、ωは誘起電圧
の角周波数である。
Here, N is the number of turns of the induction feeding coil, and ω is the angular frequency of the induced voltage.

推進コイルは1極当り3個のコイルが設置され、2倍の
空間高調波を利用して3倍の高調波電圧が誘起されるの
で、ωは、 ω=2 rr f=2 πX ((500Xm/hをm
/seeに換算)÷推進コイルピッチ)×調波=2πX
22X3 となる。
Three coils are installed per pole of the propulsion coil, and triple harmonic voltage is induced using twice the space harmonics, so ω is ω=2 rr f=2 πX ((500Xm /h to m
/see) ÷ propulsion coil pitch) x harmonic = 2πX
It becomes 22X3.

誘導給電コイルは(2X5)ターン巻回されたものが推
進コイル1極当り2個設置されるので、両側各4極分を
加え合せると、Nは。
Two induction feeding coils are wound (2x5) turns per pole of the propulsion coil, so if you add up the four poles on each side, N is:

N=(2X5)X(2X4X2) となる。N=(2X5)X(2X4X2) becomes.

誘導給電コイルに鎖交する磁束の実効値て、1相当りの
誘起電圧Eは、 X(2X5)X(8X2)=246(V)となる。
The induced voltage E per 1 effective value of the magnetic flux interlinking with the induction feeding coil is X(2X5)X(8X2)=246 (V).

相電流を40(Aとすれば、内部抵抗降下は、RI=2
4(V)、内部リアクタンス降下はX■=73(V)と
なるので、端子電圧はVt=179(V)に減少する。
If the phase current is 40 (A), the internal resistance drop is RI=2
4 (V), and the internal reactance drop is X■ = 73 (V), so the terminal voltage decreases to Vt = 179 (V).

車内電源負荷力率e08θ二0.8を考えると、1車両
当りの有効出力は次のようになる。
Considering the in-vehicle power source load power factor e08θ20.8, the effective output per vehicle is as follows.

p= 3 V tI cosθ=3X179X40X0
.8X 10−” =17 (I@) 超高速列車の車内電源は超電導磁石の冷却に用いるヘリ
ウムのための冷凍機用も必要になルノテ100(KW)
が必要であるといわれている。
p= 3 V tI cosθ=3X179X40X0
.. 8X 10-” = 17 (I@) The on-board power supply for ultra-high-speed trains also requires a refrigerator for the helium used to cool the superconducting magnets.Lenote 100 (KW)
is said to be necessary.

17(KW:)を100(KW)に増加させるには推進
コイル起磁力を9(KAT/コイル)から20(KAT
/コイル)に増加させる必要がある。
To increase the propulsion coil magnetomotive force from 9 (KAT/coil) to 20 (KAT) to increase from 17 (KW:) to 100 (KW)
/coil).

このとき、超高速浮上列車の所要推力が定寸っているの
で同一推力を得るためには超電導コイルの起磁力を約1
/2に減少させねばならず、これは推進コイルに給電す
る電源の力率、効率を著しく減少させることになるので
好ましくない。
At this time, since the required thrust of the ultra-high-speed levitated train is fixed, in order to obtain the same thrust, the magnetomotive force of the superconducting coil must be reduced by approximately 1
/2, which is undesirable because it significantly reduces the power factor and efficiency of the power source that feeds the propulsion coil.

車内電源装置のために電源容量を著しく増大させるよう
な方策は一般にとれない。
It is generally not possible to significantly increase the power supply capacity for an in-vehicle power supply.

上述のように推進コイルの反作用磁束を利用する従来の
非接触車内電源装置では有効出力が小さいという致命的
欠点を持っていた。
As mentioned above, conventional non-contact in-vehicle power supplies that utilize the reaction magnetic flux of the propulsion coils have a fatal drawback of low effective output.

本発明の目的は超高速磁気浮上列車に必要なる大容量有
効電力を得る車内電源装置を得るにある。
An object of the present invention is to obtain an in-vehicle power supply device that can obtain a large amount of active power required for ultra-high-speed magnetic levitation trains.

推進コイルの反作用磁束を車内電源に利用する従来例の
場合には推進コイル電流を外部から通流させるわけだが
、本発明は列車の進行に伴なって浮上用短絡コイル(浮
上コイル)に誘起する電流により浮上コイル起磁力が推
進コイル起磁力よりはるかに大きくなる(5倍以上)こ
とに着目したものである。
In the conventional case where the reaction magnetic flux of the propulsion coil is used as the in-vehicle power source, the propulsion coil current is passed from outside, but the present invention induces the propulsion coil current in the levitation short-circuit coil (levitation coil) as the train progresses. This method focuses on the fact that the levitation coil magnetomotive force becomes much larger (more than 5 times) than the propulsion coil magnetomotive force due to current.

すなわち、超電導磁石の浮上コイルに対向側の面に誘導
給電用のコイルを配置し、浮上コイルが発生する反作用
磁束の空間高調波成分によって車上の給電用コイルに誘
起する時間高調波電圧を電源として利用することに特徴
がある。
In other words, an induction power feeding coil is placed on the surface opposite to the levitation coil of a superconducting magnet, and the time harmonic voltage induced in the power feeding coil on the vehicle by the spatial harmonic components of the reaction magnetic flux generated by the levitation coil is used as a power source. It is characterized by its use as a

第3図は本発明による車内電源装置を備えた超高速浮上
列車の一実施例を示す構成図である。
FIG. 3 is a block diagram showing an embodiment of a super high-speed floating train equipped with an in-vehicle power supply device according to the present invention.

図において、車体1に超電導コイル2を配置し、地上3
に推進コイル4、案内コイル5、浮上コイル6を配置し
た構成は従来と変りない。
In the figure, a superconducting coil 2 is placed on a vehicle body 1, and a ground 3
The configuration in which the propulsion coil 4, guide coil 5, and levitation coil 6 are arranged is the same as before.

本発明で特徴的なことは、浮上コイル6からの高調波磁
束を利用するために、浮上コイル6Fc、対向して車体
1に誘導給電用コイル10を設置し、このコイル10に
発生する誘起電圧を電力変換器8を介して螢光炉、冷凍
機等の車内電源負荷9に給電するようにしたことである
The characteristic feature of the present invention is that in order to utilize the harmonic magnetic flux from the levitation coil 6, an induction power feeding coil 10 is installed in the vehicle body 1 facing the levitation coil 6Fc, and the induced voltage generated in this coil 10 is The power is supplied to an in-vehicle power load 9 such as a fluorescent furnace or a refrigerator through a power converter 8.

誘導給電用コイル10は超電導コイル20表面に直接あ
るいは中間物を介在させて配置される。
The induction power feeding coil 10 is placed directly on the surface of the superconducting coil 20 or with an intermediate material interposed therebetween.

電力変換器8としては変圧器、整流装置、周波数変換装
置、電動発電機等が考えられるが、この電力変換器8を
省略して誘導給電用コイル10の誘起電圧を直接車内電
源負荷9に接続することもできる。
The power converter 8 may be a transformer, a rectifier, a frequency converter, a motor generator, etc., but this power converter 8 can be omitted and the induced voltage of the induction power supply coil 10 can be directly connected to the in-vehicle power supply load 9. You can also.

また、電力変換器8を整流装置と電池の並列接続から構
成することにより、電池を充電しながら直流車内電源を
得ることもできる。
Further, by configuring the power converter 8 by connecting a rectifier and a battery in parallel, it is possible to obtain a DC in-vehicle power source while charging the battery.

第4図は浮上コイル6と誘導給電用コイル10の配置例
を示すもので、浮上コイル6は60°ピツチの三相一層
集中巻からなり、誘導給電用コイル10は24°ピツチ
の三相一層集中巻コイルからなっている したがって、
2極コイルピッチ2γ間に浮上コイル5はU、−W、V
、−tL W。
FIG. 4 shows an example of the arrangement of the levitation coil 6 and the induction power supply coil 10. The levitation coil 6 consists of three-phase single-layer concentrated windings with a 60° pitch, and the induction power supply coil 10 consists of three-phase single-layer windings with a 24° pitch. Consists of concentrated winding coils Therefore,
Between the two pole coil pitches 2γ, the floating coils 5 are U, -W, and V.
, -tLW.

−■と6個2極分、誘導給電用コイル10はR9S、T
の順に合計15個lO極分設けられる。
- ■ and 6 2 poles, induction power supply coil 10 is R9S, T
A total of 15 lO poles are provided in this order.

次に、浮上コイル60反作用磁束を誘導給電用コイル1
0の誘起電圧に利用する原理について簡単に述べる。
Next, the reaction magnetic flux of the levitation coil 60 is transferred to the induction power supply coil 1.
The principle used for zero induced voltage will be briefly described.

一般に浮上コイル6からの反作用磁束密度の空間分布は
次式で与えられる。
Generally, the spatial distribution of the reaction magnetic flux density from the levitation coil 6 is given by the following equation.

ここで、n=1t2t・・・・・・ An=定数 τ=ポールピッチ X=位置 第4図に示す6個の浮上コイル6に正弦波電流が誘起し
て流れるとすれば、反作用磁束密度は次式で表わされる
Here, n = 1t2t... An = constant τ = pole pitch It is expressed by the following formula.

ここでs C6n 1 w C6n + 1 は定数
・ω二浮上コイル電流の角周波数、 t=時間 上式は地上座標Xで表わしているが、これを車上座標X
に変換するとx=X+vt、(Vは列車速度)、誘導給
電用コイル10に誘起される電圧は次式となる。
Here, s C6n 1 w C6n + 1 is a constant and ω, the angular frequency of the two levitation coil currents, and t = time.
When converted into x=X+vt, (V is the train speed), the voltage induced in the induction power supply coil 10 is expressed as follows.

ここで、N=誘導給電用コイルのターン数λ二誘導給電
用コイルの長さ に6n−L K6n+1s C6n−IjC6n+1は
定数 誘導給電用コイル10のボールピッチをγC1角周波数
をωCとすれば誘導給電用コイル10が発生する移動磁
界波はsin (ωct+−x)で変τC 化する。
Here, N = Number of turns of the induction power supply coil λ The length of the two-induction power supply coil is 6n-L K6n+1s C6n-IjC6n+1 is a constant If the ball pitch of the induction power supply coil 10 is γC1 The angular frequency is ωC, the induction power supply The moving magnetic field wave generated by the working coil 10 changes τC with sin (ωct+−x).

浮上コイル60反作用磁束に基づく誘導給電用コイル1
0の誘起電圧を有効に利用するためには、この誘起電圧
と誘導給電用コイル10の発生する移動磁界波が同一周
波数、同一速度で変化するようにゼねばならない。
Levitation coil 60 Inductive power feeding coil 1 based on reaction magnetic flux
In order to effectively utilize zero induced voltage, this induced voltage and the moving magnetic field wave generated by the induction power feeding coil 10 must change at the same frequency and speed.

そこで、次式が成立する。Therefore, the following formula holds true.

これより、 ωc==6nω したがって、誘導給電用コイル100ポールピツチは浮
上コイル60ポールピツチの1 / (6n±1)倍に
とる必要があり、このときの誘導給電用コイル10の誘
起電圧の周波数は浮上コイル6の電流の周波数の6n倍
になる。
From this, ωc==6nω Therefore, the pitch of 100 poles of the induction power supply coil must be 1/(6n±1) times the pitch of 60 poles of the levitation coil, and the frequency of the induced voltage of the coil 10 for induction power supply at this time is The frequency is 6n times the frequency of the current in the coil 6.

浮上コイル6の空間周波としては第5調波が大きいので
、近似的に誘導給電用コイルに誘起される電圧の式の第
1項だけを考えればよい。
Since the fifth harmonic is large in the spatial frequency of the levitation coil 6, it is sufficient to consider only the first term of the equation of the voltage approximately induced in the induction power supply coil.

すなわち、第4図に示すように誘導給電用コイルの極数
は浮上コイルの5倍にとればよく、このとき誘導コイル
10には時間的6倍調波の電圧が誘起される。
That is, as shown in FIG. 4, the number of poles of the induction power supply coil may be five times that of the levitation coil, and at this time, a voltage of the sixth temporal harmonic is induced in the induction coil 10.

そこで、本発明の一実施例を示す第3図、第4図におけ
る誘導給電用コイル10に誘導される有効出力について
計算する。
Therefore, the effective output induced in the induction power feeding coil 10 in FIGS. 3 and 4 showing an embodiment of the present invention will be calculated.

浮上コイルとして0.675m長X0.4m幅、ピッチ
1.05m、起磁力(実効値)43KAT/コイル、誘
導給電用コイルとして0.32m長×0.5幅、ピッチ
Q、42m。
The levitation coil is 0.675 m long x 0.4 m wide, pitch 1.05 m, magnetomotive force (effective value) 43 KAT/coil, and the induction power supply coil is 0.32 m long x 0.5 wide, pitch Q, 42 m.

両コイル間の中心間ギャップを0.12mとすると、誘
導給電用コイルの1ターンに鎖交する時間的6倍調波磁
束は第5図に示すように実効値で5.0(mWb)とな
る。
Assuming that the center-to-center gap between both coils is 0.12 m, the temporal sixth harmonic magnetic flux interlinking with one turn of the induction power supply coil has an effective value of 5.0 (mWb) as shown in Figure 5. Become.

そこで、誘導給電用コイルの配列を2 X 3 (=6
ターン)とすると、500Km/hで浮上走行する25
m長の1車内の片側に誘起される相電圧は次のようにな
る。
Therefore, the arrangement of the induction power supply coils is 2 x 3 (=6
(turn), the 25 car will fly at a speed of 500 km/h.
The phase voltage induced on one side of one m-long car is as follows.

E==5.0X10 ” X(2πx22x6)x6
X(10X2)=498(V) RI=4(V)、内部リアクタンス降下はXI=60■
となるので、端子電圧はVt=456(V)に減少する
E==5.0X10 ”X(2πx22x6)x6
X (10X2) = 498 (V) RI = 4 (V), internal reactance drop is XI = 60 ■
Therefore, the terminal voltage decreases to Vt=456 (V).

車内電源負荷力率cosθ=0.8を考えると、1車両
当りの有効出力は次のようになる。
Considering the in-vehicle power supply load power factor cos θ=0.8, the effective output per vehicle is as follows.

P = 3 V tI cosθ=ax456x100
X2xo、8xlO” =220(KW) すなわち、従来の10倍以上にあたる220 (KW)
もの大容量有効出力が簡単に得られることがわかる。
P = 3 V tI cosθ=ax456x100
X2xo, 8xlO” = 220 (KW) In other words, 220 (KW), which is more than 10 times the conventional
It can be seen that a large-capacity effective output can be easily obtained.

以上述べたように、本発明によれば浮上コイルに対向す
る側の車載超電導磁石の面に誘導給電用コイルを設置す
ることにより、従来のものよりも大容量有効出力をもつ
車内電源を得ることができる。
As described above, according to the present invention, by installing an induction power supply coil on the surface of the vehicle-mounted superconducting magnet facing the levitation coil, it is possible to obtain an in-vehicle power source with a larger effective output than conventional ones. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の車内電源装置を含む超高速浮上列車を示
す構成図、第2図は従来の推進コイルと誘導給電用コイ
ルの配置例を示す概略斜視図、第3図は本発明による車
内電源装置を含む超高速浮上列車の一実施例を示す構成
図、第4図は本発明の一実施例による浮上コイルと誘導
給電用コイルの配置例を示す概略斜視図、第5図は誘導
給電用コイルの鎖交磁束量を示す特性図である。 2・・・超電導コイル、6・・・浮上コイル、8・・・
電力変換器、9・・・車内電源負荷、10・・・誘導給
電用コイル。
Fig. 1 is a configuration diagram showing an ultra-high-speed floating train including a conventional in-train power supply device, Fig. 2 is a schematic perspective view showing an example of the arrangement of conventional propulsion coils and induction power supply coils, and Fig. 3 is an in-car interior according to the present invention. FIG. 4 is a schematic perspective view showing an example of the arrangement of a levitation coil and an inductive power supply coil according to an embodiment of the present invention; FIG. 5 is an inductive power supply system It is a characteristic diagram showing the amount of interlinkage magnetic flux of the coil for use. 2... Superconducting coil, 6... Levitation coil, 8...
Power converter, 9...In-vehicle power supply load, 10...Inductive power supply coil.

Claims (1)

【特許請求の範囲】 1 列車上に超電導磁石を配置し、この超高速磁石に対
向する地上に浮上用短絡コイルを配置して、列車の進行
に伴なって該浮上用短絡コイルに誘導電流を誘起し列車
に磁気反発浮上刃を与えるようにした超高速磁気浮上列
車において、前記列車上の前記超電導磁石の浮上用短絡
コイルに対向する側の面に誘導給電用コイルを配置し、
該浮上用短絡コイルの反作用磁束によって該誘導給電用
コイルに発生する電力を車内電源としたことを特徴とす
る超高速磁気浮上列車の車内電源装置。 2、特許請求の範囲第1項記載のものにおいて、上記誘
導給電用コイルのポールピッチは浮上用短絡コイルのポ
ールピッチをγとした時にγ/(6n±1)(n:自然
数)となるように構成した超高速磁気浮上列車の車内電
源装置。 3 特許請求の範囲第2項記載のものにおいて、上記誘
導給電用コイルのポールピッチを浮上用短絡コイルのポ
ールピッチの115にした超高速磁気浮上列車の車内電
源装置。
[Claims] 1. A superconducting magnet is placed on the train, a levitation short-circuit coil is placed on the ground facing the ultra-high-speed magnet, and an induced current is applied to the levitation short-circuit coil as the train progresses. In an ultra-high-speed magnetic levitation train that induces magnetic repulsion levitation blades to the train, an induction power feeding coil is arranged on the side of the superconducting magnet on the train that faces the levitation short-circuit coil,
An in-vehicle power supply device for an ultra-high-speed magnetic levitation train, characterized in that electric power generated in the induction power supply coil by the reaction magnetic flux of the levitation short-circuit coil is used as an in-vehicle power source. 2. In the item described in claim 1, the pole pitch of the induction power feeding coil is set to γ/(6n±1) (n: natural number), where γ is the pole pitch of the levitation shorting coil. An on-board power supply system for an ultra-high-speed magnetic levitation train. 3. An in-vehicle power supply device for an ultrahigh-speed magnetic levitation train according to claim 2, wherein the pole pitch of the induction power feeding coil is 115 times the pole pitch of the levitation short-circuit coil.
JP53065737A 1978-06-02 1978-06-02 In-car power supply for ultra-high-speed magnetic levitation trains Expired JPS5939961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53065737A JPS5939961B2 (en) 1978-06-02 1978-06-02 In-car power supply for ultra-high-speed magnetic levitation trains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53065737A JPS5939961B2 (en) 1978-06-02 1978-06-02 In-car power supply for ultra-high-speed magnetic levitation trains

Publications (2)

Publication Number Publication Date
JPS54157205A JPS54157205A (en) 1979-12-12
JPS5939961B2 true JPS5939961B2 (en) 1984-09-27

Family

ID=13295620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53065737A Expired JPS5939961B2 (en) 1978-06-02 1978-06-02 In-car power supply for ultra-high-speed magnetic levitation trains

Country Status (1)

Country Link
JP (1) JPS5939961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326789A (en) * 1991-04-26 1992-11-16 Matsushita Electric Ind Co Ltd Printed board

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104804A (en) * 1980-01-26 1981-08-20 Katayama Chem Works Co Ltd Industrial bactericidal and bacteriostatic process
JPS5863001A (en) * 1981-10-09 1983-04-14 Japanese National Railways<Jnr> Induction coil for non-contact current collector of floating-type railway
JPS59188304A (en) * 1983-04-08 1984-10-25 Japanese National Railways<Jnr> Vehicular power source of linear motor railcar
JP3202765B2 (en) * 1991-07-08 2001-08-27 財団法人鉄道総合技術研究所 Power supply method for superconducting maglev railway
GB2496187A (en) 2011-11-04 2013-05-08 Bombardier Transp Gmbh Providing a vehicle with electric energy using a receiving device for an alternating electromagnetic field
CN110752677A (en) * 2019-11-06 2020-02-04 北京交通大学 Vehicle-mounted linear generator for high-speed magnetic suspension train

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326789A (en) * 1991-04-26 1992-11-16 Matsushita Electric Ind Co Ltd Printed board

Also Published As

Publication number Publication date
JPS54157205A (en) 1979-12-12

Similar Documents

Publication Publication Date Title
JP3672530B2 (en) System combining permanent magnet excitation synchronous motor and non-contact power supply
US5666883A (en) Method and apparatus for use of alternating current in primary suspension magnets for electrodynamic guidance with superconducting fields
Covic et al. Modern trends in inductive power transfer for transportation applications
CN111231691B (en) Suspension force disturbance control method for self-guide linear propulsion structure of electric repulsion type magnetic suspension track
JPS6143947B2 (en)
JPS61218304A (en) Conveyance system
US4039910A (en) Dynamoelectric machine
US5270593A (en) Air cored, linear induction motor for magnetically levitated systems
CN103552473A (en) Linear Halbach permanent magnet-arranged superconductive eddy-current brake device with superconductive switch
CN108616207A (en) A kind of long-stator linear motor winding for rail traffic
JPS5939961B2 (en) In-car power supply for ultra-high-speed magnetic levitation trains
Boldea et al. Field tests on a MAGLEV with passive guideway linear inductor motor transportation system
CN111769712B (en) Electromagnetic propulsion system for high-speed maglev traffic and maglev train
CN212708970U (en) Vehicle-mounted wireless power transmission device suitable for vacuum pipeline maglev train
JPS5863001A (en) Induction coil for non-contact current collector of floating-type railway
US4039922A (en) Method of converting phase and frequency using a dynamo-electric machine
Poloujadoff Linear induction machines I. History and theory of operation
US3518469A (en) Electrical driving arrangement including a flywheel
Azukizawa Optimum linear synchronous motor design for high speed ground transportation
CN113696744B (en) Vehicle-mounted wireless power transmission device suitable for vacuum pipeline maglev train
Umemori et al. Development of DC Lenear Motor Fundamental Construction and Feasibility
US3804023A (en) Dynamic-magnetic suspension system for a conveyance bound to a guide structure
Xu et al. Electromagnetic optimal design of a linear induction motor in linear metro
JPS5843104A (en) Contactless current collector for floating railway train
WO2022166225A1 (en) Electrical system for iron core magnetic circuit multiplexing