JPS6260804A - Production of ferromagnetic powder - Google Patents
Production of ferromagnetic powderInfo
- Publication number
- JPS6260804A JPS6260804A JP20138285A JP20138285A JPS6260804A JP S6260804 A JPS6260804 A JP S6260804A JP 20138285 A JP20138285 A JP 20138285A JP 20138285 A JP20138285 A JP 20138285A JP S6260804 A JPS6260804 A JP S6260804A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- magnetite
- ferromagnetic powder
- heating
- wustite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電波吸収材などに用いて優れた特性をもたら
す、マグネタイト(Fe304)および金属鉄CM、F
e)を含有する強磁性粉末の製造方法に関する。Detailed Description of the Invention [Industrial Application Field] The present invention is directed to magnetite (Fe304) and metallic iron CM, F
e) The present invention relates to a method for producing a ferromagnetic powder containing e).
電波吸収材は、電磁波が建造物の中面に反射して通@等
の妨げになったり、電磁波発生機器から電磁波が漏洩し
て他のディジタル機器に1!影響を及ぼしたりするのを
防ぐ目的で用いられ、′A信やエレクトロニクスの発達
に伴って需要が増加している0通常、電波吸収材はフェ
ライト等の強磁性粉末と、樹脂等の誘電体との複合体の
形で用いられることが多い、電波吸収材の好ましい特性
としては、できる限り薄い材料で、広範囲の周波数の電
波を吸収することである。そのために強磁性粉末の満た
すべき条件はIPf単には、広い周波数範囲に亘って高
い透磁率を保つことであると言える。Radio wave absorbing materials can prevent electromagnetic waves from reflecting on the inside surfaces of buildings, obstructing communication, or leaking electromagnetic waves from electromagnetic wave generating devices and affecting other digital devices! The demand for radio wave absorbers is increasing with the development of communications and electronics.Usually, radio wave absorbers are made of ferromagnetic powder such as ferrite and dielectric materials such as resin. A desirable property of radio wave absorbers, often used in the form of composites, is that they absorb radio waves at a wide range of frequencies in as thin a material as possible. For this reason, the condition that the ferromagnetic powder must satisfy is to maintain high magnetic permeability over a wide frequency range.
前述のように、強磁性粉末としてはフェライト(マグネ
タイトを含む)が最も−・般的である。しかしながら、
フェライトにおける闇題点は、10GHz以−ヒの高い
周波数で高い透磁率を保つことが原理−ヒ困難である゛
ことである。フェライトの組成等を変えることによって
′、低周波での透磁率を高めることは可能である。しか
し、それに付随して周波数特性が必ず劣化する宿命があ
り、結局高周波域(10GHz以上)での透S率は向k
l、ないのである。As mentioned above, ferrite (including magnetite) is the most common ferromagnetic powder. however,
The problem with ferrite is that it is difficult in principle to maintain high magnetic permeability at frequencies higher than 10 GHz. By changing the composition of the ferrite, it is possible to increase the magnetic permeability at low frequencies. However, the frequency characteristics are bound to deteriorate as a result, and in the end, the S transmittance in the high frequency range (10 GHz or higher) decreases.
l, there is no.
これを補うためには、鉄などの金属の強磁性粉末を併用
すると、高周波域での電波吸収性を改善することができ
る。その場合、吸収可f戯な限界の周波数は粒径の2乗
に反比例し、5pmの粒子で10GHz、IJLmの粒
子では250GHz程度までの吸収が可能である。To compensate for this, if ferromagnetic powder of metal such as iron is used in combination, radio wave absorption in the high frequency range can be improved. In this case, the limit frequency that can be absorbed is inversely proportional to the square of the particle size, and 5 pm particles can absorb up to 10 GHz, and IJLm particles can absorb up to about 250 GHz.
しかし、このような微粒の金属粉を低コストで得ること
は容易ではなく、実用の拡大を妨げる原因となっていた
。However, it is not easy to obtain such fine metal powder at low cost, which has hindered the expansion of practical use.
本発明者は、このような問題点を解決して、電波吸収材
用に優れた特性を有する強磁性粉末を得るべく検討した
結果、以下に述べる製造方法によって目的を達成するに
至った。The inventors of the present invention have studied to solve these problems and obtain a ferromagnetic powder having excellent properties for use in radio wave absorbing materials, and as a result, they have achieved the objective using the manufacturing method described below.
上記問題点を解決するため、本発明はウスタイトおよび
/またはマグネタイトを1成分とする酸化鉄粉末に、炭
素源となる粉末および/または液体を混合し、300〜
650℃に加熱することを技術手段としている。In order to solve the above problems, the present invention mixes iron oxide powder containing wustite and/or magnetite as one component with a powder and/or liquid serving as a carbon source.
The technical means is to heat it to 650°C.
未発1月のIi眼点は、金属鉄ではなく酸化鉄であれば
粉砕等によって安価に微粒とすることが容易にできるこ
と、そしてこれを適切な条件下で熱処理すれば、微粒状
態を保ちつつ、Fe3O4とM 、 F eをともに含
有する粉末が得られることにあg二こうして吸収する電
磁波の周波数範囲の広い電波吸収材を、低コストで製造
することが可能となるのである。The main point of the unreleased January report is that if it is iron oxide rather than metallic iron, it can be easily made into fine particles at low cost by crushing, etc., and if it is heat-treated under appropriate conditions, it can be made into fine particles while maintaining its fine particle state. , Fe3O4, M2, and Fe can be obtained. This makes it possible to produce at low cost a radio wave absorbing material that absorbs a wide frequency range of electromagnetic waves.
以ド、本発明の構成を作用と共に詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail together with its operation.
第1に1.F e Oおよび/またはFe3O4を主成
分とする酸化鉄粉末を原料とする理由のひとつは、酸化
物は脆いため、容易に粉砕によって微粒にすることがで
きるためである。また、これらの酸化物は、マグネタイ
ト飯石やミルスケールとして入毛が容易である。Firstly 1. One of the reasons why iron oxide powder containing FeO and/or Fe3O4 as a main component is used as a raw material is that oxides are brittle and can be easily ground into fine particles. In addition, these oxides are easily incorporated as magnetite hanite or mill scale.
さらに、FeOやFe3O4は還元性雰囲気中で加熱す
ることにより、M 、 F eやFe3O4とを含む強
磁性粉末とすることが比較的容易にできる。°シかも、
その場合に原料の細かい粒度をほぼ維持することができ
る。Furthermore, by heating FeO and Fe3O4 in a reducing atmosphere, it is relatively easy to make ferromagnetic powder containing M, Fe, and Fe3O4. °Maybe,
In this case, the fine particle size of the raw material can be substantially maintained.
第2に原料酸化鉄を加熱するに当って、炭素源となる粉
末ないし液体を混合するのは次の理由による0本発明で
はM 、 F eとFe3O4とを同時に含有する、い
わば複合粉末を得ることが目的であるから、原理的には
、原料粉末を還元性雰囲気中で加熱し、FeOおよび/
またはFe3O4を、M 、 F eおよびFe3O4
に変態させればよい、そのための還元性雰囲気を、雰囲
気ガスの組成を調整して実現することもfin@である
が、還元をガスに頼ると、粉末層の場所によってガスと
の接触状況が異なるため、できる強磁性粉末のM、Fe
%やFe3O4が層の場所毎に大きくばらつくことが多
い、炭素源を混合して加熱するのは、この点を改善し、
この炭素源を還元材とすることによって、層内の還元反
応を均一に進行させる役割を担う、この場合は、雰囲気
として不活性ガスを用いても良いし、何らかの形で粉末
層を外きる。Second, when heating the raw material iron oxide, the powder or liquid serving as the carbon source is mixed for the following reason.In the present invention, a so-called composite powder containing M, Fe and Fe3O4 at the same time is obtained. Therefore, in principle, the raw material powder is heated in a reducing atmosphere to dissolve FeO and/or
or Fe3O4, M, Fe and Fe3O4
It is also possible to create a reducing atmosphere by adjusting the composition of the atmospheric gas, but if you rely on gas for reduction, the contact situation with the gas may vary depending on the location of the powder layer. Due to the difference, the ferromagnetic powder M, Fe
% and Fe3O4 often vary greatly depending on the location of the layer. Mixing and heating carbon sources improves this point.
By using this carbon source as a reducing agent, it plays the role of uniformly progressing the reduction reaction within the layer. In this case, an inert gas may be used as the atmosphere, or the powder layer is removed in some way.
炭素源としては、灰分の少ない黒鉛粉が優れているが、
ほかにコークス粉、石炭粉、カーボンブラック粉、樹脂
粉などの粉末や鉱油、アルコールなどの液体であっても
よい。Graphite powder with low ash content is excellent as a carbon source, but
In addition, powders such as coke powder, coal powder, carbon black powder, and resin powder, and liquids such as mineral oil and alcohol may also be used.
加熱温度を300〜650℃に限定するのは次の理由に
よる。300℃未満の温度では還元反応が進行せず、M
、 F eが上のに生成しないとともに、原料がFe
Oを大丑に含む場合、FeOがM 、 F eやFe3
O4に分解する反応が進行せず、結果として強磁性相(
M、FeとFe304)の含有量が低いものしか得られ
ない。The reason why the heating temperature is limited to 300 to 650°C is as follows. At temperatures below 300°C, the reduction reaction does not proceed, and M
, Fe is not generated on top and the raw material is Fe.
When O is included in large quantities, FeO is M, Fe or Fe3
The reaction to decompose into O4 does not proceed, and as a result, the ferromagnetic phase (
Only low contents of M, Fe and Fe304) can be obtained.
一方、650℃を超えると、FeOが安定相となるため
、加熱後の粉末中のF e O−qが増加し、結果とし
て強磁性相の含有量が低下する。On the other hand, when the temperature exceeds 650°C, FeO becomes a stable phase, so that FeO-q in the heated powder increases, resulting in a decrease in the content of the ferromagnetic phase.
従って、加熱温度範囲は300〜650℃と定める。た
だし、ここでいう加熱温度範囲は、それを外れた温度範
囲での加熱を禁するものではなく、例えば、650℃を
超える温度で−・旦加熱し内で加熱保持すれば、同様の
効果が得られる。Therefore, the heating temperature range is set at 300 to 650°C. However, the heating temperature range mentioned here does not prohibit heating outside the range; for example, if heated at a temperature exceeding 650°C and then kept heated inside, the same effect can be obtained. can get.
このように、本発明は比較的低い温度で加熱することを
特徴としているから、原料粉末の細かい粒度をほぼ維持
することができ、さきに述べたような吸収周波数範囲の
広い電波吸収材に応用できるのである。As described above, since the present invention is characterized by heating at a relatively low temperature, the fine particle size of the raw material powder can be almost maintained, and it can be applied to radio wave absorbing materials with a wide absorption frequency range as mentioned above. It can be done.
実施例−1
原料のウスタイト含有粉末は、ミルスケールを振動ボー
ルミルで10時間粉砕し、空気分級によって粗粉をカッ
トして、モ均粒径8.OILmとしたものを用いた。X
線回折によるウスタイト含右駿は約79wし%であり、
ほかにマグネタイト約19wt%、ヘマタイト約2wt
%が検出された。湿式分析によるT 、 F e含有量
は73.9 w t%、不純物は5i02 :0.22
wt%、M n O:0、35 w t%、P:0.0
1wt%、S:0.01wt%、CaO:0.05wt
%であった。Example 1 The raw material, the wustite-containing powder, was obtained by pulverizing mill scale in a vibrating ball mill for 10 hours, cutting the coarse powder by air classification, and obtaining a powder with an average particle size of 8. OILm was used. X
The wustite content according to line diffraction is about 79w%,
In addition, about 19 wt% magnetite and about 2 wt% hematite.
% was detected. T, Fe content by wet analysis is 73.9 wt%, impurity is 5i02:0.22
wt%, MnO: 0, 35 wt%, P: 0.0
1wt%, S: 0.01wt%, CaO: 0.05wt
%Met.
この粉末に、黒鉛粉末(固定炭素99.5%、灰分0.
5%、モ均粒径6.Og、m)を4wt%混合し、アル
ミナトレーに200 g 載せ、N2ガスを流した管状
炉で、各温度に20時間保持した。Graphite powder (fixed carbon 99.5%, ash content 0.
5%, average particle size 6. 4 wt% of Og, m) was mixed, 200 g was placed on an alumina tray, and the mixture was kept at each temperature for 20 hours in a tube furnace through which N2 gas was flowed.
比較のため、黒鉛を添加しない酸化物粉末についても同
様の熱処理を行った。For comparison, oxide powder without graphite was also subjected to the same heat treatment.
、8舛理後の粉末の組成を第1表に示す。Table 1 shows the composition of the powder after 8 millings.
第1表から明らかなように、黒鉛を添加したものは、添
加しないものに比べ、M、Feが多く現れ、しかもFe
3O4が低く抑えられるから、強磁性相(M、FeとF
e304)の割合が格段に多くなっている。しかし、黒
鉛を添加しても、300℃未満の加熱温度では、FeO
の分解が不1−分であり、また黒鉛も反応せずに残存し
、不純物となる。一方、650℃を超える加熱温度では
、逆にFeOが増加してしまう、従って300〜650
℃の加熱が適切であることが分る。As is clear from Table 1, in the case where graphite is added, more M and Fe appear than in the case where graphite is not added.
Since 3O4 is kept low, the ferromagnetic phase (M, Fe and F
e304) has significantly increased. However, even if graphite is added, FeO
decomposition is incomplete, and graphite also remains unreacted and becomes an impurity. On the other hand, if the heating temperature exceeds 650°C, FeO will increase;
℃ heating is found to be appropriate.
実施例−2
ここでは、マグネタイトと金属鉄とを含有する粉末の組
成ばらつきを調べるため、実施例1において、黒鉛粉を
3%添加し、600℃で熱処理した粉末を5分割し、M
、Feを測定した。Example 2 Here, in order to investigate the composition variation of powder containing magnetite and metallic iron, the powder that was heat-treated at 600°C with 3% graphite powder added in Example 1 was divided into 5 parts, and M
, Fe was measured.
比較のため、黒鉛粉を一加せず、H2ガスによって金属
鉄を生成させる方法によっても粉末を作り、同様にM
、 F eの分析を行った。この場合、原料粉と加熱容
器は実施例と同様としたが、加熱の雰囲気と温度、時間
は、初めの4時間はN2+H2(H210%)混合ガス
中、続く6時間はN2ガス中で、600℃において合計
10時間保持した。For comparison, powder was also made by a method of generating metallic iron using H2 gas without adding any graphite powder, and M
, F e was analyzed. In this case, the raw material powder and heating container were the same as in the example, but the heating atmosphere, temperature, and time were as follows: for the first 4 hours in N2 + H2 (H2 10%) mixed gas, and for the next 6 hours in N2 gas. ℃ for a total of 10 hours.
その結果、本発明による黒鉛混合粉の場合は、M 、
F eが7.9.9.6.8,3.10.5.10.1
wt%とばらつきが小さいのに対し、比較例では、M
、 F eが15.3.10.O19,6,7,1,5
、9w t%と大きなばらつきを示した。As a result, in the case of the graphite mixed powder according to the present invention, M,
Fe is 7.9.9.6.8, 3.10.5.10.1
While the variation in wt% is small, in the comparative example, M
, F e is 15.3.10. O19,6,7,1,5
, 9wt%, which showed a large variation.
以上述べたように、本発明法によれば、微粒でしかもM
、 F eとFe3O4を同時に含有する強磁性粉末
を、安価に、しかも品質のばらつきを小さく製造するこ
とができ、電波吸収材等の特性向上に役立てることがで
きる。As described above, according to the method of the present invention, fine particles and M
, Ferromagnetic powder containing Fe and Fe3O4 at the same time can be produced at low cost and with small variations in quality, and can be used to improve the characteristics of radio wave absorbers and the like.
Claims (1)
する酸化鉄粉末に、炭素源となる粉末および/または液
体を混合し、300〜 650℃に加熱することを特徴とするマグネタイトおよ
び金属鉄を含有する強磁性粉末の製造方法。[Claims] 1. Magnetite and metal characterized by mixing powder and/or liquid serving as a carbon source with iron oxide powder mainly composed of wustite and/or magnetite, and heating the mixture to 300 to 650°C. A method for producing ferromagnetic powder containing iron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20138285A JPS6260804A (en) | 1985-09-11 | 1985-09-11 | Production of ferromagnetic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20138285A JPS6260804A (en) | 1985-09-11 | 1985-09-11 | Production of ferromagnetic powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6260804A true JPS6260804A (en) | 1987-03-17 |
Family
ID=16440153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20138285A Pending JPS6260804A (en) | 1985-09-11 | 1985-09-11 | Production of ferromagnetic powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6260804A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007126755A (en) * | 2006-12-28 | 2007-05-24 | Toyo Tanso Kk | Carbon-coated metal particle and method for manufacturing the same |
CN105290421A (en) * | 2015-11-11 | 2016-02-03 | 芜湖迈科威特新材料有限公司 | Preparation method of S-waveband wave absorbing material |
-
1985
- 1985-09-11 JP JP20138285A patent/JPS6260804A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007126755A (en) * | 2006-12-28 | 2007-05-24 | Toyo Tanso Kk | Carbon-coated metal particle and method for manufacturing the same |
CN105290421A (en) * | 2015-11-11 | 2016-02-03 | 芜湖迈科威特新材料有限公司 | Preparation method of S-waveband wave absorbing material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chavan et al. | Studies on electrical and magnetic properties of Mg-substituted nickel ferrites | |
Hwang | Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst | |
Ahmad et al. | Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol–gel autocombustion method | |
Nakamura et al. | Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite | |
JP4506989B2 (en) | Ferrite magnetic material, ferrite sintered magnet and manufacturing method thereof | |
Chandra Babu Naidu et al. | Effect of Nonmagnetic Zn2+ Cations on Initial Permeability of Microwave‐Treated NiMg Ferrites | |
CN103258611A (en) | Soft magnetic powder, method of manufacturing same, noise suppression sheet using same, and method of manufacturing same | |
Rehman et al. | Synthesis and investigations of structural, magnetic and dielectric properties of Cr-substituted W-type Hexaferrites for high frequency applications | |
WO2018143427A1 (en) | Magnetic flat powder and magnetic sheet containing same | |
Amer | Structural and magnetic studies of the Co1+ xTixFe2 (1− x) O4 ferrites | |
Gillot et al. | Infrared investigation of aluminum-and chromium-substituted magnetites and of the lacunar spinels resulting from their oxidation | |
Mahadevan et al. | Effect of three-step calcination on structural, magnetic and microwave properties of BaFe11. 5Ti0. 5O19 hexaferrite | |
Kaur et al. | Study of magnetic, elastic and Ka-band absorption properties of Zn1− xCoxFe2O4 (0.00≤ x≤ 1.00) spinel ferrites | |
Wang et al. | Modifiable natural ferromagnetic resonance frequency and strong microwave absorption in BaFe12-y-2xAlySnxMnxO19 M-type hexaferrite | |
Balamurugan et al. | Synthesis, characterization and electrical properties of Li2NiFe2O4/NiFe2O4 nanocomposites | |
US3002930A (en) | Process of making a ferromagnetic body | |
JPS6260804A (en) | Production of ferromagnetic powder | |
JP2005005286A (en) | FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL | |
JP7292795B2 (en) | Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same | |
WO2018143472A1 (en) | Soft magnetic flat powder | |
Duan et al. | Effect of temperature on the structural, magnetic, and microwave electromagnetic properties of manganese nitrides | |
JPWO2005073147A1 (en) | Method for producing ferrite sintered body | |
Burriesci et al. | A comparison between the structural, magnetic and surface properties of cobalt ferrites prepared by wet and ceramic methods | |
JPS61238901A (en) | Ferromagnetic powder | |
JPH03200303A (en) | Oxide magnetic material for wave absorber |