JPH03200303A - Oxide magnetic material for wave absorber - Google Patents

Oxide magnetic material for wave absorber

Info

Publication number
JPH03200303A
JPH03200303A JP1343740A JP34374089A JPH03200303A JP H03200303 A JPH03200303 A JP H03200303A JP 1343740 A JP1343740 A JP 1343740A JP 34374089 A JP34374089 A JP 34374089A JP H03200303 A JPH03200303 A JP H03200303A
Authority
JP
Japan
Prior art keywords
oxide
reflection coefficient
radio wave
tio
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1343740A
Other languages
Japanese (ja)
Other versions
JP2799614B2 (en
Inventor
Masao Shigihara
鴫原 政夫
Yoshio Sato
由郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1343740A priority Critical patent/JP2799614B2/en
Publication of JPH03200303A publication Critical patent/JPH03200303A/en
Application granted granted Critical
Publication of JP2799614B2 publication Critical patent/JP2799614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To enable improving wave-absorbing characteristics in a low frequency area by adding a specific wt.% and less titanium oxide to nickel, copper, zinc and iron oxide magnetic material. CONSTITUTION:The title material is composed of a principal component consisting of 30.0-35.0 mole % zinc oxide(ZnO), 10.0-15.0 mole % nickel monoxide(NiO), 3.0-9.0 mole % copper monoxide(CuO) and the remainder ferric oxide(Fe2 O3) and, as an auxiliary component, 7wt.% and less (not including 0wt.%) titanium oxide(TiO), and has wave-absorbing characteristics. That is, TiO being the auxiliary component for obtaining a large reflection coefficient for electric waves shows a larger value of the reflection coefficient with the increase of the added quantity of TiO in the especially important frequency range of 30 MHz-300MHz within the range of the added quantity of 0.2-2.0wt.% out of the addition range of 0.2-7.0wt.%. Thus, the title material can be caused to have a large reflection coefficient, to be excellent in wave-absorbing characteristics and to be easy to sinter.

Description

【発明の詳細な説明】 イ1発明の目的 〔産業上の利用分野〕 本発明は、電波暗室、電波吸収壁等に使用する、主とし
て30MH2〜1000t4H2の周波数領域で使用す
るニッケル・銅・亜鉛・鉄系酸化物磁性フェライトから
成る電波吸収体用酸化物磁性材料に関する。
Detailed Description of the Invention A1. Purpose of the Invention [Industrial Field of Application] The present invention is directed to the manufacture of nickel, copper, zinc and The present invention relates to an oxide magnetic material for radio wave absorbers made of iron-based oxide magnetic ferrite.

〔従来の技術〕[Conventional technology]

酸化物磁性材料(以下磁性フェライト)から成る電波吸
収体は、電波暗室の内壁に、炭素入りのウレタンで形成
した電波吸収体と複合した複合型吸収体として、又テレ
ビ電波の乱反射によるテレビ画像のゴーストを防止する
電波吸収壁の材料として開発が進められており、特に電
波暗室を小型化する上で重要な材料となっている。
A radio wave absorber made of an oxide magnetic material (hereinafter referred to as magnetic ferrite) is used as a composite absorber on the inner wall of a radio anechoic chamber with a radio wave absorber made of carbon-containing urethane, and is used as a composite absorber to prevent TV images from being diffused by the diffused reflection of TV radio waves. It is being developed as a material for radio wave absorbing walls to prevent ghosting, and is an important material for miniaturizing radio anechoic chambers.

電波暗室は、市街地、工場等、多くの電磁波が発生され
る環境内に於て、電子装置の電磁ノイズの特性を評価す
る上で重要な設備となっており、電波暗室の室内に於て
は、電子装置の電磁ノイズの特性を評価する規格化され
た周波数域である30MH2〜100100Oの範囲に
於て、理想的には電波の反射が存在することのない材料
が要求されている。
An anechoic chamber is an important facility for evaluating the electromagnetic noise characteristics of electronic devices in environments where many electromagnetic waves are generated, such as in urban areas and factories. In the standardized frequency range of 30 MH2 to 100,100 O, which is the standardized frequency range for evaluating the electromagnetic noise characteristics of electronic devices, materials that ideally do not reflect radio waves are required.

このため電波暗室の小型化、低価格化をはかるため、現
在電波暗室の内壁には磁性フェライトから成る板状の電
波吸収体と、炭素粒子を含ませたウレタンを楔形にした
電波吸収体を組み合せた複合型電波吸収体が用いられて
いる。炭素粒子を含ませたウレタンによる楔形の電波吸
収体のみにより電波を吸収する時は、周波数が一桁低く
なる時は同じ吸収特性を得るためには楔の長さは一桁長
さの長いものを必要とする。又複合型の電波吸収体に於
ても、使用する磁性フェライトの周波数による反射係数
の値にもよるが、従来に於ては周波数が一桁低くなる時
、複合する炭素入りウレタン製電波吸収体の長さは2倍
以上になり、このため特に低い周波数である30MH2
付近に於て電波に対し高い反射係数を持つ磁性フェライ
トの電波吸収体が求められていた。
Therefore, in order to make anechoic chambers smaller and cheaper, the inner walls of anechoic chambers are currently made of a combination of plate-shaped radio wave absorbers made of magnetic ferrite and wedge-shaped radio wave absorbers made of urethane containing carbon particles. A composite radio wave absorber is used. When absorbing radio waves using only a wedge-shaped radio wave absorber made of urethane containing carbon particles, when the frequency is one order of magnitude lower, the length of the wedge must be one order of magnitude longer in order to obtain the same absorption characteristics. Requires. Also, in the case of composite radio wave absorbers, it depends on the value of the reflection coefficient depending on the frequency of the magnetic ferrite used, but conventionally, when the frequency becomes one digit lower, the composite radio wave absorber made of carbon-containing urethane The length of 30MH2 is more than doubled, which is why the frequency of 30MH2 is particularly low.
There was a need for a magnetic ferrite radio wave absorber with a high reflection coefficient for radio waves in the vicinity.

従来の電波吸収体は30〜35モル%の酸化亜鉛(Zn
O)、10〜15モル%の一酸化ニッケル(NiO)、
3〜9モル%の一酸化銅(CuO)、及び残部が酸化第
二鉄(Fe203)から成る磁性フェライトの電波吸収
体が複合型の電波吸収体に用いられていたが、電波暗室
を構成する吸収壁の整合厚を構成する時、電波暗室に用
いる磁性フェライトの反射係数は少なくとも一20db
を必要としており、従来の前記組成による材料では反射
係数が一2ndb以下の特性を示す周波数領域は50M
H2〜450MH2であって、これをウレタン吸収体と
整合させた時低い周波数域に於てはウレタンから成る吸
収体が大きくなってしまい、必要な空間を確保したい時
、電波暗室は大きなものとなる欠点があった。
Conventional radio wave absorbers contain 30 to 35 mol% zinc oxide (Zn
O), 10-15 mol% nickel monoxide (NiO),
A magnetic ferrite radio wave absorber consisting of 3 to 9 mol% copper monoxide (CuO) and the balance ferric oxide (Fe203) has been used as a composite radio wave absorber, but it has been used to construct an anechoic chamber. When configuring the matching thickness of the absorption wall, the reflection coefficient of the magnetic ferrite used in the anechoic chamber must be at least 120 db.
Conventional materials with the above composition have a reflection coefficient of 12ndb or less in the frequency range of 50M
H2 to 450MH2, and when this is matched with a urethane absorber, the absorber made of urethane becomes large in the low frequency range, and the anechoic chamber becomes large if you want to secure the necessary space. There were drawbacks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、小型化した優れた特性でしかも低価格の電波
暗室を構成する時に、特に必要な30MH2〜400M
H2領域に於て、少なくとも反射係数が一20dbより
大きい反射係数を持つ電波吸収特性に優れた、しかも焼
結し易い電波吸収体用酸化物磁性材料を提供する事にあ
る。
The present invention provides a 30MH2 to 400M anechoic chamber that is particularly necessary when constructing an anechoic chamber that is compact, has excellent characteristics, and is inexpensive.
An object of the present invention is to provide an oxide magnetic material for a radio wave absorber that has excellent radio wave absorption characteristics, has a reflection coefficient of at least 120 db or more in the H2 region, and is easy to sinter.

口0発明の構成 〔課題を解決するための手段〕 本発明は従来の30.0〜35.0モル%の酸化亜鉛(
ZnO)、10.0〜15.0モル%の一酸化−1−ッ
ケル(NiO)、3.0〜9.0モル%の一酸化銅(C
uO)、及び残部が酸化第二鉄(Fe20:i)を主成
分とする、ニッケル・銅・亜鉛・鉄(NiCuZnFe
)系磁性フェライトである酸化物磁性材料に、酸化チタ
ン(TiO)を7.0重量%以下(0,0重量%を含ま
ず)の範囲で添加することにより、30MH2〜400
MH2の特に低い周波数領域に於て、−20db以下の
反射係数の吸収特性を持つ電波吸収体用酸化物磁性材料
を得るもので、又本発明の酸化物磁性材料の焼結温度は
1050℃〜1170℃の比較的低い温度で焼結しても
所望の特性が得られる焼結体であることを特徴とする電
波吸収体用酸化物磁性材料とする。
Structure of the Invention [Means for Solving the Problems] The present invention is based on the conventional 30.0 to 35.0 mol% zinc oxide (
ZnO), 10.0 to 15.0 mol% -1-nickel monoxide (NiO), 3.0 to 9.0 mol% copper monoxide (C
uO), and the remainder is ferric oxide (Fe20:i) as the main component.
) type magnetic ferrite, by adding titanium oxide (TiO) in a range of 7.0% by weight or less (excluding 0.0% by weight), 30MH2 to 400%
The purpose is to obtain an oxide magnetic material for a radio wave absorber having an absorption characteristic of a reflection coefficient of -20 db or less in the particularly low frequency region of MH2, and the sintering temperature of the oxide magnetic material of the present invention is 1050 ° C. An oxide magnetic material for a radio wave absorber is characterized in that it is a sintered body that can obtain desired characteristics even when sintered at a relatively low temperature of 1170°C.

即ち本発明は30.0〜35.0モル%の酸化亜鉛(Z
nO)、10.0〜15.0モル%の一酸化ニッケル(
NiO)、3.0〜9.0モル%の一酸化銅(CuO)
、及び残部酸化第二鉄(Fe20:+)からなる主成分
と、副成分として7重量%以下(0重量%を含まず)の
酸化チタン(TiO)とからなり、電波吸収特性を有す
ることを特徴とする電波吸収体用酸化物磁性材料である
That is, the present invention contains 30.0 to 35.0 mol% of zinc oxide (Z
nO), 10.0 to 15.0 mol% nickel monoxide (
NiO), 3.0-9.0 mol% copper monoxide (CuO)
, and the balance is ferric oxide (Fe20:+) as a main component, and 7% by weight or less (excluding 0% by weight) of titanium oxide (TiO) as a subcomponent, and has radio wave absorption properties. This is a characteristic oxide magnetic material for radio wave absorbers.

〔作用〕[Effect]

本発明による電波吸収体用磁性材料の基本組成に於て、
酸化亜鉛(ZnO)の亜鉛の値を30モル%から35モ
ル%に増加すると磁気共鳴周波数の値は低くなり、又−
酸化ニッケル(NiO)の組成比を増加すると磁気共鳴
周波数の値は高い周波数へ移る。又、−酸化銅(CuO
)の組成比を増加すると磁気共鳴周波数の値は低くなる
が、一方一酸化銅は焼結温度を低める効果により添加さ
れ、本発明の組成範囲を決めるものである。
In the basic composition of the magnetic material for radio wave absorber according to the present invention,
When the zinc value of zinc oxide (ZnO) is increased from 30 mol% to 35 mol%, the value of the magnetic resonance frequency becomes lower, and -
When the composition ratio of nickel oxide (NiO) is increased, the value of the magnetic resonance frequency shifts to a higher frequency. Also, -copper oxide (CuO
), the value of the magnetic resonance frequency decreases.On the other hand, copper monoxide is added for its effect of lowering the sintering temperature, which determines the composition range of the present invention.

本発明の実施例に於ける50.0モル%の酸化第二鉄(
Fe203)、33.0モル%の酸化亜鉛(ZnO)、
12.0モル%の一酸化ニッケル(NiO)、5.0モ
ル%の一酸化銅(CuO)の組成比で、従来の組成であ
る酸化チタン(TiO)が無添加である時の磁気特性は
、キュリー点がほぼioo℃、100KH2に於ける初
透磁率が2000、直流磁界が10エルステツドに於け
る磁束密度は0.28テスラ(2800G)であり、前
記の諸特性により本発明の主成分の基本組成範囲は、酸
化亜鉛(ZnO) を30.0ないし35.0モル%、
−酸化ニッケル(NiO)を10.0〜15.0モル%
、−酸化銅(CuO)を3.0〜9.0モル%とするも
のである。
50.0 mol% of ferric oxide (
Fe203), 33.0 mol% zinc oxide (ZnO),
With a composition ratio of 12.0 mol% nickel monoxide (NiO) and 5.0 mol% copper monoxide (CuO), the magnetic properties when the conventional composition of titanium oxide (TiO) is not added are as follows. , the Curie point is approximately 100°C, the initial magnetic permeability at 100KH2 is 2000, and the magnetic flux density at a DC magnetic field of 10 Oe is 0.28 Tesla (2800G). The basic composition range is 30.0 to 35.0 mol% zinc oxide (ZnO);
-10.0 to 15.0 mol% of nickel oxide (NiO)
, - copper oxide (CuO) is 3.0 to 9.0 mol%.

又本発明の目的である電波に対し大きな反射係数を得る
副成分である酸化チタンは、実施例の0.2重量%ない
し7.0重量%の添加範囲に於て、添加量の増加と共に
特に重要である30MHz〜300MH2の周波数範囲
に於て、添加量が0.2重量%ないし2.0重量%の範
囲に於ては酸化チタン(TiO)の添加量を増すにつれ
て反射係数の値は格段に大きな値を示している。又、電
波暗室の吸収体を小形化するために必要な特に低周波域
の100MH2以下の周波数範囲では、本実施例の酸化
チタンが重量比で2.0%ないし7.0%の添加された
範囲では、無添加の従来の材料に比べて優れた反射係数
の値を示しており、従って本発明に於ける添加される酸
化チタン(TiO)の値は7.0重量%以下(0重量%
を含まず)とした。
In addition, titanium oxide, which is a subcomponent that obtains a large reflection coefficient for radio waves, which is the object of the present invention, particularly increases as the amount added increases in the addition range of 0.2% to 7.0% by weight as in the example. In the important frequency range of 30 MHz to 300 MHz, the value of the reflection coefficient increases dramatically as the amount of titanium oxide (TiO) added is increased in the range of 0.2% to 2.0% by weight. shows a large value. In addition, especially in the low frequency range of 100 MH2 or less, which is necessary to downsize the absorber in the anechoic chamber, the titanium oxide of this example was added in an amount of 2.0% to 7.0% by weight. Therefore, the value of titanium oxide (TiO) added in the present invention is 7.0% by weight or less (0% by weight).
).

〔実施例〕〔Example〕

以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.

主成分として、50.0モル%の酸化第二鉄(Fe20
3)、33.0モル%の酸化亜鉛(ZnO)、12.0
モル%の一酸化ニッケル(NiO)、及び5.0モル%
の一酸化銅(CuO)を含有する従来組成のニッケル・
銅・亜鉛・鉄(NiCuZnFe)系フェライトに、酸
化チタン(TiO)を0.2重量%〜7.0重量%(w
t%)添加し、混合、予備焼成、造粒し、成形プレス後
、1100℃で2時間、大気中に於て焼成した。各周波
数の電波に於ける反射係数は、各組成の異なる材料毎に
、外径19.8mm、内径8.6mm、厚さ5.7mm
のリング試料を作り、同軸管法により測定した。酸化チ
タン(TiO)の添加重量%に対する電波の反射係数の
値を第1表に、又、各酸化チタンの添加量に対する各周
波数に於ける反射係数との関係を第1図、並びに第2図
に示し、酸化チタン(TiO)の添加量と誘電率との関
係を第2表に示す。
As a main component, 50.0 mol% of ferric oxide (Fe20
3), 33.0 mol% zinc oxide (ZnO), 12.0
mol% nickel monoxide (NiO), and 5.0 mol%
Conventional composition of nickel containing copper monoxide (CuO)
0.2% to 7.0% by weight (w) of titanium oxide (TiO) is added to copper-zinc-iron (NiCuZnFe)-based ferrite.
t%), mixed, pre-fired, granulated, molded and pressed, and then fired at 1100°C for 2 hours in the air. The reflection coefficient for radio waves of each frequency is 19.8 mm in outer diameter, 8.6 mm in inner diameter, and 5.7 mm in thickness for each material with different composition.
A ring sample was prepared and measured using the coaxial tube method. Table 1 shows the radio wave reflection coefficient values for the weight percentage of titanium oxide (TiO) added, and Figures 1 and 2 show the relationship between the amount of titanium oxide added and the reflection coefficient at each frequency. Table 2 shows the relationship between the amount of titanium oxide (TiO) added and the dielectric constant.

結果は酸化チタンの添加量を増加すると供に低い周波数
域に於ける電波の反射係数の値は大きくなり、即ち電波
の吸収特性に優れた材料が得られ、酸化チタン(TiO
)を7.0重量%添加した時に於ても200MH2に於
て反射係数が一20dbの値が得られ、しかも30MH
2に於ける反射係数の値が一29dbという小型の電波
暗室を構成する上で重要な300MH2以下で反射係数
に優れた電波吸収体用酸化物磁性材料が得られた。電波
の吸収特性を示す反射係数の値は、30MH2より周波
数が高くなるにつれ高くなり、又最大値は高い周波数へ
移って行くが、酸化チタン(TiO)の添加量が1.0
%に於て、最大の反射係数が得られ、又反射係数が最大
となる周波数の値は最高値を示し、さらに酸化チタン(
TiO)の添加量を増すと30MH2付近に於ける反射
係数の値は大きくなり、反射係数が最大となる周波数は
低い周波数へと移って行く結果を示している。これらの
特性値で反射係数が最大となる周波数の移動は第2表に
示す誘電率の値に符号しており、誘電率が最小値を示す
酸化チタン(TiO)添加組成に於て、最大の反射係数
の値と、最大の反射係数を示す周波数として最も高い周
波数を示している。
The results show that as the amount of titanium oxide added increases, the value of the radio wave reflection coefficient in the low frequency range increases, that is, a material with excellent radio wave absorption characteristics is obtained.
) was added in an amount of 7.0% by weight, a reflection coefficient of -20db was obtained at 200MH2, and at 30MH2
An oxide magnetic material for a radio wave absorber with an excellent reflection coefficient of 129 dB at 2 MHz of 300 MH 2 or less, which is important for constructing a small anechoic chamber, was obtained. The value of the reflection coefficient, which indicates the absorption characteristics of radio waves, increases as the frequency becomes higher than 30 MH2, and the maximum value shifts to higher frequencies, but when the amount of titanium oxide (TiO) added is 1.0
%, the maximum reflection coefficient was obtained, and the value of the frequency at which the reflection coefficient was maximum was the highest value, and titanium oxide (
The results show that as the amount of TiO) added increases, the value of the reflection coefficient near 30 MH2 increases, and the frequency at which the reflection coefficient becomes maximum shifts to a lower frequency. The shift in the frequency at which the reflection coefficient is maximum in these characteristic values corresponds to the dielectric constant values shown in Table 2, and in the titanium oxide (TiO)-added composition where the dielectric constant shows the minimum value, the maximum The value of the reflection coefficient and the highest frequency showing the maximum reflection coefficient are shown.

以下余白 ハ1発明の効果 〔発明の効果〕 本発明によれば、従来のニッケル・銅・亜鉛・鉄系酸化
物磁性材料に7.0重量%以下(0重量%を含まず)の
酸化チタン(TiO)を添加することにより、従来のニ
ッケル・銅・亜鉛・鉄系酸化物磁性材料に比べて、電波
の反対係数の値が特に300MH2以下の周波数域に於
て一20db以下の領域が広がり、低周波に於ける電波
吸収特性を大幅に改良した電波吸収体用酸化物磁性材料
が得られた。
Below is a blank space C1 Effects of the invention [Effects of the invention] According to the present invention, titanium oxide of 7.0% by weight or less (not including 0% by weight) is added to the conventional nickel-copper-zinc-iron oxide magnetic material. By adding (TiO), compared to conventional nickel-copper-zinc-iron oxide magnetic materials, the value of the opposite coefficient of radio waves is expanded to -20 db or less, especially in the frequency range of 300 MH2 or less. An oxide magnetic material for a radio wave absorber with significantly improved radio wave absorption characteristics at low frequencies was obtained.

従って本発明による電波吸収体用酸化物磁性材料を用い
た電波暗室では、特に30MH7に於てウレタンとの複
合吸収体として使用する時は電波暗室の電波吸収壁の厚
さを薄く出来る。また、従来と同じ厚さの時には複合電
波吸収体としてより広い帯域の電波吸収に適用でき小型
で低価格な電波暗室を構成することが出来る。
Therefore, in an anechoic chamber using the oxide magnetic material for a radio wave absorber according to the present invention, the thickness of the radio wave absorbing wall of the anechoic chamber can be reduced, especially when used as a composite absorber with urethane at 30MH7. Moreover, when the thickness is the same as that of the conventional one, it can be applied as a composite radio wave absorber to absorb radio waves in a wider band, and a small and inexpensive radio wave anechoic chamber can be constructed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電波吸収体の酸化チタン(TiO
)の添加量が、0重量%(wt%)(比較例)、0.4
重量%、0.8重量%、1.0重量%の時の30MH2
〜100100O範囲に於ける周波数と反射係数との関
係を示す特性図。 第2図は本発明による電波吸収体の酸化チタン(TiO
)の添加量が、1.5重量%、2.0重量%、3.0重
量%、5重量%、7重量%の時(7) 30M1(Z〜
100O100O範囲の周波数と反射係数との関係を示
す特性図。 第7図
Figure 1 shows a radio wave absorber made of titanium oxide (TiO) according to the present invention.
) added amount is 0% by weight (wt%) (comparative example), 0.4
30MH2 at weight%, 0.8% by weight, 1.0% by weight
A characteristic diagram showing the relationship between frequency and reflection coefficient in the range of ~100100O. Figure 2 shows the radio wave absorber made of titanium oxide (TiO) according to the present invention.
) is 1.5% by weight, 2.0% by weight, 3.0% by weight, 5% by weight, 7% by weight (7) 30M1 (Z~
A characteristic diagram showing the relationship between frequency and reflection coefficient in the 100O100O range. Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1.30.0〜35.0モル%の酸化亜鉛(ZnO)、
10.0〜15.0モル%の一酸化ニッケル(NiO)
、3.0〜9.0モル%の一酸化銅(CuO)、及び残
部酸化第二鉄(Fe_2O_3)からなる主成分と、副
成分として7重量%以下(0重量%を含まず)の酸化チ
タン(TiO)とからなり、電波吸収特性を有すること
を特徴とする電波吸収体用酸化物磁性材料。
1.30.0-35.0 mol% zinc oxide (ZnO),
10.0-15.0 mol% nickel monoxide (NiO)
, 3.0 to 9.0 mol% of copper monoxide (CuO), and the balance of ferric oxide (Fe_2O_3) as a main component, and 7% by weight or less (not including 0% by weight) of oxidation as a subsidiary component. An oxide magnetic material for a radio wave absorber comprising titanium (TiO) and having radio wave absorption properties.
JP1343740A 1989-12-27 1989-12-27 Oxide magnetic materials for radio wave absorbers Expired - Fee Related JP2799614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343740A JP2799614B2 (en) 1989-12-27 1989-12-27 Oxide magnetic materials for radio wave absorbers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343740A JP2799614B2 (en) 1989-12-27 1989-12-27 Oxide magnetic materials for radio wave absorbers

Publications (2)

Publication Number Publication Date
JPH03200303A true JPH03200303A (en) 1991-09-02
JP2799614B2 JP2799614B2 (en) 1998-09-21

Family

ID=18363883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343740A Expired - Fee Related JP2799614B2 (en) 1989-12-27 1989-12-27 Oxide magnetic materials for radio wave absorbers

Country Status (1)

Country Link
JP (1) JP2799614B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146545A (en) * 1998-12-04 2000-11-14 Tdk Corporation Radio wave absorbent
US6210597B1 (en) 1997-09-25 2001-04-03 Tdk Corporation Radio wave absorbent
KR100491973B1 (en) * 2002-11-21 2005-05-27 학교법인 포항공과대학교 ZnO-Based room temperature transparent ferromagnetic semiconductor and preparing method thereof
US7238298B2 (en) * 2003-10-06 2007-07-03 Tdk Corporation Ni-Cu-Zn-based ferrite material and process for the production thereof
JP2012508339A (en) * 2008-10-06 2012-04-05 フロデザイン ウィンド タービン コーポレーション Wind turbine with reduced radar signature

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151332B (en) * 2017-06-30 2020-03-10 南京航空航天大学 Electromagnetic wave absorbing agent with titanium-based metal organic framework material as precursor and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210597B1 (en) 1997-09-25 2001-04-03 Tdk Corporation Radio wave absorbent
US6146545A (en) * 1998-12-04 2000-11-14 Tdk Corporation Radio wave absorbent
KR100491973B1 (en) * 2002-11-21 2005-05-27 학교법인 포항공과대학교 ZnO-Based room temperature transparent ferromagnetic semiconductor and preparing method thereof
US7238298B2 (en) * 2003-10-06 2007-07-03 Tdk Corporation Ni-Cu-Zn-based ferrite material and process for the production thereof
JP2012508339A (en) * 2008-10-06 2012-04-05 フロデザイン ウィンド タービン コーポレーション Wind turbine with reduced radar signature

Also Published As

Publication number Publication date
JP2799614B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
EP2784044B1 (en) Magnetoplumbite-type hexagonal ferrite
KR101121554B1 (en) Radio wave absorption material and radio wave absorber
JP3108803B2 (en) Mn-Zn ferrite
JP3422709B2 (en) Radio wave absorber
JP2004247603A (en) MnZn-BASED FERRITE WAVE ABSORBER
JPH03200303A (en) Oxide magnetic material for wave absorber
JPH09110432A (en) Z type hexagonal oxide magnetic material
US7101488B2 (en) Electromagnetic wave absorber formed of Mn-Zn ferrite
CN113511687B (en) Wave-absorbing material and preparation method thereof
JP3003599B2 (en) Ni-Zn ferrite
JP2898343B2 (en) Oxide magnetic material and method for producing the same
JP2729486B2 (en) Nickel-zinc ferrite material for radio wave absorber
JP2806528B2 (en) Magnesium-zinc ferrite material for radio wave absorber
JP2000331816A (en) Hexagonal system z type barium ferrite and its manufacture
JPH05129123A (en) Oxide magnetic material and electromagnetic wave absorber
JP2000001317A (en) Controlling method of intermodulation product of irreversible circuit elements
KR940005137B1 (en) Electric wave absorber
US5055214A (en) Magnetic material for microwave and millimeter wave frequencies
JP3350378B2 (en) Radio wave absorber
JPS6019126B2 (en) microwave ferrite
US5874020A (en) Ni-Zn base ferrite
KR100320944B1 (en) Magnetic material for use in high frequency inductor
JPH11283820A (en) Anisotropic gradient ni-zn ferrite core for high frequency
JP3003601B2 (en) Ni-Zn ferrite
EP1378921A1 (en) Inductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees