JP2007126755A - Carbon-coated metal particle and method for manufacturing the same - Google Patents

Carbon-coated metal particle and method for manufacturing the same Download PDF

Info

Publication number
JP2007126755A
JP2007126755A JP2006353830A JP2006353830A JP2007126755A JP 2007126755 A JP2007126755 A JP 2007126755A JP 2006353830 A JP2006353830 A JP 2006353830A JP 2006353830 A JP2006353830 A JP 2006353830A JP 2007126755 A JP2007126755 A JP 2007126755A
Authority
JP
Japan
Prior art keywords
carbon
particles
metal
thermoplastic resin
metal particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353830A
Other languages
Japanese (ja)
Inventor
Michio Inagaki
道夫 稲垣
Toshiaki Sogabe
敏明 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2006353830A priority Critical patent/JP2007126755A/en
Publication of JP2007126755A publication Critical patent/JP2007126755A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a special metal particle (carbon-coated metal particle) excellent in chemical resistance and oxidation resistance, and a method for manufacturing the same. <P>SOLUTION: The special metal particle is a carbon-coated metal particle wherein the surface of a pure metal particle is covered with a carbon coating. In the manufacturing method, the carbon-coated metal particle is obtained by subjecting a mixture of a particle of a metal oxide and a particle of a thermoplastic resin to a heat-treatment in an inert gas atmosphere and inducing liquid-phase carbonization of the thermoplastic resin to simultaneously promote reduction of the metal oxide and carbonization of the thermoplastic resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、過酷な化学的環境下でも金属材料本来の特性を安定して保持することができる、特に耐薬品性及び耐酸化性に優れた特殊な金属粒子及びその製造方法に関するものである。   The present invention relates to special metal particles that can stably maintain the original characteristics of a metal material even in a harsh chemical environment, and that are particularly excellent in chemical resistance and oxidation resistance, and a method for producing the same.

金属材料は、一般に大気・水・化学薬品・高温気体・土壌などと直接触れ合う環境下では、その表面から徐々に電気化学的な腐食が始まり、特に化学薬品や酸化による腐食はその程度と進行が著しい。このような腐食が進行すると、当然の結果として金属材料本来の特性も損なわれていく。そこで、このような化学薬品による腐食や酸化が問題となるような環境下に配置される各種の機器や装置に対しては、耐薬品性や耐酸化性を付与するための手段が講じられる。   In general, metal materials gradually start electrochemical corrosion from the surface in an environment where they are in direct contact with air, water, chemicals, high-temperature gas, soil, etc., and especially corrosion caused by chemicals and oxidation progresses to a certain extent. It is remarkable. When such corrosion progresses, as a natural result, the original characteristics of the metal material are also impaired. Therefore, means for imparting chemical resistance and oxidation resistance are taken for various devices and apparatuses arranged in an environment where such corrosion and oxidation by chemicals are problematic.

そのような手段としては、通常、耐薬品性又は耐酸化性に優れた金属やセラミック等の薄膜を基材たる金属材料(機械構造材)の表面に形成することが有効とされており、これまでにも種々の形成方法が提案され、実施されている。例えば、真空蒸着法、スパッタ法、イオンプレーティング法、各種CVD法、プラズマ法などが挙げられる。   As such means, it is usually effective to form a thin film such as a metal or ceramic having excellent chemical resistance or oxidation resistance on the surface of a metal material (mechanical structural material) as a base material. Various forming methods have been proposed and implemented. For example, a vacuum deposition method, a sputtering method, an ion plating method, various CVD methods, a plasma method, and the like can be given.

しかし、各種の機器や装置はその形状、大きさ等がまちまちであり、特に複雑な形状の装置や大きな表面積を有する装置に対し、その表面に金属やセラミック等の薄膜を均一に形成することは非常に困難である。しかも、上記の形成方法を実施するためには、大規模な形成装置を必要とし、さらに形成速度に限界があるため、生産性が非常に悪く、結局、耐薬品性又は耐酸化性付与のためのコストが非常に高くなるという問題もある。   However, various devices and devices vary in shape, size, etc., especially for devices with complex shapes and devices with a large surface area, it is not possible to uniformly form a thin film of metal or ceramic on the surface. It is very difficult. Moreover, in order to carry out the above-described forming method, a large-scale forming apparatus is required, and further, there is a limit to the forming speed, so the productivity is very poor, and eventually, chemical resistance or oxidation resistance is imparted. There is also a problem that the cost of this becomes very high.

そこで、こうした事情から機械構造用部材とする前の金属粒子の段階で、その表面に薄膜を形成して金属粒子そのものが耐薬品性や耐酸化性を帯びたものとすることができれば上記諸問題の解決に役立つはずとの見地から、金属粒子の表面に異質な材料(耐環境特性に優れた材料)の薄膜を形成し、このような耐環境特性材料を被覆した金属粒子を機械構造材(二次加工品)の原料として利用するという着想(技術的思想)自体は、存在していた。   Therefore, if the metal particles themselves can have chemical resistance and oxidation resistance at the stage of the metal particles before being used as a mechanical structural member, the metal particles themselves can have chemical resistance and oxidation resistance. From the standpoint of helping to solve this problem, a thin film of a heterogeneous material (a material with excellent environmental resistance) is formed on the surface of the metal particle, and the metal particle coated with such an environmental resistance material is used as a mechanical structural material ( The idea (technical idea) itself to be used as a raw material for secondary processed products has existed.

しかし、その着想を具体化した手段(実用的手段)は、これまで全く存在せず、従って表面に耐環境性材料の薄膜を形成した実用可能な金属粒子も未だ出現していない。これは、金属粒子の場合、その表面が活性状態にあるため取り扱いが非常に難しく、その表面に薄膜を均一に形成することが極めて困難であったことによるものと考えられる。本発明者らは、ここに初めてその具体化した手段(実用的手段)を開示するものであるが、従来の着想(外部から物理的な作用で金属粒子の表面に薄膜を形成する思想)とは全く異なる発想に基づいて完成したものである。   However, there has been no means (practical means) that embodies the idea so far, and therefore, no practical metal particles with a thin film of an environmental resistant material formed on the surface have yet appeared. In the case of metal particles, the surface is in an active state, which makes it very difficult to handle, and it is considered that it is extremely difficult to form a thin film uniformly on the surface. Although the present inventors disclose the means (practical means) embodied for the first time here, the conventional idea (thought to form a thin film on the surface of a metal particle by the physical action from the outside) and Was completed based on completely different ideas.

即ち、本発明の目的とするところは、耐薬品性や耐酸化性に優れた特殊な金属粒子を提供すること、及びその特殊な金属粒子を簡単に効率良く得ることができる製造方法を提供する点にある。   That is, the object of the present invention is to provide special metal particles excellent in chemical resistance and oxidation resistance, and to provide a production method capable of easily and efficiently obtaining the special metal particles. In the point.

上記目的を達成し得た本発明の一つは、金属粒子の表面が炭素の被膜で覆われてなる炭素被覆金属粒子である。また他の発明は、この炭素被覆金属粒子の製造方法の発明であり、金属酸化物の粒子と熱可塑性樹脂の粒子との混合物を不活性ガス雰囲気中で加熱処理し、前記熱可塑性樹脂を液相炭素化することを基本的特徴とする。   One aspect of the present invention that has achieved the above object is carbon-coated metal particles in which the surfaces of the metal particles are covered with a carbon film. Another invention is an invention of a method for producing the carbon-coated metal particles, wherein a mixture of metal oxide particles and thermoplastic resin particles is heat-treated in an inert gas atmosphere, and the thermoplastic resin is liquid-treated. The basic feature is phase carbonization.

本発明者らは、かねてより炭素材や炭素複合材等の物性改良技術の研究を進めており、特に炭素−金属複合材の開発研究の一環として本発明者らも、上述した従来の着想を具体化する手段を見い出すべく種々実験を行ってきたが、満足のいく炭素被覆金属粒子は得られなかった。その主因が、活性状態の金属粒子を扱ったことにあると判断されたことから、化学的に安定な金属酸化物としての粒子を扱うこととし、この金属酸化物を還元して金属粒子に形態変化させると同時に、この形態変化した金属粒子の表面を炭素の被膜で覆うことができるような技術の開発を目指しさらに実験研究を行った。   The inventors of the present invention have been researching on physical property improvement technologies such as carbon materials and carbon composite materials for some time, and in particular, as part of the development research of carbon-metal composite materials, the present inventors have also proposed the conventional idea described above. Various experiments have been conducted to find a means to realize the present invention, but satisfactory carbon-coated metal particles have not been obtained. Since it was judged that the main reason was the handling of active metal particles, it was decided to treat the particles as chemically stable metal oxides and reduce the metal oxides to form metal particles. At the same time, we conducted further experimental studies with the aim of developing a technology that could cover the surface of the metal particles whose shape had changed with a carbon coating.

その結果、金属酸化物の粒子を熱可塑性樹脂でコートし加熱処理すると、金属酸化物の還元と熱可塑性樹脂の炭素化が同時に進行して、表面が炭素被膜で覆われた金属粒子が簡単に得られることを見い出し、本発明を完成したものである。   As a result, when the metal oxide particles are coated with a thermoplastic resin and heat-treated, the reduction of the metal oxide and the carbonization of the thermoplastic resin proceed at the same time, and the metal particles whose surface is covered with the carbon coating can be easily obtained. The present invention has been completed by finding out that it can be obtained.

本発明の一つは、純粋な金属粒子の表面を炭素被膜で均一に覆った特殊な金属粒子であるので、その金属本来の特性(例えば、常磁性、電気伝導性など)を安定して保持しつつ、耐薬品性能及び耐酸化性能を備えた金属粒子とすることができる。従って、この炭素被覆金属粒子を使用すると、化学薬品による腐食や酸化が問題となる環境下に配置される各種の形状、大きさの機器、装置等の表面保護構造(部材)を自在かつ簡単に装備することも可能となる。   One of the present invention is special metal particles in which the surface of pure metal particles is uniformly covered with a carbon coating, so that the original characteristics of the metal (for example, paramagnetism, electrical conductivity, etc.) are stably maintained. However, metal particles having chemical resistance and oxidation resistance can be obtained. Therefore, by using this carbon-coated metal particle, surface protection structures (members) such as various shapes and sizes placed in environments where corrosion and oxidation by chemicals are a problem can be freely and easily performed. It can also be equipped.

また、本発明の製造方法は、従来の着想(外部から物理的な作用で金属粒子の表面に薄膜を形成する思想)とは全く異なる発想、つまり金属酸化物の還元と熱可塑性樹脂の炭素化という化学的な作用を同時に進行させることにより、純粋な金属粒子の表面を炭素被膜で均一に覆う方法であるため、従来のように大規模な薄膜形成装置を必要とせず、既設の焼成装置を利用し操作条件を制御することで容易に製造することができ、本発明の特殊金属粒子を非常に簡単に効率良く、従って安価に得ることができる。   In addition, the production method of the present invention is completely different from the conventional idea (the idea of forming a thin film on the surface of metal particles by a physical action from the outside), that is, reduction of metal oxide and carbonization of thermoplastic resin. This is a method of uniformly covering the surface of pure metal particles with a carbon coating by simultaneously proceeding with the chemical action of the above, so there is no need for a large-scale thin film forming apparatus as in the past, and an existing baking apparatus is used. The special metal particles according to the present invention can be easily manufactured by using and controlling the operating conditions, and the special metal particles of the present invention can be obtained very simply and efficiently.

また、上記の熱可塑性樹脂としてポリビニルクロライドを使用すると、金属粒子を覆う炭素被膜として膜厚がより均一で表面がより一層滑らかなものが得られるので、その分耐薬品性能や耐酸化性能の向上を期待することができる。さらに、熱処理時に流す不活性ガスとして汎用性のあるアルゴンガスを使用すれば、製造コストの低減化に貢献することができる。   In addition, when polyvinyl chloride is used as the thermoplastic resin, a carbon film covering the metal particles can be obtained with a more uniform film thickness and a smoother surface, which improves chemical resistance and oxidation resistance. Can be expected. Furthermore, if a general-purpose argon gas is used as an inert gas that flows during the heat treatment, it can contribute to a reduction in manufacturing cost.

本発明において金属酸化物としては、Fe、Fe、CoO、Co、NiO、CuO、CuOなどが代表的に挙げられる。また金属酸化物の粒子の大きさとしては、特に制限はないが、汎用性を考慮すると、10〜100μmの平均粒径のものが望ましい。 In the present invention, typical examples of the metal oxide include Fe 3 O 4 , Fe 2 O 3 , CoO, Co 3 O 4 , NiO, Cu 2 O, and CuO. Further, the size of the metal oxide particles is not particularly limited, but considering the versatility, those having an average particle size of 10 to 100 μm are desirable.

一方、熱可塑性樹脂についても、特に制限はないが、金属酸化物粒子をコートしたときのコート膜にムラが生じにくいという利点を考慮すると、ポリビニルクロライド(PVC)が望ましい。また、熱可塑性樹脂の粒子の大きさであるが、目的とする炭素被覆金属粒子の炭素被覆層の厚みとしては、この炭素被覆層が緻密ゆえに5μm程度もあれば耐薬品性等の性能を十分発揮しうるので、この5μm程度の厚みの被覆層をほぼ均一にかつ確実に形成するために必要十分な粒子の大きさであればよい。例えば、金属酸化物の粒子が10〜100μm程度のものである場合は、100〜200μm程度のものが望ましい。   On the other hand, the thermoplastic resin is not particularly limited, but polyvinyl chloride (PVC) is desirable in view of the advantage that unevenness is hardly generated in the coating film when the metal oxide particles are coated. In addition, the size of the thermoplastic resin particles is sufficient. The thickness of the carbon coating layer of the target carbon-coated metal particles is sufficient if the carbon coating layer is about 5 μm thick because of the denseness of the carbon coating layer. Therefore, the size of the particles may be sufficient as long as the coating layer having a thickness of about 5 μm is formed almost uniformly and surely. For example, when the metal oxide particles are about 10 to 100 μm, they are preferably about 100 to 200 μm.

金属酸化物粒子に対する熱可塑性樹脂粒子の混合割合は、20〜80重量%程度が望ましい。20重量%未満であると、樹脂が金属酸化物粒子全体に十分には行き渡らず、均質な被覆層が得られないからであり、一方、80重量%を超えると、金属酸化物粒子に対して膜厚が大きくなりすぎて、被膜自体に内部応力が発生しやすくなるからである。   The mixing ratio of the thermoplastic resin particles to the metal oxide particles is preferably about 20 to 80% by weight. If the amount is less than 20% by weight, the resin does not sufficiently spread over the entire metal oxide particles, and a uniform coating layer cannot be obtained. This is because the film thickness becomes too large and internal stress tends to occur in the coating itself.

上記の条件を満足するように得られた、金属酸化物粒子と熱可塑性樹脂との混合物を不活性ガス雰囲気内に配置した後、昇温速度50〜500℃/hrで加熱し、800〜1500℃に達した後、一定時間保持する。いわゆる焼成操作を施すわけであるが、この焼成操作が終了するまでの間に金属酸化物は還元されて金属粒子となり、同時に熱可塑性樹脂は液相炭素化が進み、最終的に還元された金属粒子の表面が3〜20μm程度の炭素の被膜で覆われた状態となる。   The mixture of metal oxide particles and thermoplastic resin obtained so as to satisfy the above conditions was placed in an inert gas atmosphere, and then heated at a heating rate of 50 to 500 ° C./hr, and 800 to 1500 After reaching ° C, hold for a period of time. The so-called firing operation is performed, but before this firing operation is completed, the metal oxide is reduced to metal particles, and at the same time, the thermoplastic resin undergoes liquid phase carbonization, and finally the reduced metal. The surface of the particles is covered with a carbon film of about 3 to 20 μm.

以下、本発明を実施例に基づいて具体的に説明する。
(実施例)
プラスチック製容器にFeの粒子(平均粒径は約50μm)を50g入れ、さらにPVCの粉末(平均粒径は100〜200μm)を43重量%を入れた後容器を閉じて、10分間、機械的に揺動して両者を均一に混合した。次に、混合粉体を電気炉内に設置し、炉内にアルゴンガスを流しつつ、500℃/hrの割合で炉内を昇温し、1000℃に達した後、1時間保持して熱処理を行った。
Hereinafter, the present invention will be specifically described based on examples.
(Example)
50 g of Fe 3 O 4 particles (average particle size is about 50 μm) are put in a plastic container, and 43% by weight of PVC powder (average particle size is 100 to 200 μm) is added, and then the container is closed for 10 minutes. The two were mixed uniformly by mechanical rocking. Next, the mixed powder is placed in an electric furnace, and while the argon gas is allowed to flow in the furnace, the temperature in the furnace is increased at a rate of 500 ° C./hr, reaches 1000 ° C., and is held for 1 hour for heat treatment. Went.

被熱処理粉体の周囲は、約10μmの厚みの炭素で均一に覆われているにもかかわらず、粉体はすべて磁性体であり、又いくつか粉体をサンプルとしてそのX線回折により粉体内の金属粒子の成分分析を行った。その結果を示したものが、図1(X線回折図)の中段部のピーク図(図中「実施例」で明示)である。これによれば、粉体の内部の金属粒子はすべてα−Feであることから、金属酸化物(Fe)が十分還元され、純粋な金属粒子(α−Fe)、つまり活性のある金属粒子になっていることが分かる。 Although the periphery of the heat-treated powder is uniformly covered with carbon of about 10 μm in thickness, the powder is all magnetic, and some powders are used as samples for X-ray diffraction. The components of the metal particles were analyzed. The results are shown in the peak diagram of the middle part of FIG. 1 (X-ray diffraction diagram) (expressed as “Example” in the figure). According to this, since all the metal particles inside the powder are α-Fe, the metal oxide (Fe 3 O 4 ) is sufficiently reduced and pure metal particles (α-Fe), that is, active. It turns out that it is a metal particle.

(比較例)
原料としてFeの粒子(平均粒径は約50μm)だけを使用すること以外、上記の実施例と同様の熱処理操作を施し、被熱処理粉体について、実施例と同様にX線回折により被熱処理粉体の成分分析を行った。その結果を示したものが、図1(X線回折図)の下段部のピーク図(図中「比較例」で明示)である。
この図から明らかなように、Fe粒子を単独で熱処理しただけでは、Feが一部還元されてα−Feが形成されるにすぎないことが分かる。なお、図1の上段部のピーク図は、Fe粒子(常温)のX線回折ピーク図である。
(Comparative example)
Except for using only Fe 3 O 4 particles (average particle size is about 50 μm) as a raw material, the same heat treatment operation as in the above example was performed, and the heat treated powder was subjected to X-ray diffraction in the same manner as in the example. Component analysis of the heat-treated powder was performed. The results are shown in the lower part of FIG. 1 (X-ray diffraction diagram), which is a peak diagram (expressed as “Comparative Example” in the figure).
As is apparent from this figure, only the heat treatment of the Fe 3 O 4 particles alone, it is seen that only Fe 3 O 4 is partially reduced α-Fe 2 O 3 is formed. 1 is an X-ray diffraction peak diagram of Fe 3 O 4 particles (normal temperature).

実施例及び比較例で使用した金属酸化物(Fe)についてのX線回折図であり、未処理の金属酸化物、本発明方法に従って得られた炭素被覆金属粒子、金属酸化物だけを熱処理して得られた金属酸化物のそれぞれについてのX線回折ピークを、上段、中段、下段に示した図である。An X-ray diffraction diagram for the metal oxides used in Examples and Comparative Example (Fe 3 O 4), metal oxides untreated carbon coated metal particles obtained according to the method of the present invention, only the metal oxide It is the figure which showed the X-ray-diffraction peak about each of the metal oxide obtained by heat processing in the upper stage, the middle stage, and the lower stage.

Claims (4)

純粋な金属粒子の表面が厚さ3〜20μmの炭素の被膜で覆われてなることを特徴とする炭素被覆金属粒子。   A carbon-coated metal particle, wherein the surface of the pure metal particle is covered with a carbon film having a thickness of 3 to 20 μm. 金属酸化物の粒子と熱可塑性樹脂の粒子との混合物を不活性ガス雰囲気中で加熱処理し、前記熱可塑性樹脂を液相炭素化することを特徴とする純粋な金属粒子の表面が厚さ3〜20μmの炭素の被膜で覆われてなる炭素被覆金属粒子の製造方法。   The surface of pure metal particles having a thickness of 3 is characterized in that a mixture of metal oxide particles and thermoplastic resin particles is heat-treated in an inert gas atmosphere, and the thermoplastic resin is liquid-phase carbonized. A method for producing carbon-coated metal particles covered with a carbon film of ˜20 μm. 前記熱可塑性樹脂がポリビニルクロライドである請求項2に記載の炭素被覆金属粒子の製造方法。   The method for producing carbon-coated metal particles according to claim 2, wherein the thermoplastic resin is polyvinyl chloride. 前記不活性ガスがアルゴンガスである請求項2又は3に記載の炭素被覆金属粒子の製造方法。   The method for producing carbon-coated metal particles according to claim 2 or 3, wherein the inert gas is argon gas.
JP2006353830A 2006-12-28 2006-12-28 Carbon-coated metal particle and method for manufacturing the same Pending JP2007126755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353830A JP2007126755A (en) 2006-12-28 2006-12-28 Carbon-coated metal particle and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353830A JP2007126755A (en) 2006-12-28 2006-12-28 Carbon-coated metal particle and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9089701A Division JPH10280003A (en) 1997-04-08 1997-04-08 Carbon-coated metallic grain and production thereof

Publications (1)

Publication Number Publication Date
JP2007126755A true JP2007126755A (en) 2007-05-24

Family

ID=38149626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353830A Pending JP2007126755A (en) 2006-12-28 2006-12-28 Carbon-coated metal particle and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007126755A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216706A (en) * 2016-09-08 2016-12-14 苏州大学 A kind of preparation method of metal fine powder
CN106400112A (en) * 2016-09-08 2017-02-15 苏州大学 Method for preparing monocrystal metals
CN108580886A (en) * 2018-04-20 2018-09-28 江西保德电子材料有限公司 A kind of method of surface of metal particles coated aluminum oxide
US10121717B2 (en) 2014-09-29 2018-11-06 Sekisui Chemical Co., Ltd. Carbon-coated thermal conductive material
CN109365799A (en) * 2018-09-19 2019-02-22 上海新池能源科技有限公司 Preparation method and Metal Substrate-graphene electric contact of graphene coated metal-powder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138909A (en) * 1977-05-10 1978-12-04 Mitsubishi Metal Corp Powder of raw material for powder metallurgy
JPS5490007A (en) * 1978-01-27 1979-07-17 Nippon Kokuen Kogyo Kk Method of producing ironn graphite type compound powder for powder metallurgy
JPS5497509A (en) * 1978-01-19 1979-08-01 Komatsu Mfg Co Ltd Reducing of surface oxide of ferrous powder
JPS5961903A (en) * 1982-09-30 1984-04-09 Sony Corp Manufacture of acicular magnetic metal powder
JPS6260804A (en) * 1985-09-11 1987-03-17 Kawasaki Steel Corp Production of ferromagnetic powder
JPS6320032A (en) * 1986-07-14 1988-01-27 Res Dev Corp Of Japan Production of hyperfine particle having film
JPH0269904A (en) * 1988-09-05 1990-03-08 Mitsubishi Petrochem Co Ltd Manufacture of modified magnetic metal powder
JPH0372003A (en) * 1989-08-11 1991-03-27 Central Glass Co Ltd Pressurized electric conductive metal powder and manufacture thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138909A (en) * 1977-05-10 1978-12-04 Mitsubishi Metal Corp Powder of raw material for powder metallurgy
JPS5497509A (en) * 1978-01-19 1979-08-01 Komatsu Mfg Co Ltd Reducing of surface oxide of ferrous powder
JPS5490007A (en) * 1978-01-27 1979-07-17 Nippon Kokuen Kogyo Kk Method of producing ironn graphite type compound powder for powder metallurgy
JPS5961903A (en) * 1982-09-30 1984-04-09 Sony Corp Manufacture of acicular magnetic metal powder
JPS6260804A (en) * 1985-09-11 1987-03-17 Kawasaki Steel Corp Production of ferromagnetic powder
JPS6320032A (en) * 1986-07-14 1988-01-27 Res Dev Corp Of Japan Production of hyperfine particle having film
JPH0269904A (en) * 1988-09-05 1990-03-08 Mitsubishi Petrochem Co Ltd Manufacture of modified magnetic metal powder
JPH0372003A (en) * 1989-08-11 1991-03-27 Central Glass Co Ltd Pressurized electric conductive metal powder and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121717B2 (en) 2014-09-29 2018-11-06 Sekisui Chemical Co., Ltd. Carbon-coated thermal conductive material
CN106216706A (en) * 2016-09-08 2016-12-14 苏州大学 A kind of preparation method of metal fine powder
CN106400112A (en) * 2016-09-08 2017-02-15 苏州大学 Method for preparing monocrystal metals
CN108580886A (en) * 2018-04-20 2018-09-28 江西保德电子材料有限公司 A kind of method of surface of metal particles coated aluminum oxide
CN109365799A (en) * 2018-09-19 2019-02-22 上海新池能源科技有限公司 Preparation method and Metal Substrate-graphene electric contact of graphene coated metal-powder
CN109365799B (en) * 2018-09-19 2024-04-23 上海新池能源科技有限公司 Preparation method of graphene coated metal powder and metal-based-graphene electrical contact

Similar Documents

Publication Publication Date Title
JP2007126755A (en) Carbon-coated metal particle and method for manufacturing the same
WO2017071564A1 (en) Three-dimensional electrode filler and manufacturing method thereof
IN2014MN00954A (en)
CN104988491B (en) A kind of method of diamond particle ti coat on diamond
KR102193589B1 (en) Method for manufacturing aluminium-graphene composites having enhanced thermal conductivity
Lei et al. Structural, magnetic, and electrical properties of Li 2 Ir 1− x Ru x O 3
TWI546254B (en) Method of surface modifying graphene
CN109982795A (en) Method for manufacturing metal foam
WO2012150975A2 (en) Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures
CN108883470A (en) The method for manufacturing metal foam
TW201006781A (en) Gallium oxide-tin oxide based oxide sintered body and oxide film
KR20120055010A (en) Expanded graphite having high conductivity and manufacturing method of them
US3645894A (en) Free-flowing plasma spray powder
CN106540711A (en) A kind of method that green prepares Ag-ZnO grapheme foam nickel material
WO2010067734A1 (en) Method for producing carbon material, and carbon material
JPH10280003A (en) Carbon-coated metallic grain and production thereof
CN105349738A (en) Corrosion resistance thermal treatment method for steel
CN105032352B (en) A kind of method of one pot process magnetic 3D graphene composite adsorbing materials
JP2010077017A (en) Corrosion-resistant member and method for production thereof
CN106006583B (en) G-C is adulterated with ferromagnetism B3N4The preparation method of two-dimensional ultrathin nanometer sheet
CN2887889Y (en) Omnidirectional ion implantation and deposition surface treatment device with multi-arc plasma
JP2009185340A (en) Metallic powder having insulation film formed thereon by using peelable double hydroxide and production method therefor
RU92568U1 (en) NANOCOMPOSITE ELEMENT
Chettri et al. Plasma augmented structural and electrical properties of half doped neodymium strontium manganites
Baba et al. YSZ-reinforced Ni-P deposit: An effective condition for high particle incorporation and porosity level

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019