JPS6260771B2 - - Google Patents

Info

Publication number
JPS6260771B2
JPS6260771B2 JP1643880A JP1643880A JPS6260771B2 JP S6260771 B2 JPS6260771 B2 JP S6260771B2 JP 1643880 A JP1643880 A JP 1643880A JP 1643880 A JP1643880 A JP 1643880A JP S6260771 B2 JPS6260771 B2 JP S6260771B2
Authority
JP
Japan
Prior art keywords
hollow
separator
superconductor
hollow conductor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1643880A
Other languages
Japanese (ja)
Other versions
JPS56114219A (en
Inventor
Tsukasa Kono
Takashi Saito
Yoshimitsu Ikeno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP1643880A priority Critical patent/JPS56114219A/en
Publication of JPS56114219A publication Critical patent/JPS56114219A/en
Publication of JPS6260771B2 publication Critical patent/JPS6260771B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は中空超電導体に関する。[Detailed description of the invention] The present invention relates to hollow superconductors.

周知のように、その内部に冷媒通路の形成され
た中空導体とこの中空導体に固定された超電導線
とを具備する各種の中空超電導体が提案されてい
る。多用されている中空超電導体は第1図のよう
な構造を有しており、その内部に冷媒通路1の形
成された無酸素銅等の中空導体2と、この中空導
体2の外面に形成された溝3内に半田等で固定さ
れた超電導線4とから構成されている。この中空
超電導体をコイル状に巻いて超電導マグネツトを
製造すると、以下のような利点が得られる。
As is well known, various hollow superconductors have been proposed that include a hollow conductor in which a refrigerant passage is formed and a superconducting wire fixed to the hollow conductor. A frequently used hollow superconductor has a structure as shown in Fig. 1, which includes a hollow conductor 2 such as oxygen-free copper with a coolant passage 1 formed inside, and a conductor 2 formed on the outer surface of the hollow conductor 2. A superconducting wire 4 is fixed in a groove 3 with solder or the like. When a superconducting magnet is manufactured by winding this hollow superconductor into a coil, the following advantages can be obtained.

(1) 自然対流による冷却と比較すると、中空導体
内に液体ヘリウムや超臨界圧ヘリウムを強制循
環することにより各部が均等に冷却される。
(1) Compared to cooling by natural convection, forced circulation of liquid helium or supercritical pressure helium inside a hollow conductor cools each part evenly.

(2) マグネツト全体を冷却するヘリウムデユワー
は不要であり、真空容器があれば良い。
(2) A helium dewar to cool the entire magnet is not required; a vacuum container is sufficient.

(3) 従来の浸漬方式と異なり、ターン間や層間の
ヘリウム流路が全く不要となり、コンパクトで
機械的に強いマグネツトを製造できる。また、
コイルの形状は複雑なものでも可能であり、形
状の選択度が大きい。
(3) Unlike the conventional immersion method, there is no need for helium channels between turns or layers, making it possible to produce compact and mechanically strong magnets. Also,
The shape of the coil can be complex, and there is a high degree of selectivity in the shape.

また、第2図に示すように中空導体2の内周面
に溝5を形成した中空超電導体も提案されてお
り、この中空超電導体を使用したマグネツトは上
記(1)〜(3)の利点を有するだけではなく、冷却面積
が増加して冷却効率が高まる等の利点も有してい
る。
In addition, a hollow superconductor in which a groove 5 is formed on the inner peripheral surface of a hollow conductor 2 as shown in Fig. 2 has also been proposed, and a magnet using this hollow superconductor has the advantages (1) to (3) above. In addition to this, it also has advantages such as increased cooling area and improved cooling efficiency.

しかしながら、従来の中空超電導体を使用した
場合には次のような不都合が生じる。
However, when a conventional hollow superconductor is used, the following disadvantages occur.

(a) 冷媒を圧送する装置が必要であるだけではな
く、圧送時に圧力降下による損失がある。
(a) Not only is a device for pumping the refrigerant required, but there is also loss due to pressure drop during pumping.

(b) 中空導体の一部に常電導部が生ずると、冷媒
の圧送に伴なつて常電導部が伝播してしまう。
すると、マグネツトの安定性が失われる。
(b) If a normal conducting part occurs in a part of the hollow conductor, the normal conducting part will propagate as the refrigerant is pumped.
Then, the stability of the magnet is lost.

そこで、常電導部の伝播を防止するために、中
空超電導体の銅量を増すとか、冷媒流量を増すと
か、常電導部を途中で吸収するために中間位置に
熱交換器を介在させたり、ヒートシンクを所定位
置に設ける等の方法が提案されているが、それぞ
れ一長一短があり、改善の余地が残つていた。
Therefore, in order to prevent the propagation of the normal conducting part, the amount of copper in the hollow superconductor may be increased, the flow rate of the refrigerant may be increased, or a heat exchanger may be inserted at an intermediate position to absorb the normal conducting part. Methods such as providing a heat sink at a predetermined position have been proposed, but each has advantages and disadvantages, and there remains room for improvement.

本発明者等は上記事情に鑑みて鋭意研究を行つ
た結果、中空導体の冷媒通路内にセパレータを配
設して速流域と遅流域との2つの流域に区画する
と、流速の異なる二つの冷媒流により冷却されて
常電導部はほとんど消滅し、常電導部の伝播は実
質上防止されることを知見した。本発明はこの知
見に基づいて完成された。
In view of the above circumstances, the present inventors conducted intensive research and found that by arranging a separator in the refrigerant passage of a hollow conductor to divide it into two regions, a fast region and a slow region, two refrigerants with different flow velocities can be separated. It was found that the normal conductive part almost disappeared due to cooling by the flow, and the propagation of the normal conductive part was substantially prevented. The present invention was completed based on this knowledge.

以下、第3図および第4図を参照して本発明に
ついて詳細に説明する。
The present invention will be described in detail below with reference to FIGS. 3 and 4.

第3図は本発明の中空超電導体の一実施例を示
すものである。この実施例の中空超電導体10
は、その内部に断面矩形の冷媒通路11の形成さ
れた中空導体12と、この中空導体12の外周面
に形成された溝13内に半田等で固定された超電
導線14と、上記中空導体12の内周面12aに
所定距離離間して設けられたセパレータ15と、
このセパレータ15を固定保持する保持部材16
とから構成されている。上記セパレータ15は、
例えば銅等の熱伝導性の良好な金属メツシユやス
テンレス系の金属メツシユで、これを配設するこ
とに特徴がある。セパレータを配設すると、セパ
レータと中空導体内面により冷媒の流れが抵抗を
受け、冷媒が遅い流速で流れる遅流域Aと冷媒の
流れの外側部分のみがセパレータにより抵抗を受
け冷媒が速い流速で流れる速流域Bとに区画され
る。そのため、冷媒を同一速度で入口から流し込
むと、セパレータの外方の遅流域Aと中央部の速
流域Bとにおいて流速の異なる二つの冷媒流が形
成される。すると、次のような作用効果が奏され
る。すなわち、中空導体の一部に発生した常電導
部により遅流域Aの一部の冷媒温度が上昇したと
しても、セパレータ15の妨害により速流域Bに
伝播する速度は、セパレータのない従来の中空超
電導体の冷媒通路全体に伝播する速度よりもはる
かに遅くなる。そして、中央部の速流域Bに流れ
る十分な冷却能力を有する冷媒により、温度上昇
した遅流域Aの冷媒を冷却できると共に、速流域
Bの冷媒がセパレータを通して遅流域Aに流入
し、これらの相乗効果によつて常電導部は消滅し
て常電導部の伝播は実質上防止される。そのた
め、効率良く冷却でき、超電導性を損なうことが
ない。
FIG. 3 shows an embodiment of the hollow superconductor of the present invention. Hollow superconductor 10 of this example
includes a hollow conductor 12 in which a refrigerant passage 11 having a rectangular cross section is formed, a superconducting wire 14 fixed with solder or the like in a groove 13 formed on the outer peripheral surface of the hollow conductor 12, and the hollow conductor 12. a separator 15 provided at a predetermined distance on the inner circumferential surface 12a of the
A holding member 16 that fixes and holds this separator 15
It is composed of. The separator 15 is
For example, a metal mesh with good thermal conductivity such as copper or a stainless steel metal mesh is used. When a separator is installed, the flow of refrigerant is resisted by the separator and the inner surface of the hollow conductor, and only the slow area A where the refrigerant flows at a slow flow rate and the outer part of the flow of refrigerant are resisted by the separator and the refrigerant flows at a high flow rate. It is divided into basin B. Therefore, when the refrigerant is poured from the inlet at the same speed, two refrigerant flows with different flow speeds are formed in the slow region A outside the separator and the fast region B in the center. Then, the following effects are produced. In other words, even if the temperature of the refrigerant in a part of the slow region A rises due to the normal conductivity generated in a part of the hollow conductor, the speed at which the refrigerant propagates to the fast region B due to the obstruction of the separator 15 will be lower than that of the conventional hollow superconductor without a separator. much slower than the speed at which it propagates throughout the body's refrigerant passages. Then, the refrigerant having sufficient cooling capacity flowing into the fast region B in the center can cool the refrigerant in the slow region A whose temperature has increased, and the refrigerant in the fast region B flows into the slow region A through the separator, so that the synergistic effect of these refrigerants is As a result of this effect, the normal conductive portion disappears and propagation of the normal conductive portion is substantially prevented. Therefore, it can be efficiently cooled without impairing superconductivity.

第4図は本発明の中空超電導体の他の実施例を
示すもので、前記実施例と同一の部材には同一の
番号を付けてその説明を省略する。第4図の中空
超電導体10においては、中空導体12の内周面
に溝17が形成されていると共にこの溝17の山
部17aにはセパレータ15が配設されている。
中空導体12の内周面に溝を形成すると、冷却ペ
リメータが増加するだけではなく、内周面に近い
ところを流れる冷媒の抵抗が増加して流速が遅く
なる。また、前記実施例の場合と同様に金属メツ
シユ等のセパレータにより遅流域Aと速流域Bと
に区画され、この実施例においても前記実施例と
同様の作用効果が奏される。
FIG. 4 shows another embodiment of the hollow superconductor of the present invention, and the same members as in the previous embodiment are given the same numbers and their explanations will be omitted. In the hollow superconductor 10 of FIG. 4, a groove 17 is formed in the inner circumferential surface of the hollow conductor 12, and a separator 15 is disposed in the crest 17a of the groove 17.
Forming grooves on the inner circumferential surface of the hollow conductor 12 not only increases the cooling perimeter but also increases the resistance of the coolant flowing near the inner circumferential surface and slows down the flow rate. In addition, as in the case of the previous embodiment, it is divided into a slow region A and a fast region B by a separator such as a metal mesh, and the same effects as in the above embodiment are achieved in this embodiment as well.

なお、本発明は上記の2つの実施例に限定され
るものではなく、他の構造または形状の中空超電
導体も包含されることは勿論である。例えば、(1)
矩形の冷媒通路を有する中空導体と、この中空導
体の外周面に巻回された超電導線と、上記中空導
体の内周面に所定距離離間して配設されたセパレ
ータとを具備する中空超電導体、(2)その内周面に
溝と冷媒通路とが形成された中空導体と、溝の山
部に配設されたセパレータと、上記中空導体の外
周面に巻回された超電導線とを具備する中空超電
導体等がある。
Note that the present invention is not limited to the above two embodiments, and of course includes hollow superconductors having other structures or shapes. For example, (1)
A hollow superconductor comprising a hollow conductor having a rectangular refrigerant passage, a superconducting wire wound around the outer peripheral surface of the hollow conductor, and a separator arranged at a predetermined distance on the inner peripheral surface of the hollow conductor. , (2) a hollow conductor having a groove and a refrigerant passage formed on its inner peripheral surface, a separator disposed at the peak of the groove, and a superconducting wire wound around the outer peripheral surface of the hollow conductor. There are hollow superconductors etc.

以上説明したように、本発明においては、中空
超電導体の冷媒通路内に金属メツシユ等のセパレ
ータを配設して冷媒通路を速流域と遅流域との2
つの流域に区画している。そして、2つの流域に
区画しているため、導体の一部に常電導部が発生
したとしても冷媒通路全体に伝播するような不都
合は生じないだけではなく、速流域を流れる低温
の冷媒により常電導部は消滅される。このため、
効率良くかつ確実に冷却でき、超電導性を確実に
付与でき、安定性の優秀な超電導マグネツトを提
供できる。
As explained above, in the present invention, a separator such as a metal mesh is provided in the refrigerant passage of a hollow superconductor to divide the refrigerant passage into a fast region and a slow region.
It is divided into two basins. Since the area is divided into two areas, even if a part of the conductor has a normal conduction area, it will not propagate to the entire refrigerant path, and the low-temperature refrigerant flowing in the fast area will always The conductive part is eliminated. For this reason,
It is possible to provide a superconducting magnet that can be efficiently and reliably cooled, can reliably impart superconductivity, and has excellent stability.

以下、具体例を示して本発明を具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to specific examples.

具体例 1 この具体例の中空超電導体10は第3図に示す
構造を有しており、内径3.4mm×2.4mm、外径6mm
×5mmの中空導体12と、この中空導体12の4
面に形成された溝13内に半田で固定された超電
導線(0.1mmφのNb3Sn線216本を編組したもの)
14と、上記中空導体12の内周面に0.5mm離間
して配設されたセパレータ(0.1mm厚のAlテープ
に0.1mmの穴を0.2mm間隔で形成したもの)15
と、セパレータ15を固定保持するために長手方
向に沿つて複数本設けられた0.2mmφの無酸素銅
線16とから構成されている。
Specific Example 1 The hollow superconductor 10 of this specific example has the structure shown in FIG. 3, and has an inner diameter of 3.4 mm x 2.4 mm and an outer diameter of 6 mm.
×5mm hollow conductor 12 and 4 of this hollow conductor 12
Superconducting wire (braided with 216 Nb 3 Sn wires with a diameter of 0.1 mm) fixed with solder in the groove 13 formed on the surface
14, and a separator (0.1 mm holes formed in a 0.1 mm thick Al tape at 0.2 mm intervals) 15 arranged at a distance of 0.5 mm on the inner peripheral surface of the hollow conductor 12.
and a plurality of 0.2 mmφ oxygen-free copper wires 16 provided along the longitudinal direction to securely hold the separator 15.

上記構成の中空超電導体を150m使用してマグ
ネツトを製造し、冷媒通路11内に超臨界圧ヘリ
ウムを2m/秒の流速で流し、マグネツト入口で
熱パルス(10W×1秒を5cm長)をかけてマグネ
ツト出口への伝播状況を調べた。また、比較のた
め、セパレータを設けずに同様の実験を行つた。
セパレータを設けない従来のものの場合には入口
で0.5〓上昇する一方、出口でまだ0.3〜0.35〓上
昇したが、セパレータを設けた本発明の中空超電
導体の場合には出口での温度上昇は0.1〓以下で
あつた。このことから、本発明の場合には入口で
発生した常電導部が出口では実質上消滅している
ことがわかる。
A magnet was manufactured using 150 m of the hollow superconductor with the above configuration, supercritical pressure helium was flowed into the coolant passage 11 at a flow rate of 2 m/sec, and a heat pulse (10 W x 1 sec, 5 cm long) was applied at the magnet inlet. The propagation situation to the magnet outlet was investigated. Furthermore, for comparison, a similar experiment was conducted without providing a separator.
In the case of the conventional one without a separator, the temperature rose by 0.5〓 at the inlet, while it still rose by 0.3 to 0.35〓 at the exit, but in the case of the hollow superconductor of the present invention with a separator, the temperature rise at the exit was 0.1 〓It was below. From this, it can be seen that in the case of the present invention, the normal conductive portion generated at the inlet substantially disappears at the outlet.

具体例 2 内径3.4mm×2.4mm、外径5mm×4mmで断面矩形
のパイプ状の中空導体を使用した。この無酸素銅
の中空導体の外周面に0.3mmφの多心NbTi線28本
と0.3mmφの無酸素銅線14本とを巻回し、半田で
固定した。また、無酸素銅線で作つた60メツシユ
のセパレータを中空導体の内周面から0.2mm離間
して配設した。
Specific Example 2 A pipe-shaped hollow conductor with an inner diameter of 3.4 mm x 2.4 mm and an outer diameter of 5 mm x 4 mm and a rectangular cross section was used. Twenty-eight 0.3 mmφ multicore NbTi wires and 14 0.3 mmφ oxygen-free copper wires were wound around the outer peripheral surface of this oxygen-free copper hollow conductor and fixed with solder. In addition, a 60-mesh separator made of oxygen-free copper wire was placed 0.2 mm apart from the inner peripheral surface of the hollow conductor.

上記具体例1と同様にして伝播状態を調べた。
また、比較のため、セパレータを設けずに同様の
実験を行つた。セパレータを設けない従来のもの
の場合には入口で0.5〓上昇する一方、出口でも
まだ0.3〓上昇したが、セパレータを設けた本発
明の中空超電導線の場合には出口での温度上昇は
0.1〓以下であつた。
The propagation state was investigated in the same manner as in Example 1 above.
Furthermore, for comparison, a similar experiment was conducted without providing a separator. In the case of the conventional wire without a separator, the temperature increased by 0.5〓 at the inlet, but it still rose by 0.3〓 at the exit, but in the case of the hollow superconducting wire of the present invention with a separator, the temperature at the exit did not increase.
It was less than 0.1〓.

具体例 3 この具体例の中空超電導体10は第4図に示す
構造を有しており、内径3.4mm×2.4mm、外径6mm
×5mmでその内周面に0.2mm幅、0.2mm深さの溝1
7が形成された中空導体12と、この中空導体1
2の外周面に形成された溝13内に半田で固定さ
れた超電導線(0.1mmφのNb3Sn線216本を編組し
たもの)14と、上記中空導体12の溝17の山
部17aに配設されたセパレータ(0.08mm厚のス
テンレス鋼テープに0.1mmの穴を0.3mm間隔で形成
したもの)15とから構成されている。
Specific Example 3 The hollow superconductor 10 of this specific example has the structure shown in FIG. 4, and has an inner diameter of 3.4 mm x 2.4 mm and an outer diameter of 6 mm.
x 5mm, groove 1 with a width of 0.2mm and a depth of 0.2mm on the inner circumferential surface
A hollow conductor 12 in which 7 is formed, and this hollow conductor 1
A superconducting wire (braided of 216 Nb 3 Sn wires with a diameter of 0.1 mm) 14 is fixed with solder in a groove 13 formed on the outer peripheral surface of the hollow conductor 12, and The separator 15 (0.1 mm holes formed at 0.3 mm intervals in a 0.08 mm thick stainless steel tape) 15 is provided.

上記構成の中空超電導体を150m使用してマグ
ネツトを製造し、冷媒通路11内に超臨界圧ヘリ
ウムを2m/秒の流速で流し、マグネツト入口で
熱パルス(0.6W×15秒で5cm長)をかけてマグ
ネツト出口への伝播状況を調べた。また、比較の
ため、セパレータを設けずに同様の実験を行つ
た。セパレータを設けない従来のものの場合には
入口で0.5〓上昇する一方、出口でもまだ0.3〜
0.35〓上昇していたが、セパレータを設けた本発
明の中空超電導体の場合には出口での温度上昇は
0.1〓以下であつた。このことから、本発明の場
合には入口で発生した常電導部が出口では実質上
消滅していることがわかる。
A magnet was manufactured using 150 m of the hollow superconductor with the above configuration, supercritical pressure helium was flowed into the coolant passage 11 at a flow rate of 2 m/s, and a heat pulse (0.6 W x 15 seconds, 5 cm length) was applied at the magnet inlet. We investigated the propagation situation to the magnet outlet. Furthermore, for comparison, a similar experiment was conducted without providing a separator. In the case of the conventional type without a separator, it increases by 0.5〓 at the entrance, but it still rises by 0.3~ at the exit.
0.35〓, but in the case of the hollow superconductor of the present invention equipped with a separator, the temperature rise at the outlet is
It was less than 0.1〓. From this, it can be seen that in the case of the present invention, the normal conduction portion generated at the inlet substantially disappears at the outlet.

具体例 4 内径3.4mm×2.4mm、外径5mm×4mmで断面矩形
のパイプ状であると共にその内周面に0.3mm幅、
0.3mm深さの溝を形成した中空導体を使用した。
この無酸素銅の中空導体の外周面に0.3mmφの多
心NbTi線28本と0.3mmφの無酸素銅線14本とを巻
回し、半田で固定した。また、無酸素銅線で作つ
た60メツシユのセパレータを溝の山部に接するよ
うに配設した。また、比較のため、セパレータを
設けずに同様の実験を行つた。セパレータを設け
ない従来のものの場合には入口で0.6〓上昇する
一方、出口でもまだ0.3〜0.4〓上昇していたが、
セパレータを設けた本発明の中空超電導体の場合
には出口での温度上昇は0.1〓以下であつた。
Specific example 4 It is a pipe with an inner diameter of 3.4 mm x 2.4 mm, an outer diameter of 5 mm x 4 mm, and a rectangular cross section, and a 0.3 mm width on the inner circumference.
A hollow conductor with a groove 0.3 mm deep was used.
Twenty-eight 0.3 mmφ multicore NbTi wires and 14 0.3 mmφ oxygen-free copper wires were wound around the outer peripheral surface of this oxygen-free copper hollow conductor and fixed with solder. In addition, a 60-mesh separator made of oxygen-free copper wire was placed in contact with the peaks of the groove. Furthermore, for comparison, a similar experiment was conducted without providing a separator. In the case of the conventional model without a separator, there was a rise of 0.6〓 at the entrance, but there was still a rise of 0.3 to 0.4〓 at the exit.
In the case of the hollow superconductor of the present invention provided with a separator, the temperature rise at the outlet was less than 0.1〓.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図はそれぞれ従来の中空超電導体の概
略断面図、第3図は本発明の一実施例の中空超電
導体の概略断面図、第4図は本発明の他の実施例
の中空超電導体の概略断面図である。 10……中空超電導体、11……冷媒通路、1
2……中空導体、14……超電導線、15……セ
パレータ。
1 and 2 are schematic cross-sectional views of conventional hollow superconductors, FIG. 3 is a schematic cross-sectional view of a hollow superconductor according to an embodiment of the present invention, and FIG. 4 is a schematic cross-sectional view of a hollow superconductor according to another embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the body. 10...Hollow superconductor, 11...Refrigerant passage, 1
2...Hollow conductor, 14...Superconducting wire, 15...Separator.

Claims (1)

【特許請求の範囲】[Claims] 1 その内部に冷媒通路の形成された中空導体と
この中空導体に固定された超電導線とを具備する
中空超電導体において、上記中空導体の冷媒通路
を速流域と遅流域との2つの流域に区画するセパ
レータを該冷媒通路内に配設したことを特徴とす
る中空超電導体。
1. In a hollow superconductor comprising a hollow conductor in which a refrigerant passage is formed and a superconducting wire fixed to the hollow conductor, the refrigerant passage of the hollow conductor is divided into two regions, a fast region and a slow region. A hollow superconductor characterized in that a separator is disposed within the refrigerant passage.
JP1643880A 1980-02-13 1980-02-13 Hollow superconductor Granted JPS56114219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1643880A JPS56114219A (en) 1980-02-13 1980-02-13 Hollow superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1643880A JPS56114219A (en) 1980-02-13 1980-02-13 Hollow superconductor

Publications (2)

Publication Number Publication Date
JPS56114219A JPS56114219A (en) 1981-09-08
JPS6260771B2 true JPS6260771B2 (en) 1987-12-17

Family

ID=11916229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1643880A Granted JPS56114219A (en) 1980-02-13 1980-02-13 Hollow superconductor

Country Status (1)

Country Link
JP (1) JPS56114219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141968U (en) * 1988-03-23 1989-09-28
CN102682873A (en) * 2012-04-11 2012-09-19 济南宝世达实业发展有限公司 Novel hollow conductor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141968U (en) * 1988-03-23 1989-09-28
CN102682873A (en) * 2012-04-11 2012-09-19 济南宝世达实业发展有限公司 Novel hollow conductor and manufacturing method thereof

Also Published As

Publication number Publication date
JPS56114219A (en) 1981-09-08

Similar Documents

Publication Publication Date Title
US3639672A (en) Electrical conductor
CN107248444B (en) The nonisulated superconducting coil and its encapsulating method of encapsulating
US3983427A (en) Superconducting winding with grooved spacing elements
US3956724A (en) Superconductive winding with cooling passages
JPS6260771B2 (en)
US4447670A (en) High-current cryogenic leads
JP4487361B2 (en) Superconducting cable
JPH0510809B2 (en)
JPS6340003B2 (en)
JPH0520937A (en) Superconductive conductor
JPS6110964B2 (en)
JPS59150487A (en) Current leading device of cryogenic temperature
Sakamoto et al. Stress analysis of the module coil (TOKI-MC) as an R&D program for the Large Helical Device
JP2645040B2 (en) Superconducting rotor
JPH0278207A (en) Superconducting magnet
JP2919036B2 (en) Superconducting conductor and magnet using the conductor
JPS60217610A (en) Superconductive device
JPS645444B2 (en)
JPH0343971A (en) Connection method of superconductor
JPS5889813A (en) Foil-wound transformer
JP3200198B2 (en) Superconducting magnet
JPS5844613A (en) Current lead for superconductive device
JPS6218005Y2 (en)
JPH0250565B2 (en)
JPS59130011A (en) Forcibly cooling superconductive wire