JPS59150487A - Current leading device of cryogenic temperature - Google Patents

Current leading device of cryogenic temperature

Info

Publication number
JPS59150487A
JPS59150487A JP58015432A JP1543283A JPS59150487A JP S59150487 A JPS59150487 A JP S59150487A JP 58015432 A JP58015432 A JP 58015432A JP 1543283 A JP1543283 A JP 1543283A JP S59150487 A JPS59150487 A JP S59150487A
Authority
JP
Japan
Prior art keywords
disks
conduction part
cryogenic
current
conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58015432A
Other languages
Japanese (ja)
Inventor
Akihiko Miura
三浦 秋彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58015432A priority Critical patent/JPS59150487A/en
Publication of JPS59150487A publication Critical patent/JPS59150487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce the amount of heat invaded to a superconductive device and then make the titled device compact with the large cooling action of the conduction part by a method wherein a plurality of electric good conductor disks having many small holes are laminated by providing gaps in the conduction part and then connected in series. CONSTITUTION:The current passage of the conduction part between current terminals 3 and 9 flows radially through the disks 6 between circular rings 7 and small diameter disks 8, and the disks 6 are cooled by helium gas 13 passing through the small holes 6a. The length of the current passage can be freely selected by the number of pieces of the product of those of the disks 6 and the circular rings 7, the small diameter disks 8, and the whole length of the conduction part is short. The conduction cross sectional area of the conduction part can be selected by the diameter and thickness of said disks 6, rings 7, and disks 8, thus enabling to obtain a conduction part of a high cooling efficiency. The thermal conductivity when gas passes through short holes is very large in the neighborhood of starting the approach run section of thermal conduction, and said section is formed in every disk 6, accordingly high thermal conductive characteristics can be obtained as a whole.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超電導装置などへ電流導入する極低温電流リー
ド装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic current lead device for introducing current into a superconducting device or the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導装置は超電導マグネットを極低温存器内に収納し
て液体ヘリウムで冷却し、液体ヘリウムは気化潜熱が非
常に小さいため蒸発損失を少くする目的で真空断熱構造
にし伝導熱の少ない構造になっている。超電導マグネッ
トを励磁するための電流導入部は必要なft流を通電す
るに定る通電部所面積を確保する必要があり、良電導体
なので良熱伝導体となり大きな熱侵入路となっている。
In a superconducting device, a superconducting magnet is housed in a cryogenic storage vessel and cooled with liquid helium.Liquid helium has a very small latent heat of vaporization, so in order to reduce evaporation loss, it has a vacuum-insulated structure with less conductive heat. There is. The current introduction part for exciting the superconducting magnet needs to have a sufficient area to pass the necessary ft current, and since it is a good conductor, it becomes a good heat conductor and becomes a large heat infiltration path.

したがって侵入熱を減少させるため従来液体ヘリウムの
蒸発ヘリウムガスで導゛亀部を冷却する極低温電流リー
ド装置が広く使用されている。すなイつち極低温電流リ
ード装置は熱交換を良くするためと、伝導熱を減少させ
るために導電部を長くして冷却表面積を増加する構造が
用いられている。例えば導電部を銅の細線にし常温部か
ら液体ヘリウム温度部の間に仕切板を設けてヘリウムガ
スをジグザりに通るようにしたものがある。
Therefore, in order to reduce the heat intrusion, cryogenic current lead devices have been widely used which cool the lead part with evaporated helium gas from liquid helium. In other words, cryogenic current lead devices use a structure in which the conductive part is lengthened to increase the cooling surface area in order to improve heat exchange and reduce conductive heat. For example, there is one in which the conductive part is a thin copper wire and a partition plate is provided between the room temperature part and the liquid helium temperature part so that the helium gas passes in a zigzag manner.

しかしながら、かかる構造のものは電流値が大きくなる
と銅の細線の本数が多くなり、製作に多大の労力を要し
、銅断面積が増大して熱伝導が犬となるので、細線を長
くしなければならない。一方導電部の低温端では鋼の電
気抵抗が常温部の汀数十分の−となるため、この部分の
通電断面積を減少させ熱伝導熱を少くして良好な電流リ
ード装置にできるが、従来の導電部一体形では低温端の
断面績を減少させることは容易ではないなどの欠点があ
った。
However, with such a structure, as the current value increases, the number of thin copper wires increases, requiring a great deal of labor to manufacture, and the cross-sectional area of the copper increases, making heat conduction poor, so the thin wires must be made longer. Must be. On the other hand, at the low-temperature end of the conductive part, the electrical resistance of the steel is a few tenths of the same as that at the room-temperature part, so a good current lead device can be obtained by reducing the current-carrying cross-sectional area of this part and reducing the heat conduction. The conventional conductive part integrated type had drawbacks such as that it was not easy to reduce the cross-sectional area at the low temperature end.

〔発明の目的〕[Purpose of the invention]

本発明は導電部の冷却作用が犬で超′颯導装置への侵入
熱量を少なくしコンパクト化した・1へ低温′電流リー
ド装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-temperature current lead device in which the cooling effect of the conductive portion reduces the amount of heat that enters the ultra-high conductivity device and is compact.

〔発明の概妥〕[Summary of the invention]

上記目的を達成するために、本発明は導′屯部を多数の
小孔を有する複数個の′1気良導体の円板を間隙を設け
て積層し直列に接続して構成した極低温電流リード装置
を提供する。
In order to achieve the above object, the present invention provides a cryogenic current lead in which the conductive part is constructed by stacking a plurality of discs of good conductor having a large number of holes with a gap and connecting them in series. Provide equipment.

〔発明の実施例〕[Embodiments of the invention]

以下本発1314を図面に示す一実施例(Cついて、況
明する。41図VCおいて、(1)は図示してない超ぼ
4マグネツトを収納−する超低□1轟谷器、(2)はl
’l低+i!谷器(1)を以通し一端を超低昌荏器fl
)内に!ノーロする円筒状のステンレス副などの外向、
(3)は室、l′IA部71)ら外筒(2)内に「電気
絶縁物のブツシュ(4)を介して貫入する鋼や゛rルミ
ニウムなどの電気良導トドの直流端子、(5)は外筒(
IIのPコ1liIlに接層する円i”i;1状の+i
L気杷縁1勿のライニング、tti)t;を第6図のよ
うに小孔(6a)を多数設けた′id気艮気体導体板で
あって数故個の円板(6)を間隙を設けて積賢し円板(
6)の間にMnに゛也気良尋体の円環(7)と小径円板
(8)とをろう付けなどで固清し直列に接続して導電部
を形成しライニング(5)に接ノHL、ている。(9)
は低温側の1を流喘子で一端を極低温ig=(i)内の
液体−・リウム(11すの中に没して超電導コイルなど
からの超′屯4得体tll)に接伏し、他端を多数の小
孔を設けた円板(9a)にし屯υ1を端子(3)の他端
を多数の小孔を設けた円板(3a)との間に#−導電部
同着している。(IJは外向(2)の上部に設けたヘリ
ウムガスの出口管であって、液体ヘリウム(IQlの蒸
発したヘリウムガス(131は導′亀部(6)の小孔(
6a)を通って出口管住りから排出される。
An embodiment (C) of the present invention 1314 shown in the drawings will be explained in detail below. 2) is l
'l low + i! Pass through the valley device (1) and attach one end to the ultra-low-temperature device fl.
) inside! Outward-facing cylindrical stainless steel sub-plates, etc.
(3) is a DC terminal made of electrically conductive material such as steel or aluminum that penetrates from the chamber (l'IA part 71) into the outer cylinder (2) through the electrically insulating bushing (4). 5) is the outer cylinder (
Circle i"i tangent to P co 1liIl of II; 1-shaped +i
As shown in Figure 6, it is a gas conductor plate with a large number of small holes (6a), and a number of discs (6) are placed in the gap. Set up a multiplication disk (
During step 6), the ring (7) and the small-diameter disk (8) of the Mn body are solidified by brazing or the like, and connected in series to form a conductive part, and then attached to the lining (5). Contact HL, I'm here. (9)
1 on the low-temperature side is connected to the liquid lium (11) in the cryogenic temperature ig = (i) using a fluidizer, The other end is a disk (9a) with many small holes, and the #- conductive part is attached between the other end of the terminal (3) and the disk (3a) with many small holes. ing. (IJ is a helium gas outlet pipe provided at the upper part of the outward facing part (2), and 131 is a small hole in the guide part (6).
6a) and is discharged from the outlet tube housing.

次に作用を説明する。電流端子(3)と電流端子(9)
との間の導電部の電流経路は円板(6)を円環(力と小
径円板(8)との間で放射状に流れ、円板(6)は小孔
(6a)を通るヘリウムガス(13で冷却される。電流
経路長は円板(6)と円環(7)、小径円板(8)の積
層数によって自由に選択することができ、しかも導電部
全体の長さは短かい。導電部の通′鴫所面積は円板(6
)および円環(7) 、小径円板(8)の直径および厚
さによって選択することができ、冷却効率の高い4電部
を得ることができる。また冷却特性も小孔(6a)の大
きさおよび数の選択によって優れたものが得られる。そ
の理由は短かい孔をガスが通過するときの熱伝達率□は
、熱伝達助走区間の開始点附近で非常に大きく、円板(
6)ごとに助走区間が形成されて全体として高い熱伝達
特性が得られるからであるO 第3図は他の実施例であって、第1図と異なるところは
、多数の小孔(6a)および欠切部(6b)を有する円
板(6)と多数の小孔(6a)より大きい孔(14a)
および欠切部(14b)を有する電気絶縁物の絶縁円板
Iとを交互に重ねて積層し、隣接する円板(6)との間
は導電片(151をスパイラル状に配列しろう付けして
直列に接続しである。導電片(151の接続箇所は円板
(6)の切入部(6b)の両端部の表裏の接続部(6c
) 、 (6d)に交互に配置されている。電流は接続
部(6c)に導入され、円板(6)を円周方間に流れ接
続部(6d)より隣接する円板(6)にぼれる。
Next, the action will be explained. Current terminal (3) and current terminal (9)
The current path of the conductive part between the disk (6) and the small diameter disk (8) flows radially between the disk (6) (It is cooled at step 13. The length of the current path can be freely selected depending on the number of laminated disks (6), rings (7), and small diameter disks (8), and the length of the entire conductive part is short. The area of the conductive part is a circular plate (6
), the ring (7), and the diameter and thickness of the small-diameter disk (8) can be selected, making it possible to obtain a quadrielectric part with high cooling efficiency. Moreover, excellent cooling characteristics can be obtained by selecting the size and number of the small holes (6a). The reason is that the heat transfer coefficient □ when gas passes through a short hole is very large near the start point of the heat transfer run-up section, and the disc (
This is because a run-up section is formed for each 6), and high heat transfer characteristics are obtained as a whole.O Figure 3 shows another embodiment, and the difference from Figure 1 is that there are many small holes (6a). and a disc (6) having a cutout (6b) and a hole (14a) larger than the large number of small holes (6a).
and insulating disks I of electric insulators having cutout portions (14b) are stacked alternately, and conductive pieces (151) are arranged in a spiral shape and brazed between adjacent disks (6). The connection points of the conductive piece (151) are the connection points (6c) on the front and back sides of both ends of the cutout (6b) of the disc (6).
) and (6d) are arranged alternately. Current is introduced into the connection (6c), flows circumferentially around the disk (6), and rises from the connection (6d) to the adjacent disk (6).

この際ヘリウムガス0′5は円板(6)の小孔(6a)
と絶縁円板Iの孔(14a)との冷却通路を通って円板
(6)を冷却する。なお絶縁円板(14)は孔(14a
)のほかできるだけ熱伝導を少くするために円板(6)
との接触面積を小さくする構造にしてもよい。
At this time, helium gas 0'5 enters the small hole (6a) of the disk (6).
The disk (6) is cooled through a cooling passage between the hole (14a) and the hole (14a) of the insulating disk I. Note that the insulating disc (14) has a hole (14a
) and a disc (6) to reduce heat conduction as much as possible.
It is also possible to adopt a structure that reduces the contact area with.

電流は円板(6)と導電片(2)とをスパイラル状に流
れ、積層する円板(6)を流れる間に小孔(6a)を通
るヘリウムガスOalで充分冷却される。冷却特性は円
板(6)および導電片住Qの大きさ、厚さと積層数を調
整して高い熱伝達特性が得られ、特に導電部の機械的構
造が尚く、電磁力などr(対し強固である。 ・また導
電片(ハ)の配置によって通電経路を互に逆の渦巻き状
にし、l[11電によって発生する磁界を打消す方向に
することによ゛つて、4屯部のインダクタンスを小さく
シ、超′d導コイルの励磁d源を小さくすることができ
る。
The current flows spirally through the disc (6) and the conductive piece (2), and is sufficiently cooled by helium gas Oal passing through the small holes (6a) while flowing through the stacked discs (6). High heat transfer characteristics can be obtained by adjusting the size, thickness, and number of laminated layers of the disk (6) and the conductive Katazumi Q. In particular, the mechanical structure of the conductive part is particularly effective against electromagnetic force, etc.・Also, by arranging the conductive pieces (c) to make the conductive paths spiral in opposite directions to cancel the magnetic field generated by the electric current, the inductance of the 4th section can be reduced. Therefore, the excitation d source of the super d-conducting coil can be made small.

また上記実施例は共に円板(6)や円環(ン)、小径円
板(8)、絶縁円板u4)、4電片け9などは積層後に
小孔(6a)の目づまり防止を施した淡、一度にはんだ
付けして製作することができ、また各部品は規格化、標
準化は容易である。
In addition, in both of the above embodiments, the disk (6), the ring (n), the small diameter disk (8), the insulating disk u4), the 4-electrode plate 9, etc. are designed to prevent clogging of the small hole (6a) after lamination. The light applied can be manufactured by soldering all at once, and each part is easy to standardize and standardize.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば11)冷却作用の
高い電流リード装置が得られ14屯導装置への侵入熱量
を少くできる。(2)電流リード装置はコンパクト化し
、入電θILでも侵入熱量を増さずに′f!171)い
構造となり、超電導装置をコンパクト化できる。
As detailed above, according to the present invention, 11) a current lead device with a high cooling effect can be obtained, and the amount of heat entering the 14-channel lead device can be reduced; (2) The current lead device has been made more compact, and even when the current is input θIL, the amount of heat absorbed does not increase and 'f! 171) It has a compact structure, and the superconducting device can be made more compact.

(3)構成部品の規格化、標準化ができる。(4)・電
磁力や外力に対し1剛性が扁い。(5)低いインダクタ
ンスが得られるなどのすぐれた効果がある。
(3) It is possible to standardize and standardize component parts. (4)・1 Rigidity is low against electromagnetic force and external force. (5) It has excellent effects such as low inductance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導電流リード装置の一実76例を
示す縦断面図、第2図は絹1図の円板を示す平面図、第
3図は他の実施例に示す斜視断面図である。 2・・・外面      3,9・・・成訛端子4・・
・ブツシュ    5・・・ライニング6・・・円板 
     6a・・・小孔6b・・・切欠部    7
・・・円環8・・・小径円板    14・・・絶縁板
14a・・・大孔     14b・・・切欠部15・
・・導電片 代珪人 弁理上  井 上 −男
FIG. 1 is a longitudinal sectional view showing an example of a superconducting current lead device according to the present invention, FIG. 2 is a plan view showing a disk of silk 1, and FIG. 3 is a perspective sectional view showing another example. It is. 2...Outer surface 3,9...Adult terminal 4...
・Butshu 5...Lining 6...Disc
6a...Small hole 6b...Notch 7
...Ring 8...Small diameter disk 14...Insulating plate 14a...Large hole 14b...Notch 15.
・・Conductive Katashiro Keito Patent Attorney Inoue - Male

Claims (1)

【特許請求の範囲】 1、 極低温容器を貫通固着する外筒と、この外筒内に
絶縁物を介して挿通ずる導電部と、MiJ記外部外筒内
11記導電部を冷却する極低温ガスの冷却通路とからな
る極低温’E流リード装置において、削記導電部を多数
の小孔を有する複111.個の電気良導体の円板を間隙
を設けて積M t、直列に接続したことを特徴とする極
低温°1流リード装置。 2 円板の間に交互に電気良導体の円環および小径円板
を固着したことを特徴とする特許請求の範囲第1項記載
の極低温電流リート装置。 3、 切欠部を有する円板の間に多数の孔と欠切部とを
有する絶縁円板を挿入し、この絶縁板の切欠部を通して
前記円板の間に導電片を固着したことを特徴とする特許
請求の範囲第1項記載の極低温電流リード装置。
[Claims] 1. An outer cylinder that penetrates and is fixed to the cryogenic container, a conductive part that is inserted into the outer cylinder through an insulator, and a cryogenic temperature that cools the conductive part inside the MiJ outer cylinder. In a cryogenic 'E flow lead device consisting of a gas cooling passage, the cutting conductive part is formed of a plurality of 111. A cryogenic 1-flow lead device characterized in that a number of disks of good electrical conductivity are connected in series with a product M t with a gap between them. 2. The cryogenic current REET device according to claim 1, characterized in that rings of good electrical conductivity and small-diameter disks are alternately fixed between the disks. 3. An insulating disc having a large number of holes and notches is inserted between discs having notches, and a conductive piece is fixed between the discs through the notches of the insulating plate. A cryogenic current lead device according to scope 1.
JP58015432A 1983-02-03 1983-02-03 Current leading device of cryogenic temperature Pending JPS59150487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015432A JPS59150487A (en) 1983-02-03 1983-02-03 Current leading device of cryogenic temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015432A JPS59150487A (en) 1983-02-03 1983-02-03 Current leading device of cryogenic temperature

Publications (1)

Publication Number Publication Date
JPS59150487A true JPS59150487A (en) 1984-08-28

Family

ID=11888624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015432A Pending JPS59150487A (en) 1983-02-03 1983-02-03 Current leading device of cryogenic temperature

Country Status (1)

Country Link
JP (1) JPS59150487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324891A (en) * 1991-07-01 1994-06-28 Wisconsin Alumni Research Foundation Superconducting connecting leads having thermal plug
US5648638A (en) * 1991-08-22 1997-07-15 Forschungszenlrum Karlsruhe Gmbh Low-temperature current transfer structure with heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324891A (en) * 1991-07-01 1994-06-28 Wisconsin Alumni Research Foundation Superconducting connecting leads having thermal plug
US5648638A (en) * 1991-08-22 1997-07-15 Forschungszenlrum Karlsruhe Gmbh Low-temperature current transfer structure with heat exchanger

Similar Documents

Publication Publication Date Title
US4956626A (en) Inductor transformer cooling apparatus
US3559126A (en) Means to provide electrical and mechanical separation between turns in windings of a superconducting device
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
US3416111A (en) Superconductive spool with refrigerant-holding spool carrier
GB2211671A (en) Electromagnetic devices with superconducting windings
US3639672A (en) Electrical conductor
US3428928A (en) Transformer including boron nitride insulation
US3332047A (en) Composite superconductor
US3551863A (en) Transformer with heat dissipator
JP3381965B2 (en) Electromagnetic induction heating coil
US3654377A (en) Electrical leads for cryogenic devices
JPS61160901A (en) Compact resistance assembly
JPS59150487A (en) Current leading device of cryogenic temperature
JP2020025014A (en) High-temperature superconducting coil and superconducting magnet device
JPS61229306A (en) Superconducting coil
JPH0510809B2 (en)
US2994808A (en) High flux density apparatus
US2151787A (en) Electrical capactor
JP2000067663A (en) Superconductive conductor
JP2019149344A (en) High temperature superconducting wire, and high temperature superconducting coil
JPS624305A (en) Superconducting magnet apparatus
JPH03283678A (en) Current lead of superconducting magnet apparatus
JPH06163095A (en) Superconducting connection lead provided with thermal plug
WO1994005020A1 (en) Method and means for cryostabilization of high-temperature superconductors
JPH07335447A (en) Transformer