JPS6260201B2 - - Google Patents

Info

Publication number
JPS6260201B2
JPS6260201B2 JP59247493A JP24749384A JPS6260201B2 JP S6260201 B2 JPS6260201 B2 JP S6260201B2 JP 59247493 A JP59247493 A JP 59247493A JP 24749384 A JP24749384 A JP 24749384A JP S6260201 B2 JPS6260201 B2 JP S6260201B2
Authority
JP
Japan
Prior art keywords
sintered body
composite
base material
alloy
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59247493A
Other languages
Japanese (ja)
Other versions
JPS61125707A (en
Inventor
Tetsuo Nakai
Shuji Yatsu
Akio Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24749384A priority Critical patent/JPS61125707A/en
Priority to CA000477715A priority patent/CA1248519A/en
Priority to EP85302270A priority patent/EP0157625B1/en
Priority to DE8585302270T priority patent/DE3566565D1/en
Publication of JPS61125707A publication Critical patent/JPS61125707A/en
Publication of JPS6260201B2 publication Critical patent/JPS6260201B2/ja
Priority to US07/186,082 priority patent/US4890782A/en
Priority to US07/275,653 priority patent/US4950557A/en
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、特に耐摩耗性にすぐれた複合焼結
体工具およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a composite sintered tool having particularly excellent wear resistance and a method for manufacturing the same.

<従来の技術とその問題点> 高圧相型窒化硼素(立方晶型窒化硼素およびウ
ルツ鉱型窒化硼素)はダイヤモンドに次ぐ硬度を
有しており、かつ鉄族金属との親和性が低いた
め、これらの微細な粒子を用いた焼結体は、超硬
合金では切削加工が不可能な高硬度の鉄族金属の
切削加工に対しすぐれた性能を示し、注目されて
いる。
<Conventional technology and its problems> High-pressure phase boron nitride (cubic boron nitride and wurtzite boron nitride) has a hardness second only to diamond and has low affinity with iron group metals. Sintered bodies using these fine particles have attracted attention because they exhibit excellent performance in cutting high-hardness iron group metals that cannot be cut with cemented carbide.

この焼結体の製造には超高圧装置を必要とする
ため、焼結体の大きさ、形状において超硬合金と
比較すると制約される点が多い。
Since the production of this sintered body requires ultra-high pressure equipment, there are many restrictions regarding the size and shape of the sintered body compared to cemented carbide.

一般には第6図に示すように高圧相型窒化硼素
焼結体1が超硬合金製の母材部2に接合されたも
のである。3は例えば特開昭56―54278号公報に
記載されているような中間接合層である。この複
合焼結体を切削工具として使用する場合、円板の
まま、または適宜切断して鋼あるいは超硬合金製
のバイトシヤンクにロウ付けしてバイトを作成す
る。
Generally, as shown in FIG. 6, a high-pressure phase type boron nitride sintered body 1 is joined to a base material part 2 made of cemented carbide. 3 is an intermediate bonding layer as described in, for example, Japanese Patent Application Laid-Open No. 56-54278. When this composite sintered body is used as a cutting tool, a cutting tool is created by using the disc as it is, or cutting it as appropriate and brazing it to a cutting tool shank made of steel or cemented carbide.

このようなロウ付け加工時に高圧相型窒化硼素
焼結体部が約700〜800℃以上に一定時間以上加熱
されると、特性の劣化が生じるため、通常低融点
の銀ロウ等を用いてロウ付けしている。
If the high-pressure phase type boron nitride sintered body is heated above approximately 700 to 800°C for a certain period of time during such brazing processing, the properties will deteriorate, so it is usually soldered using low-melting point silver solder. It is attached.

軽切削の用途に対しては切削応力が小さく、刃
先の温度上昇も低いため、問題はない。
For light cutting applications, there is no problem because the cutting stress is small and the temperature rise at the cutting edge is low.

ところが、重切削の用途に対しては、ロウ付け
部より刃先焼結体が脱落したり、ロウ付け部が動
くといつた問題が生じた。
However, for heavy cutting applications, problems such as the cutting edge sintered body falling off from the brazed part and movement of the brazed part have arisen.

低融点のロウ材として一般的に用いられる銀ロ
ウ(例えばJIS規格B Ag―1)は室温での剪断
強度がたかだか20Kg/mm2程度で、高温になると著
しく強度が低下する。
Silver solder (for example, JIS standard B Ag-1), which is commonly used as a low melting point brazing material, has a shear strength of about 20 kg/mm 2 at most at room temperature, and the strength decreases significantly at high temperatures.

重切削の場合、刃先温度が上昇するとともに高
応力が負荷される。
In heavy cutting, the temperature of the cutting edge increases and high stress is applied.

<問題点を解決するための手段> 以上のことから、特に高圧相型窒化硼素を高硬
度の被削材の重切削に使用する場合には第6図の
如き焼結体のシヤンクへの固定方法が非常に重要
である。
<Means to solve the problem> From the above, especially when using high-pressure phase type boron nitride for heavy cutting of highly hard work materials, it is recommended to fix the sintered body to the shank as shown in Figure 6. The method is very important.

この発明は上記の目的に対し、種々検討を行な
つた結果得られたものである。
This invention was achieved as a result of various studies for the above-mentioned purpose.

<作用> 以下、この発明を詳細に説明する。<Effect> This invention will be explained in detail below.

第1図はこの発明の複合焼結体工具の製法の説
明図であるが、図中の1は高圧相型窒化硼素焼結
体部、2は超硬合金製母材部、3は中間接合層で
あつて、第6図と同様である。
FIG. 1 is an explanatory diagram of the manufacturing method of the composite sintered tool of the present invention, in which 1 is a high-pressure phase type boron nitride sintered body part, 2 is a cemented carbide base material part, and 3 is an intermediate joint. The layers are similar to those in FIG.

超高圧、高温下で焼結したこれらの複合焼結体
Aを硬質合金製の支持体5に接合するに当つて、
図の如く母材部2と支持体5の間に接合部材4と
してNi,Coまたはこれらの合金の板を挾み、複
合焼結体または支持体あるいは双方を高速回転さ
せる。この時複合焼結体の母材部とNi,Coまた
はこれらの合金あるいはNi,Coまたはこれらの
合金と支持体の間で摩擦熱が生じ、Ni,Coまた
はこれらの合金が軟化して流動するため、複合焼
結体と支持体の接合部全体にわたつて均一に接合
させることが可能である。
When joining these composite sintered bodies A sintered under ultra-high pressure and high temperature to the hard metal support 5,
As shown in the figure, a plate of Ni, Co, or an alloy thereof is sandwiched between the base material 2 and the support 5 as a joining member 4, and the composite sintered body, the support, or both are rotated at high speed. At this time, frictional heat is generated between the base material of the composite sintered body and Ni, Co, or their alloys, or between Ni, Co, or these alloys, and the support, causing Ni, Co, or these alloys to soften and flow. Therefore, it is possible to uniformly join the composite sintered body and the support over the entire joint.

また、複合焼結体を高温高圧下で製造する時、
第2図のように硬質焼結合金母材部2の端面に、
Ni,Coまたはこれらの合金を接合部材4として
接合させておき、この複合焼結体の母材部2と予
めNi,Coまたはこれらの合金を接合部材4′とし
て接合した硬質合金支持体5を第3図に示すよう
に、摩擦溶接することもできる。
In addition, when manufacturing composite sintered bodies under high temperature and high pressure,
As shown in Fig. 2, on the end face of the hard sintered alloy base material part 2,
Ni, Co, or an alloy thereof is bonded as a bonding member 4, and a hard metal support 5, which is previously bonded with Ni, Co, or an alloy thereof as a bonding member 4', is bonded to the base material 2 of this composite sintered body. Friction welding can also be used, as shown in FIG.

なお、第3図における6は複合焼結体固定用治
具を示し、7は支持体固定用治具を示す。
Note that 6 in FIG. 3 indicates a jig for fixing the composite sintered body, and 7 indicates a jig for fixing the support.

この場合、複合焼結体母材部に接合するNi,
Coまたはこれらの合金と、支持体に接合する
Ni,Coまたはこれらの合金を同一のものとすれ
ば非常によく接合する。
In this case, the Ni bonded to the base material of the composite sintered body,
Co or these alloys and bonded to the support
If Ni, Co, or their alloys are the same, they will bond very well.

さらに、複合焼結体母材部もしくは硬質焼結合
金支持体のどちらか一方にNi,Coまたはこれら
の合金を接合しておき、硬質焼結合金とNi,Co
またはこれらの合金との摩擦溶接も可能である。
Furthermore, Ni, Co, or an alloy thereof is bonded to either the base material of the composite sintered body or the hard sintered alloy support, and the hard sintered alloy and Ni, Co
Alternatively, friction welding with these alloys is also possible.

摩擦溶接では摩擦部近傍のみが高温となるた
め、高圧相型窒化硼素焼結体部が劣化することは
なく、このブランクを接合する有効な手段である
ことがわかつた。
In friction welding, only the vicinity of the friction part becomes high temperature, so the high-pressure phase type boron nitride sintered body part does not deteriorate, and it was found that this is an effective means of joining these blanks.

しかし、複合焼結体の厚さが薄い場合は、摩擦
熱の伝達により高圧相型窒化硼素焼結体の温度上
昇が生じるが、この場合は高圧相型窒化硼素焼結
体を銅等のヒートシンクで冷却して摩擦溶接を行
えば、この焼結体の劣化が生じることなく接合す
ることができる。
However, if the thickness of the composite sintered body is thin, the temperature of the high-pressure phase type boron nitride sintered body will rise due to the transfer of frictional heat. If the sintered body is cooled and friction welded, the sintered body can be joined without deterioration.

高圧相型窒化硼素焼結体の母材部(第1,第2
図の2)は、WC,TiC,TaC,MoCなどの周期
律表の第4a,5a,6a族の炭化物、炭窒化
物、窒化物等を鉄族金属で焼結した硬質焼結合金
が用いられる。
Base material part of high pressure phase type boron nitride sintered body (first and second
2) in the figure uses a hard sintered alloy made by sintering carbides, carbonitrides, nitrides, etc. of groups 4a, 5a, and 6a of the periodic table such as WC, TiC, TaC, and MoC with iron group metals. It will be done.

好適な例は、WCまたはMoCまたは(Mo,
W)CをCoまたはNiで結合した焼結合金であ
る。
Suitable examples are WC or MoC or (Mo,
W) It is a sintered alloy in which C is bonded with Co or Ni.

なお、例えばWC―Co合金の液相出現温度は、
約1320℃である。
For example, the liquid phase appearance temperature of WC-Co alloy is
The temperature is approximately 1320℃.

この発明で使用する支持体(例えば第1図の
5)は母材部(例えば第6図の2)と同様の硬質
焼結合金である。
The support used in this invention (for example, 5 in FIG. 1) is a hard sintered alloy similar to the base material (for example, 2 in FIG. 6).

母材部と支持体を接合する接合部材としては
Ni,Coまたはこれらの合金が適し、なかでもCo
またはNiは接合すべき硬質焼結合金の結合相と
して使用されており、接合時に接合強度を低下せ
しめるような冶金学的な欠陥を生じ難い点で好ま
しい。
As a joining member that joins the base material and the support
Ni, Co or their alloys are suitable, especially Co
Alternatively, Ni is used as a binder phase for hard sintered alloys to be joined, and is preferable because it is unlikely to cause metallurgical defects that would reduce joint strength during joining.

特に接合部材としてNiまたはNi合金を用いた
場合は、接合時に硬質焼結合金中の例えばWCや
(Mo,W)C等の炭化物が分解して接合部材の金
属と反応して有害な複合炭化物相が析出するよう
なことが少なく、極めて高強度の接合が可能であ
る。
In particular, when Ni or Ni alloy is used as a joining member, carbides such as WC and (Mo, W)C in the hard sintered alloy decompose during joining and react with the metal of the joining member, producing harmful composite carbides. There is little chance of phase precipitation and extremely high strength bonding is possible.

この発明の摩擦圧接法により接合された部分で
は母材の超硬合金を構成しているCoや硬質合金
支持体を構成する金属が接合部材であるNiやCo
中に均一に拡散するため接合強度は非常に高い。
In the parts joined by the friction welding method of this invention, the Co that makes up the cemented carbide base material and the metal that makes up the hard alloy support are Ni and Co that are the joining members.
The bonding strength is extremely high because it is uniformly diffused inside.

接合部材としてのNi,Coまたはこれらの合金
よりなる接合層の厚さは1mm以下が好ましい。こ
れは厚さが1mmをこえると、Ni,Coまたはこれ
らの合金よりなる接合層の耐摩耗性が劣つて好ま
しくないためである。
The thickness of the bonding layer made of Ni, Co, or an alloy thereof as a bonding member is preferably 1 mm or less. This is because if the thickness exceeds 1 mm, the abrasion resistance of the bonding layer made of Ni, Co, or an alloy thereof is undesirable.

<実施例> 以下、実施例によりこの発明を詳細に説明す
る。
<Examples> The present invention will be described in detail below using examples.

実施例 1 超高圧、高温下で焼結して得られた第2図に示
すような複合焼結体を準備した。この複合焼結体
は直径8mm、高圧相型窒化硼素焼結体部1は体積
で約60%の立方晶型窒化硼素をTiNとAlを結合材
として超高圧高温下で焼結したもので厚みは0.8
mmである。
Example 1 A composite sintered body as shown in FIG. 2 obtained by sintering under ultra-high pressure and high temperature was prepared. This composite sintered body has a diameter of 8 mm, and the high-pressure phase type boron nitride sintered body part 1 is made by sintering cubic boron nitride with a volume of approximately 60% using TiN and Al as binders under ultra-high pressure and high temperature. is 0.8
mm.

母材部2は厚さ2.5mmのWC―Co合金であり、
この底面に厚さ0.2mmのNi板を接合部材4として
立方晶型窒化硼素製造時に同時に接合したもので
ある。
The base material part 2 is a WC-Co alloy with a thickness of 2.5 mm,
A 0.2 mm thick Ni plate was bonded to this bottom surface as a bonding member 4 at the same time as the cubic boron nitride was manufactured.

次に直径8mmで長さ5mmのWC―Coの端面に
0.5mmのNi板を接合部材4′として接合した支持体
5を用意し、第3図に示すように支持体5を2400
回転/分で回転させながら複合焼結体母材部端面
に圧力800Kgで0.5秒間接触させて、接合部を加熱
したのち、圧力を1500KgにしてNiを流動させ、
回転を止めて冷却した。
Next, on the end face of WC-Co with a diameter of 8 mm and a length of 5 mm.
A support 5 is prepared by joining a 0.5 mm Ni plate as the joining member 4', and the support 5 is attached to a
The composite sintered body was brought into contact with the end face of the base material for 0.5 seconds at a pressure of 800 kg while rotating at a rotational speed of 1500 kg per minute to heat the joint, and then the pressure was increased to 1500 kg to flow Ni.
Rotation was stopped and cooled.

その後試料を摩擦溶接機より取りはずし、溶接
時に発生したバリを取り除き、接合部を観察した
ところ厚さ0.15mmのNi層を介して複合焼結体は全
面にわたつて支持体に接合されていた。
After that, the sample was removed from the friction welder, the burrs generated during welding were removed, and the joint was observed, and it was found that the entire surface of the composite sintered body was joined to the support via a 0.15 mm thick Ni layer.

接合部をX線マイクロアナライザーを用いて調
査したところ、接合部材であるNi中には母材お
よび支持体からのCoが均一に拡散しているのが
観察された。またNi部には欠陥は認められなか
つた。
When the joint was examined using an X-ray microanalyzer, it was observed that Co from the base material and support was uniformly diffused into the Ni joint member. Further, no defects were observed in the Ni portion.

この複合焼結体を第4図のように加工し、第5
図に示すようにバイトシヤンク8に取り付け、H
RC62〜65の焼入鋼を切削速度100m/min、切込
み1mm、送り0.3mm/rpm乾式の条件で切削し
た。
This composite sintered body is processed as shown in Fig. 5.
Attach it to the bite shank 8 as shown in the figure, and
Hardened steel of RC 62 to 65 was cut under dry conditions of cutting speed 100 m/min, depth of cut 1 mm, and feed rate 0.3 mm/rpm.

比較のため、前記高圧相型窒化硼素焼結体と同
材質、同形状のものを直径8mm、長さ5mmのWC
―Coに銀ロウ(JIS規格B Ag―1)を用いて
接合した複合焼結体も試作し、同条件で焼入鋼を
切削した。
For comparison, a WC with a diameter of 8 mm and a length of 5 mm was made of the same material and shape as the high-pressure phase type boron nitride sintered body.
-We also prototyped a composite sintered body bonded to Co using silver solder (JIS standard B Ag-1), and cut hardened steel under the same conditions.

その結果、本発明の焼結体は60分以上切削が可
能であつたのに対し、比較材は5分切削した時点
でロウ付け部より剥離した。
As a result, the sintered body of the present invention could be cut for more than 60 minutes, whereas the comparative material peeled off from the brazed portion after 5 minutes of cutting.

実施例 2 高圧相型窒化硼素が約70容量%含有する厚さ2
mmの焼結体が厚さ3mmのWC―Co硬質合金に接合
された直径6mmの複合焼結体を準備した。
Example 2 Thickness 2 containing approximately 70% by volume of high-pressure phase boron nitride
A composite sintered body with a diameter of 6 mm was prepared by joining a sintered body with a diameter of 6 mm to a 3 mm thick WC-Co hard alloy.

次に直径6mm、長さ80mmのWC―Co端面上に厚
さ0.3mmのCo板を接合したものを用意した。
Next, a 0.3 mm thick Co plate was bonded onto the WC-Co end face with a diameter of 6 mm and a length of 80 mm.

これらの試料を摩擦溶接機に取り付け、3000回
転で複合焼結体を回転させ、圧力600Kgで1秒間
接触させて接合部を加熱した後、圧力を1000Kgに
してCoを流動させ、回転をとめて冷却した。
These samples were attached to a friction welding machine, the composite sintered body was rotated at 3000 rpm, and the joint was heated by contacting it for 1 second at a pressure of 600 kg, then the pressure was increased to 1000 kg to flow Co, and the rotation was stopped. Cooled.

この高圧相型窒化硼素焼結体は0.1mmのCo層を
介してWC―Co支持体に強固に接合していた。
This high-pressure phase type boron nitride sintered body was firmly bonded to the WC-Co support via a 0.1 mm Co layer.

この複合焼結体を直径6mmのリーマに加工し、
RC60〜63の焼入鋼の穴を回転速度2000rpm、取
り代0.5mm、送り100mm/分で加工した。
Process this composite sintered body into a reamer with a diameter of 6 mm,
A hole in hardened steel with H RC 60 to 63 was machined at a rotational speed of 2000 rpm, a machining allowance of 0.5 mm, and a feed rate of 100 mm/min.

比較のため、高圧相型窒化硼素焼結体を銀ロウ
(JIS規格B Ag―5)付けした試料も作成し、
同様にして焼入鋼を加工した。
For comparison, we also created a sample of high-pressure phase type boron nitride sintered body with silver solder (JIS standard B Ag-5).
Hardened steel was processed in the same manner.

<効果> その結果、本発明品は500ケ以上の穴加工が可
能であつたのに対し、比較品は120ケの穴加工中
にロウ付け部より剥離し、本発明品のすぐれてい
ることが認められた。
<Effects> As a result, the product of the present invention was able to drill more than 500 holes, while the comparative product peeled off from the brazed part during the drilling of 120 holes, demonstrating the superiority of the product of the present invention. was recognized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は、この発明の製造方法の一
例を示す説明図、第4図および第5図はこの発明
の応用例を示す説明図、第6図は複合高圧相型窒
化硼素焼結体の構造を示す斜視図である。 A…複合高圧相型窒化硼素焼結体、1…高圧相
型窒化硼素焼結体部、2…母材部、3…中間接合
層、4,4′…接合部材、5…支持体、6…複合
焼結体固定用治具、7…支持体固定用治具、8…
バイトシヤンク。
1 to 3 are explanatory diagrams showing an example of the manufacturing method of the present invention, FIGS. 4 and 5 are explanatory diagrams showing an application example of the present invention, and FIG. 6 is a composite high-pressure phase type boron nitride sintering method. It is a perspective view showing the structure of a body. A... Composite high-pressure phase type boron nitride sintered body, 1... High-pressure phase type boron nitride sintered body part, 2... Base material part, 3... Intermediate bonding layer, 4, 4'... Bonding member, 5... Support body, 6 ... jig for fixing composite sintered body, 7... jig for fixing support body, 8...
Baitshayank.

Claims (1)

【特許請求の範囲】 1 高圧相型窒化硼素を20容積%以上含有する焼
結体を超硬合金母材に接合した複合焼結体が厚さ
1mm以下のNi,Coまたはこれらの合金よりなる
接合部材を介して硬質合金支持体に摩擦溶接され
た工具において、硬質合金支持体および母材の構
成成分の一部が前記接合部材中に均一に拡散して
いることを特徴とする複合焼結体工具。 2 高圧相型窒化硼素を20容積%以上含有する焼
結体が超硬合金母材に直接もしくは中間接合層を
介して結合されたことを特徴とする特許請求の範
囲第1項記載の複合焼結体工具。 3 硬質合金支持体がWCあるいは(Mo,W)
Cを主成分とする焼結合金であることを特徴とす
る特許請求の範囲第1項記載の複合焼結体工具。 4 高圧相型窒化硼素を20容積%以上含有する焼
結体部と、超硬合金の母材部よりなる複合焼結体
を、この複合焼結体の母材部端面と硬質合金の支
持体端面との間にNi,Coまたはこれらの合金板
を挾み、複合焼結体または支持体あるいは双方を
高速回転させて、Ni,Coまたはこれらの合金と
摩擦させて加熱し、Ni,Coまたはこれらの合金
を流動させて、支持体と複合焼結体の母材を接合
させることを特徴とする複合焼結体工具の製造方
法。 5 高圧相型窒化硼素を20容積%以上含有する焼
結体部が超硬合金母材に直接もしくは中間接合層
を介して接合されたことを特徴とする特許請求の
範囲第4項記載の複合焼結体工具の製造方法。 6 硬質合金支持体がWCあるいは(Mo,W)
Cを主成分とする焼結合金であることを特徴とす
る特許請求の範囲第4項記載の複合焼結体工具の
製造方法。 7 高圧相型窒化硼素を20容積%以上含有する焼
結体部と、超硬合金の母材部よりなる複合焼結体
の超硬合金端面または/および硬質合金の支持体
端面にNi,Coまたはこれらの合金を接合してお
き、複合焼結体または支持体あるいは双方を高速
回転させて、Ni,Coまたはこれらの合金同志あ
るいはNi,Coまたはこれらの合金と硬質焼結合
金を摩擦させて加熱し、Ni,Coまたはこれらの
合金を流動させて、複合焼結体の母材と支持体を
接合させることを特徴とする複合焼結体工具の製
造方法。 8 高圧相型窒化硼素を20容積%以上含有する焼
結体部が超硬合金母材に直接もしくは中間接合層
を介して接合されたことを特徴とする特許請求の
範囲第7項記載の複合焼結体工具の製造方法。 9 硬質合金支持体がWCあるいは(Mo,W)
Cを主成分とする焼結合金であることを特徴とす
る特許請求の範囲第7項記載の複合焼結体工具の
製造方法。
[Scope of Claims] 1. A composite sintered body in which a sintered body containing 20% by volume or more of high-pressure phase boron nitride is bonded to a cemented carbide base material is made of Ni, Co, or an alloy thereof with a thickness of 1 mm or less A composite sintered tool friction welded to a hard metal support via a joining member, characterized in that a part of the constituent components of the hard alloy support and the base material are uniformly diffused into the joining member. Body tools. 2. A composite sintered body according to claim 1, characterized in that a sintered body containing 20% by volume or more of high-pressure phase boron nitride is bonded to a cemented carbide base material directly or via an intermediate bonding layer. Consolidation tool. 3 Hard metal support is WC or (Mo, W)
The composite sintered tool according to claim 1, which is a sintered alloy containing C as a main component. 4 A composite sintered body consisting of a sintered body containing 20% by volume or more of high-pressure phase type boron nitride and a cemented carbide base material is placed between the end face of the base metal part of this composite sintered body and a hard metal support. A plate of Ni, Co, or an alloy thereof is sandwiched between the end face and the composite sintered body, the support, or both are rotated at high speed and heated by friction with the Ni, Co, or alloy thereof. A method for producing a composite sintered tool, which comprises flowing these alloys to join a support and a base material of the composite sintered body. 5. The composite according to claim 4, wherein the sintered body portion containing 20% by volume or more of high-pressure phase boron nitride is bonded to the cemented carbide base material directly or via an intermediate bonding layer. A method for manufacturing a sintered tool. 6 Hard metal support is WC or (Mo, W)
5. The method for manufacturing a composite sintered tool according to claim 4, wherein the tool is a sintered alloy containing C as a main component. 7 Ni, Co on the cemented carbide end face of a composite sintered body consisting of a sintered body containing 20% by volume or more of high-pressure phase boron nitride and a cemented carbide base material and/or on the hard metal support end face. Alternatively, these alloys may be joined together, and the composite sintered body or the support or both may be rotated at high speed to cause friction between Ni, Co, or these alloys, or between Ni, Co, or these alloys, and the hard sintered alloy. A method for producing a composite sintered tool, which comprises heating and flowing Ni, Co, or an alloy thereof to join a base material of the composite sintered body and a support. 8. The composite according to claim 7, wherein the sintered body portion containing 20% by volume or more of high-pressure phase boron nitride is bonded to the cemented carbide base material directly or via an intermediate bonding layer. A method for manufacturing a sintered tool. 9 Hard metal support is WC or (Mo, W)
8. The method for manufacturing a composite sintered tool according to claim 7, wherein the tool is a sintered alloy containing C as a main component.
JP24749384A 1984-04-03 1984-11-21 Composite sintered body tool and its manufacturing method Granted JPS61125707A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24749384A JPS61125707A (en) 1984-11-21 1984-11-21 Composite sintered body tool and its manufacturing method
CA000477715A CA1248519A (en) 1984-04-03 1985-03-27 Composite tool and a process for the production of the same
EP85302270A EP0157625B1 (en) 1984-04-03 1985-04-01 Composite tool
DE8585302270T DE3566565D1 (en) 1984-04-03 1985-04-01 Composite tool
US07/186,082 US4890782A (en) 1984-04-03 1988-04-25 Process for the production of a composite tool
US07/275,653 US4950557A (en) 1984-04-03 1988-11-21 Composite tool and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24749384A JPS61125707A (en) 1984-11-21 1984-11-21 Composite sintered body tool and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS61125707A JPS61125707A (en) 1986-06-13
JPS6260201B2 true JPS6260201B2 (en) 1987-12-15

Family

ID=17164285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24749384A Granted JPS61125707A (en) 1984-04-03 1984-11-21 Composite sintered body tool and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS61125707A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798964B2 (en) * 1987-02-18 1995-10-25 昭和電工株式会社 Cubic boron nitride cemented carbide composite sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS5939778A (en) * 1982-08-24 1984-03-05 住友電気工業株式会社 Composite sintered body tool and manufacture
JPS59164675A (en) * 1983-03-10 1984-09-17 日産自動車株式会社 Ceramic bonding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS5939778A (en) * 1982-08-24 1984-03-05 住友電気工業株式会社 Composite sintered body tool and manufacture
JPS59164675A (en) * 1983-03-10 1984-09-17 日産自動車株式会社 Ceramic bonding method

Also Published As

Publication number Publication date
JPS61125707A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
EP0157625B1 (en) Composite tool
US4686080A (en) Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same
US5641921A (en) Low temperature, low pressure, ductile, bonded cermet for enhanced abrasion and erosion performance
US7435377B2 (en) Weldable ultrahard materials and associated methods of manufacture
EP0264674B1 (en) Low pressure bonding of PCD bodies and method
US20040155096A1 (en) Diamond tool inserts pre-fixed with braze alloys and methods to manufacture thereof
JPH0448586B2 (en)
JPH0218365A (en) Abrasion resistant polycrystalline diamond heat resistor
JPS59134665A (en) Method of coupling cubic boron nitride compact
JP2019535550A (en) Core drill bit and forming method
JPH11320218A (en) Hard sintered body tool and manufacture thereof
EP0397515B1 (en) Wire drawing die
JPS6260201B2 (en)
JPH0228428B2 (en)
US5484096A (en) Method of bonding two bodies together by brazing
JPS60259306A (en) Composite tool and preparation thereof
JPS60145973A (en) Composite sintered tool
JPH0361555B2 (en)
JPH11188510A (en) Hard sintered body cutting tool
JPS5884187A (en) Composite sintered body tool and manufacture
ZA200504125B (en) Diamond tool inserts pre-fixed with braze alloys and methods to manufacture thereof.
JPH11320219A (en) Hard sintered body throw-away chip and manufacture thereof
JPS6260203B2 (en)
JPH07308805A (en) Cutting tool for hard sintered body
JPS5938491A (en) Composite sintered tool and production thereof