JPS6259914B2 - - Google Patents

Info

Publication number
JPS6259914B2
JPS6259914B2 JP12442482A JP12442482A JPS6259914B2 JP S6259914 B2 JPS6259914 B2 JP S6259914B2 JP 12442482 A JP12442482 A JP 12442482A JP 12442482 A JP12442482 A JP 12442482A JP S6259914 B2 JPS6259914 B2 JP S6259914B2
Authority
JP
Japan
Prior art keywords
module
light
receiving
module chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12442482A
Other languages
Japanese (ja)
Other versions
JPS5916389A (en
Inventor
Hatsuo Takesawa
Kenichi Tsuchinuma
Shuhei Katagiri
Naryuki Sakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57124424A priority Critical patent/JPS5916389A/en
Priority to EP83106974A priority patent/EP0101872B1/en
Priority to DE8383106974T priority patent/DE3381070D1/en
Priority to US06/514,250 priority patent/US4695858A/en
Publication of JPS5916389A publication Critical patent/JPS5916389A/en
Publication of JPS6259914B2 publication Critical patent/JPS6259914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は双方向光モジユール及びその装置に関
するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to bidirectional optical modules and devices thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光伝送方式としては一方向伝送方式と双方向伝
送方式とがあり、このうち一方向伝送方式は光フ
アイバの一端に電気信号をドライバ回路により増
幅したのちLED(発光ダイオード)やLD(レー
ザダイオード)により光信号に変換する送信モジ
ユールをおき、この光信号を光フアイバを介して
伝送し、光フアイバの他端に光信号を電気信号に
変換するPD(フオトダイオード)やAPD(アバ
ランシエフオトダイオード)とこの電気信号を増
幅再生するレシーバ回路からなる受信モジユール
をおく方式である。
There are two types of optical transmission methods: unidirectional transmission methods and bidirectional transmission methods. In the unidirectional transmission method, an electric signal is amplified by a driver circuit at one end of an optical fiber, and then an LED (light emitting diode) or LD (laser diode) is used. A transmission module that converts the optical signal into an optical signal is installed, and this optical signal is transmitted via an optical fiber.The other end of the optical fiber is a PD (photodiode) or APD (avalanche photodiode) that converts the optical signal into an electrical signal. This method includes a receiving module consisting of a receiver circuit that amplifies and reproduces this electrical signal.

しかし、局から局へ信号伝送を行なう際、一方
の局から他方の局へ一方的に信号伝達を行なう場
合のみならず、相互に信号伝達をする必要がある
場合が多い。この相互に信号伝達をする場合は2
組の光送信モジユール及び2本の光フアイバを独
立に配線、布設、コネクタ装着する必要がある。
However, when transmitting signals from one station to another, it is often necessary not only to transmit signals unilaterally from one station to another, but also to transmit signals mutually. In this mutual signal transmission, 2
It is necessary to independently wire, install, and attach connectors to the set of optical transmission modules and two optical fibers.

これに対し双方向伝送方式は一方向伝送方式を
光フアイバも含めて2組使用し、光フアイバの両
端部でそれぞれ送信及び受信を行ない得るように
したものであり両局間の光信号伝送に適してい
る。いずれの場合も送信モジユールや受信モジユ
ール内のドライバ回路やレシーバ回路を例えばデ
イスクリート素子で構成している場合、形状的に
大きくなる。さらにいずれの場合も組立工数が多
くなると共に金属の外囲器リセプタクルを使用す
るためコスト高になる問題点がある。
On the other hand, the bidirectional transmission system uses two sets of unidirectional transmission systems, including optical fibers, so that each end of the optical fiber can transmit and receive signals, and is used to transmit optical signals between both stations. Are suitable. In either case, if the driver circuit or receiver circuit in the transmitting module or the receiving module is composed of, for example, discrete elements, the size becomes large. Furthermore, in either case, there are problems in that the number of assembly steps increases and the cost increases because a metal envelope receptacle is used.

これらの問題点を補い、かつ低価格化を実現す
る構造としてドライバ回路やレシーバ回路を発光
素子や受光素子と一体化、または別途にIC化
し、リードフレーム上に固定し、先ず透明プラス
チツクでモールドを行ない、更にこの透明プラス
チツクモールドされた送信側モジユールや受信側
モジユールの発光素子や受光素子に対設する部分
に光コネクタとの嵌合部を備えた光不透過性プラ
スチツクモールド体に装着する構造が知られてい
る。
In order to compensate for these problems and realize a low cost structure, the driver circuit and receiver circuit are integrated with the light emitting element and light receiving element, or are made into separate ICs, fixed on a lead frame, and first molded with transparent plastic. Furthermore, the transparent plastic molded transmitter module and the receiver module have a structure for attaching them to a light-opaque plastic molded body, which has a fitting part with an optical connector on the part opposite to the light emitting element and the light receiving element. Are known.

次に双方向光モジユール装置にこの構造を使用
した一例を第1図乃至第3図により説明する。
Next, an example of using this structure in a bidirectional optical module device will be explained with reference to FIGS. 1 to 3.

即ち双方向光モジユール装置1は、送信側の凹
部2及び受信側の凹部3が穿設された光不透過性
プラスチツクモールド体4内に、第1図において
破線で示す送信光モジユール5と受信光モジユー
ル6が設けられている。これらモジユール5,6
からはリード線7,8が別途に設けられている。
このうち、たとえば受信光モジユール6は第3図
に示すようにリード線8のうち、リード線8
はPDやAPDからなる受光素子9、リード線8
にはレシーバ回路IC10がそれぞれ載置固定さ
れ、所定の配線が行なわれたのち、透明プラスチ
ツクモールドされる。送信光モジユール5の構造
は発光素子とドライバ回路ICを使用する以外同
様な構造である。
That is, the bidirectional optical module device 1 includes a transmitting optical module 5 and a receiving light module, which are shown by broken lines in FIG. A module 6 is provided. These modules 5, 6
Lead wires 7 and 8 are separately provided from the.
Among these, for example, in the receiving optical module 6, as shown in FIG .
Receiver circuit ICs 10 are mounted and fixed on the substrates, predetermined wiring is performed, and then transparent plastic molding is performed. The structure of the transmitting optical module 5 is similar except that a light emitting element and a driver circuit IC are used.

然るにこのような構造の双方向光モジユール装
置には次のような問題点がある。
However, the bidirectional optical module device having such a structure has the following problems.

第1に送信光モジユール5及び受信光モジユー
ル6が共に透明プラスチツクモールドされている
ため信頼性特に耐湿性が悪く、例えばプレツシヤ
クツカテスト(121℃ 2atm)では数時間で故障
してしまう。
First, since the transmitting optical module 5 and the receiving optical module 6 are both molded with transparent plastic, reliability, especially moisture resistance, is poor, and for example, in a pressure test (121° C., 2 atm), the module breaks down in a few hours.

第2の光フアイバと発光、受光素子は効率よく
光結合するために光軸が精密に一致している必要
があるが、発光、受光素子はリード線上にマウン
トされているためリード線のそりや微少な変形に
より光軸ずれを起し易い。
The optical axes of the second optical fiber and the light-emitting and light-receiving elements need to be precisely aligned in order to achieve efficient optical coupling, but since the light-emitting and light-receiving elements are mounted on the lead wires, warping of the lead wires may occur. Optical axis misalignment is likely to occur due to minute deformation.

第3に双方向モジユール装置といつても送信光
モジユールと受信光モジユールのひとつのリセプ
タクルに入れただけであるので大きさはそんなに
小形化できず、組立て工数、端子数も多いしまた
送、受信別々の光モジユールを一つのリセプタク
ルに入れ、これに一体物で出来た2芯光コネクタ
と光結合させる場合、送受信用の光モジユールそ
れぞれの寸法公差およびクリアランスが光軸ずれ
を引きおこし光結合効果が悪くなる。
Thirdly, since the bidirectional module device is just a transmitting optical module and a receiving optical module placed in one receptacle, the size cannot be made much smaller, and the number of assembly steps and terminals is large, and the transmitting and receiving optical modules are not very compact. When putting separate optical modules into one receptacle and optically coupling them to a two-core optical connector made of one piece, the dimensional tolerances and clearances of each optical module for transmitting and receiving can cause optical axis misalignment, resulting in poor optical coupling effect. Deteriorate.

第4に光モジユールが数10Mb/sと高速にな
つてくると配線間の浮遊容量の影響が大きくな
り、特にレシーバIC入出力の電気的結合により
発振してしまうため配線の周囲を接地電位の導体
で覆う必要があるが、リード線のみでは不可能で
ある。第5にリード線のみでは同一平面上での配
線しかできなく、また変形しやすいためバイパス
コンデンサを組込むことができないため電源電圧
の微少変動がレシーバICに影響し誤動作する恐
れがあつた。
Fourth, as optical modules become faster at speeds of several tens of Mb/s, the influence of stray capacitance between wires increases, and in particular, electrical coupling between receiver IC inputs and outputs causes oscillation, so it is necessary to keep the surroundings of the wires at ground potential. It is necessary to cover it with a conductor, but this is not possible with only lead wires. Fifth, lead wires can only be wired on the same plane, and because they are easily deformed, it is impossible to incorporate bypass capacitors, so there is a risk that minute fluctuations in the power supply voltage will affect the receiver IC and cause it to malfunction.

〔発明の目的〕[Purpose of the invention]

本発明は前記従来の諸問題点に鑑みなされたも
のであり、小形、高信頼性、低価額であり、また
高速の光通信も可能である双方向光モジユール及
びその装置を提供することを目的としている。
The present invention was made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide a bidirectional optical module and its device that are small, highly reliable, low cost, and capable of high-speed optical communication. It is said that

〔発明の概要〕[Summary of the invention]

本発明は、それぞれ所定の配線を有するセラミ
ツク板からなる多層配線基板と、この多層配線基
板上に設けられ互に光学的に分離されると共に、
気密封止し得る受信モジユール室及び送信モジユ
ール室と、この受信モジユール室に少なくともマ
ウントされた受光素子及び送信モジユール室に少
なくともマウントされた発光素子と受光素子及び
発光素子に対向する面を少なくとも透明部材とし
た上ぶたを具備し、また送信モジユール室に少く
ともドライバ回路、受信モジユール室に少くとも
レシーバ回路が組込まれ電気的には相互配線さ
れ、またこの相互配線の電圧供給端子とアース端
子を共通にすることにより小形にし、双方向モジ
ユール装置としては、上述の構造を有する双方向
光モジユールの外側にプラスチツクモールドによ
るか、またはリセプタクルへの接着より光コネク
タとの嵌合部を備えたことを特徴としている。
The present invention provides a multilayer wiring board made of ceramic plates each having predetermined wiring, and a multilayer wiring board provided on the multilayer wiring board and optically separated from each other.
A receiving module chamber and a transmitting module chamber that can be hermetically sealed, a light receiving element mounted at least in the receiving module chamber, a light emitting element mounted at least in the transmitting module chamber, a surface facing the light receiving element and the light emitting element being at least made of a transparent member. In addition, at least a driver circuit is incorporated in the transmitting module chamber, and at least a receiver circuit is incorporated in the receiving module chamber, electrically interconnected, and the voltage supply terminal and ground terminal of these interconnections are common. The bidirectional module device is characterized by having a fitting part with an optical connector on the outside of the bidirectional optical module having the above-mentioned structure, either by plastic molding or by gluing it to a receptacle. It is said that

〔発明の実施例〕[Embodiments of the invention]

次に双方向光モジユールの実施例を第4図乃至
第8図、双方向光モジユール装置の実施例を第9
図により説明する。
Next, examples of the bidirectional optical module are shown in FIGS. 4 to 8, and examples of the bidirectional optical module device are shown in FIGS.
This will be explained using figures.

最初に双方向光モジユールの第1の実施例を第
4図により説明する。
First, a first embodiment of the bidirectional optical module will be described with reference to FIG.

即ち、それぞれ所定の配線を施したセラミツク
グリーンシートからなる配線基板17,18,1
9及びドーナツ状のセラミツクグリーンシートか
らなるスペーサ20を重ね、所定の熱処理を行な
つた多層配線基板上にスペーサ用のドーナツツ状
セラミツクグリーンシート20及びコバールなど
のウエルドリング21及びシエル22により光学
的に分離されると共に、それぞれ気密封止し得る
送信モジユール室16と受信モジユール室16
を設ける。この様な構造にすることにより双方
向光モジユールでは送・受信光モジユールの各々
に供給する電源端子Vccと接地端子GNDとを共通
にするため、また光伝送モジユールでは数
10Mb/sという高速信号かつ数100nAという微
弱信号電流を扱うので3層程度の多層配線が要求
されることから基板は多層配線基板が最適である
からである。
That is, wiring boards 17, 18, 1 made of ceramic green sheets each having a predetermined wiring are provided.
9 and a spacer 20 made of a donut-shaped ceramic green sheet are layered, and a donut-shaped ceramic green sheet 20 for the spacer, a weld ring 21 such as Kovar, and a shell 22 are used to optically coat the multilayer wiring board which has been subjected to a predetermined heat treatment. A transmitting module chamber 16 1 and a receiving module chamber 16 which can be separated and hermetically sealed, respectively.
2 will be provided. By adopting such a structure, in the case of a bidirectional optical module, the power supply terminal Vcc and the ground terminal GND, which are supplied to each of the transmitting and receiving optical modules, are made common, and in the case of an optical transmission module, the
This is because a multilayer wiring board of about three layers is required as it handles a high speed signal of 10 Mb/s and a weak signal current of several 100 nA, so a multilayer wiring board is optimal for the board.

本案の多層配線基板に2室を設けた構造にすれ
ば容易に、送信モジユール室16には発光素子
24、ドライバIC25ばかりでなく、バイパス
コンデンサ26、発光素子24に流す電流を制御
する抵抗25が装着されて送信光モジユール3
0Aを構成し得るし、受信モジユール室16
は受光素子27、レシーバIC28ばかりでな
く、バイパスコンデンサ29が装着され受信光モ
ジユール30Bを構成され得る。すなわち、ここ
でウエルドリング21とスペーサ20とは、ろう
付けされておりシエル22はウエルドリング21
にシーム溶接され、シエル22にはガラスなどか
らなる窓部23が設けてありこの窓部23を介し
て光フアイバと光結合を可能にしている。送信モ
ジユール室16及び受信モジユール室16
充分な空間を取ることができるので、電源Vccと
接地間に必要なバイパスコンデンサ26や発光素
子24に流す電流を制御する抵抗25を容易に
装置できる。
If the multilayer wiring board of the present invention has a structure in which two chambers are provided, the transmission module chamber 161 not only contains the light emitting element 24 and the driver IC 25, but also the bypass capacitor 26 and the resistor 25 that controls the current flowing through the light emitting element 24. 1 is installed and transmitting optical module 3
0A, and the receiving module chamber 162 may be equipped with not only the light receiving element 27 and the receiver IC 28 but also a bypass capacitor 29 to form a receiving optical module 30B. That is, here, the weld ring 21 and the spacer 20 are brazed, and the shell 22 is attached to the weld ring 21.
The shell 22 is seam welded, and the shell 22 is provided with a window 23 made of glass or the like, which enables optical coupling with an optical fiber. Since the transmitting module chamber 16 1 and the receiving module chamber 16 2 can take up sufficient space, it is easy to install the bypass capacitor 26 required between the power supply Vcc and ground and the resistor 25 1 that controls the current flowing to the light emitting element 24. can.

このような構造にすることにより外囲器に有機
物が用いられてなくセラミツク、金属、ガラスの
気密シールになつているため、耐高低温性、耐湿
性は従来の第1図乃至第3図に示すものよりも格
段に向上されておりプレツシヤクツカテスト1000
時間経過後も何の異常も起らなかつた。この双方
向光モジユールは第9図に示すように2芯光コネ
クタとかん合した際、光フアイバと光結合する穴
部が穿設されたたとえば光不透過性プラスチツク
モールド体からなるリセクタクル54内に破線で
示すような位置挿入固定されて、双方向光モジユ
ール装置を形成する。
With this structure, organic matter is not used in the envelope, and the envelope is made of ceramic, metal, and glass, making it an airtight seal, so its high-temperature resistance and moisture resistance are better than the conventional figures 1 to 3. Much improved than what is shown in the Pressure Test 1000
No abnormalities occurred even after the passage of time. As shown in FIG. 9, when this bidirectional optical module is mated with a two-core optical connector, it is inserted into a resector 54 made of, for example, a light-opaque plastic molded body, which has a hole for optically coupling the optical fiber. The position is inserted and fixed as shown by the dashed lines to form a bidirectional optical module device.

この場合、発光、受光素子がマウントされてい
る基板面と、光クネクタの嵌合方向は直角であ
り、通常光コネクタは横方向から着脱されるため
双方向光モジユールにリードフレーム31と基板
面が平行なフラツトパツケージを使用すれば良
い。
In this case, the board surface on which the light-emitting and light-receiving elements are mounted and the direction in which the optical connector is fitted are perpendicular to each other, and since the optical connector is normally connected and removed from the side, the lead frame 31 and the board surface are connected to the bidirectional optical module. A parallel flat package can be used.

一般に気密封止する技術としてはメタルヘツダ
にメタルシエルを溶接したキヤン構造のものが多
い。しかしこのキヤン構造のものは多層配線、
送、受信光モジユール間の光絶縁、フラツトパツ
ケージの点を考慮すると採用しがたい危険性があ
る。しかし本実施例によれば極めて小形かつ高信
頼性の双方向光モジユールが得られる。また送、
受信光モジユールが一枚の基板上に精度よくマウ
ントされているため光フアイバとの光軸ずれが小
さい。更に例えば電源端子、接地端子を共通にさ
せた場合には、バイパスコンデンサを内蔵させる
ことにより従来8本のリード線が必要であつたも
のが第9図を見てもわかるように4本でまに合う
ため実装上またシステムの回路設計上非常に有利
である。
In general, many airtight sealing techniques involve a can structure in which a metal shell is welded to a metal header. However, this can structure has multilayer wiring,
Considering the optical insulation between the transmitting and receiving optical modules and the flat package, there is a risk that it is difficult to adopt this method. However, according to this embodiment, an extremely small and highly reliable bidirectional optical module can be obtained. Also sent,
Since the receiving optical module is precisely mounted on a single board, the optical axis misalignment with the optical fiber is small. Furthermore, for example, if the power supply terminal and ground terminal are made common, by incorporating a bypass capacitor, the conventional 8 lead wires required can be reduced to 4 as shown in Figure 9. This is very advantageous in terms of implementation and system circuit design.

次に第5図により本発明の双方向光モジユール
の第2の実施例を説明する。図中第4図と同一符
号は同一部分を示し、特に説明しない。
Next, a second embodiment of the bidirectional optical module of the present invention will be described with reference to FIG. In the figure, the same reference numerals as in FIG. 4 indicate the same parts, and no particular explanation will be given.

即ち、本実施例はスペーサを除いたものであり
配線基板19上に直接ウエルドリング21をろう
付けし、シエル22を溶接した例である。
That is, this embodiment is an example in which the spacer is removed, and the weld ring 21 is brazed directly onto the wiring board 19, and the shell 22 is welded.

次に第6図により本発明の双方向光モジユール
の第3の実施例を説明する。図中第1の実施例と
同一符号は同一部分を示し、特に説明しない。
Next, a third embodiment of the bidirectional optical module of the present invention will be described with reference to FIG. In the figure, the same reference numerals as those in the first embodiment indicate the same parts, and no particular explanation will be given.

即ち本実施例においてはウエルドリングも除き
配線基板19上のメタライズ層にシエル22をろ
う付けした例である。
That is, in this embodiment, the shell 22 is brazed to the metallized layer on the wiring board 19, excluding the weld ring.

次に本発明の双方向光モジユールの第4の実施
例を第7図により説明する。図中第1の実施例と
同一符号は同一部分を示し特に説明しない。
Next, a fourth embodiment of the bidirectional optical module of the present invention will be described with reference to FIG. In the drawings, the same reference numerals as in the first embodiment indicate the same parts and will not be particularly described.

即ち本実施例では一枚のシエル32に2つの窓
部33,33を設け、ウエルドリング41に
溶接した例であり、これはウエルドリング41な
しに配線基板19上のメタライズ層に直接ろう付
けしてもよい。
That is, in this embodiment, two windows 33 1 and 33 2 are provided in one shell 32 and welded to the weld ring 41. You may attach it.

次に第8図により本発明の双方向光モジユール
の第5の実施例を第8図により説明する。図中第
1の実施例と同一符号は同一部分を示し特に説明
しない。
Next, a fifth embodiment of the bidirectional optical module of the present invention will be described with reference to FIG. 8. In the drawings, the same reference numerals as in the first embodiment indicate the same parts and will not be particularly described.

即ち、本実施例ではスペーサ用セラミツク40
に直接ガラスからなる窓部43,43をフリ
ツトシールまたはろう付けした例であり、窓部4
,43は一枚にしてもよい。
That is, in this embodiment, the spacer ceramic 40
This is an example in which window portions 43 1 and 43 2 made of glass are frit-sealed or brazed directly to the window portion 4 .
3 1 and 43 2 may be one piece.

前述した第2乃至第5の実施例ではリード線は
図示していないが、第1の実施例と同様である。
Although the lead wires are not shown in the second to fifth embodiments described above, they are similar to the first embodiment.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明の双方向光モジユール及び
その装置によれば受信モジユールと送信モジユー
ルとを多層配線基板上に光学的に分離させるよう
に無機部材を使用して気密封止されているので、
第1に気密性が優れている。第2に発光、受光素
子相互間の位置ぎめが正確である。第3に小形で
あり、第4に多層配線基板を使用するのでこの多
層配線により数10Mb/sの高速光信号の受・送
信ができる効果があり、その工業的価値は極めて
大大である。
As described above, according to the bidirectional optical module and its device of the present invention, the receiving module and the transmitting module are hermetically sealed using an inorganic material so as to be optically separated on the multilayer wiring board.
First, it has excellent airtightness. Second, the mutual positioning of the light emitting and light receiving elements is accurate. Thirdly, it is small in size, and fourthly, since it uses a multilayer wiring board, it has the effect of being able to receive and transmit high-speed optical signals of several tens of Mb/s using this multilayer wiring, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来の双方向光モジユール
装置の一例を示す図であり、第1図は平面図、第
2図は第1図をA−A線に沿つて切断して見た断
面図、第3図は送信光モジユールの説明図、第4
図は本発明の双方向光モジユールの第1の実施例
を示す断面図、第5図は本発明の双方向光モジユ
ールの第2の実施例を示す断面図、第6図は本発
明の光モジユールの第3の実施例を示す断面図、
第7図は本発明の光モジユールの第4の実施例を
示す断面図、第8図は本発明の光モジユールの第
5の実施例を示す断面図、第9図は第4図乃至第
8図の光モジユールを装着する光モジユール装置
の一例を示す平面図である。 5,30A……送信光モジユール、6,30B
……受信光モジユール、9,27……受光素子、
17,18,19……配線基板、20,40……
スペーサ、21,41……ウエルドリング、2
2,32……シエル、23,33,32,4
,43……窓部、24……発光素子。
Figures 1 to 3 are diagrams showing an example of a conventional bidirectional optical module device, where Figure 1 is a plan view and Figure 2 is a view of Figure 1 cut along line A-A. Cross-sectional view, Figure 3 is an explanatory diagram of the transmitting optical module, Figure 4
FIG. 5 is a sectional view showing a second embodiment of the bidirectional optical module of the present invention. FIG. 6 is a sectional view of the bidirectional optical module of the present invention. A sectional view showing a third embodiment of the module,
FIG. 7 is a cross-sectional view showing a fourth embodiment of the optical module of the present invention, FIG. 8 is a cross-sectional view showing a fifth embodiment of the optical module of the present invention, and FIG. FIG. 2 is a plan view showing an example of an optical module device to which the optical module shown in the figure is attached. 5,30A...Transmission optical module, 6,30B
...Receiving optical module, 9, 27... Light receiving element,
17, 18, 19... wiring board, 20, 40...
Spacer, 21, 41...weld ring, 2
2, 32...Ciel, 23, 33 1 , 32 2 , 4
3 1 , 43 2 ... window section, 24 ... light emitting element.

Claims (1)

【特許請求の範囲】 1 それぞれ所定の配線を有するセラミツク板か
らなる多層配線基板と、これら多層配線基板上に
設けられ、互に光学的に分離されると共に気密封
止し得る受信モジユール室及び送信モジユール室
と、前記受信モジユール室に少なくともマウント
された受光素子、及び前記送信モジユール室に少
なくともマウントされた発光素子と、前記受光素
子及び発光素子に対向する面を少なくとも透明部
材とした上ぶたとを具備することを特徴とする双
方向光モジユール。 2 受信モジユール室にはバイパスコンデンサが
組み込まれていることを特徴とする特許請求の範
囲第1項記載の双方向光モジユール。 3 送信モジユール室に少なくともドライバ回路
が組込まれ、受信モジユール室に少なくともレシ
ーバ回路が組込まれ、電気的には相互配線されて
いることを特徴とする特許請求の範囲第1項記載
の双方向光モジユール。 4 相互配線の電圧供給端子とアース端子を共通
にしたことを特徴とする特許請求の範囲第3項記
載の双方向光モジユール。 5 それぞれ所定の配線を有するセラミツク板か
らなる多層配線基板と、前記多層配線基板上に設
けられ、互に光学的に分離されると共にそれぞれ
気密封止し得る受信モジユール室及び送信モジユ
ール室と、前記受信モジユール室に少なくともマ
ウントされた受光素子、及び前記送信モジユール
室に少なくともマウントされた発光素子と、前記
受光素子及び発光素子に対向する面を少なくとも
透明部材とした上ぶたとを具備する双方向光モジ
ユールの外側にプラスチツクモールドによるか、
またはリセプタクルへの接着により光コネクタと
の嵌合部を備えたことを特徴とする双方向光モジ
ユール装置。
[Scope of Claims] 1. A multilayer wiring board made of a ceramic board each having a predetermined wiring, and a receiving module chamber and a transmitting module provided on the multilayer wiring board and which can be optically separated from each other and hermetically sealed. A module chamber, a light-receiving element mounted at least in the receiving module chamber, a light-emitting element mounted at least in the transmitting module chamber, and an upper lid whose surface facing the light-receiving element and the light-emitting element is at least a transparent member. A bidirectional optical module comprising: 2. The bidirectional optical module according to claim 1, wherein a bypass capacitor is incorporated in the receiving module chamber. 3. The bidirectional optical module according to claim 1, wherein at least a driver circuit is built into the transmission module chamber, at least a receiver circuit is built into the reception module chamber, and the two are electrically interconnected. . 4. The bidirectional optical module according to claim 3, characterized in that the voltage supply terminal and the ground terminal of the mutual wiring are common. 5. A multilayer wiring board made of a ceramic board each having a predetermined wiring, a receiving module chamber and a transmitting module chamber provided on the multilayer wiring board and capable of being optically separated from each other and hermetically sealed, respectively; A bidirectional light comprising at least a light receiving element mounted in a receiving module chamber, at least a light emitting element mounted in the transmitting module chamber, and an upper lid whose surface facing the light receiving element and the light emitting element is at least a transparent member. By plastic molding on the outside of the module,
Alternatively, a bidirectional optical module device characterized by having a fitting part with an optical connector by adhering to a receptacle.
JP57124424A 1982-07-19 1982-07-19 Bidirectional optical module and device thereof Granted JPS5916389A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57124424A JPS5916389A (en) 1982-07-19 1982-07-19 Bidirectional optical module and device thereof
EP83106974A EP0101872B1 (en) 1982-07-19 1983-07-15 Duplex optical communication module device
DE8383106974T DE3381070D1 (en) 1982-07-19 1983-07-15 SEND RECEIVER MODULE FOR OPTICAL MESSAGE TRANSMISSION.
US06/514,250 US4695858A (en) 1982-07-19 1983-07-15 Duplex optical communication module unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124424A JPS5916389A (en) 1982-07-19 1982-07-19 Bidirectional optical module and device thereof

Publications (2)

Publication Number Publication Date
JPS5916389A JPS5916389A (en) 1984-01-27
JPS6259914B2 true JPS6259914B2 (en) 1987-12-14

Family

ID=14885136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124424A Granted JPS5916389A (en) 1982-07-19 1982-07-19 Bidirectional optical module and device thereof

Country Status (1)

Country Link
JP (1) JPS5916389A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252996A (en) * 1985-08-30 1987-03-07 株式会社ピーエフユー Part mounting pad for printed circuit board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975081A (en) * 1972-11-22 1974-07-19
JPS5374368A (en) * 1976-12-15 1978-07-01 Hitachi Ltd Package for semiconductor device
JPS5425797A (en) * 1977-07-28 1979-02-26 Laurel Bank Machine Co Device of discriminating paper money* etc* in counter of paper money* etc*
JPS5429653B2 (en) * 1971-08-31 1979-09-25
JPS561576A (en) * 1979-06-19 1981-01-09 Fujitsu Ltd Light semiconductor device
JPS5748707A (en) * 1980-07-07 1982-03-20 Yokogawa Hewlett Packard Ltd Cable connector
JPS57106157A (en) * 1980-12-24 1982-07-01 Toshiba Corp Integrated circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129461U (en) * 1975-04-07 1976-10-19
JPS5429653U (en) * 1977-07-29 1979-02-27
JPS56163348U (en) * 1980-05-06 1981-12-04

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429653B2 (en) * 1971-08-31 1979-09-25
JPS4975081A (en) * 1972-11-22 1974-07-19
JPS5374368A (en) * 1976-12-15 1978-07-01 Hitachi Ltd Package for semiconductor device
JPS5425797A (en) * 1977-07-28 1979-02-26 Laurel Bank Machine Co Device of discriminating paper money* etc* in counter of paper money* etc*
JPS561576A (en) * 1979-06-19 1981-01-09 Fujitsu Ltd Light semiconductor device
JPS5748707A (en) * 1980-07-07 1982-03-20 Yokogawa Hewlett Packard Ltd Cable connector
JPS57106157A (en) * 1980-12-24 1982-07-01 Toshiba Corp Integrated circuit

Also Published As

Publication number Publication date
JPS5916389A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
US7629537B2 (en) Single layer flex circuit
US7275937B2 (en) Optoelectronic module with components mounted on a flexible circuit
US8693879B2 (en) Discrete bootstrapping in an optical receiver to prevent signal feedback
JP3896951B2 (en) Transmitter / receiver module for optical communication
EP0492349B1 (en) Camera head for solid-state image pickup device and method of producing same
US7290942B2 (en) Optical transceiver modules
TWI509303B (en) Opto-electronic transceiver module system and method of operation of an opto-electronic module system
US7306377B2 (en) Integrated optical sub-assembly having epoxy chip package
US7245794B2 (en) Surface mount module
JPH05335617A (en) Optical transmission module
CN108957649B (en) Double-receiving double-transmitting box type sealing packaging optical device with parallel light structure
JP2002261265A (en) Optical communication device
US4997252A (en) Optical fiber communication connection device
US4695858A (en) Duplex optical communication module unit
US7654753B2 (en) Optical subassembly for an electro-optical assembly
JP2019186380A (en) Optical module
CN110601767A (en) Transmit-receive integrated optical module, device and system
US6841799B2 (en) Optoelectronic package
JPS6259914B2 (en)
JPS6059788A (en) Semiconductor device for optical communication
US5109455A (en) Optic interface hybrid
JP4803925B2 (en) Light emitting module and light receiving module
JP2006030813A (en) Optical fiber module
CN105093432A (en) Optical transmission module
JP2009151053A (en) Light receiving module