JPS6259592A - Production of compound semiconductor crystal - Google Patents

Production of compound semiconductor crystal

Info

Publication number
JPS6259592A
JPS6259592A JP20023485A JP20023485A JPS6259592A JP S6259592 A JPS6259592 A JP S6259592A JP 20023485 A JP20023485 A JP 20023485A JP 20023485 A JP20023485 A JP 20023485A JP S6259592 A JPS6259592 A JP S6259592A
Authority
JP
Japan
Prior art keywords
crucible
sealed tube
compound semiconductor
melt
volatile material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20023485A
Other languages
Japanese (ja)
Other versions
JPH0253395B2 (en
Inventor
Hitoshi Habuka
等 羽深
Takehiko Futaki
剛彦 二木
Shoichi Koike
小池 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP20023485A priority Critical patent/JPS6259592A/en
Publication of JPS6259592A publication Critical patent/JPS6259592A/en
Publication of JPH0253395B2 publication Critical patent/JPH0253395B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce a compound semiconductor, by placing crucible on an intermediate stepped part in the from of curved surface of a cylindrical sealed tube having the lower part constricted by the above-mentioned stepped part and heating the crucible to generate a large temperature gradient in a melt in the crucible. CONSTITUTION:A vertical furnace having a high-temperature furnace 1 in the upper part separated from a low-temperature furnace 2 in the lower part is used and a cylindrical sealed tube 3 is inserted thereinto. The sealed tube 3 is has the lower part constricted from the upper part by an intermediate stepped part 10 in the form of a curved surface. A more volatile material (B) is contained in the bottom of the sealed tube 3 and a crucible 4 containing a more slightly volatile material (A) is placed on the stepped part 10. The vapor of the more volatile material (B) fills the interior of the sealed tube 3 to react with the more slightly volatile material (A) and form a compound semiconductor. Since there is a temperature difference between the upper and lower parts in the melt, the semiconductor diffues and moves downward and deposits as crystals 5 in the bottom. Since the shapes of the crucible bottom and the stepped part 10 are almost the same, the heat of the crucible bottom is transmitted to the sealed tube wall by conduction between solids and efficiently released to the outside air. Thereby, the aimed compound semiconductor is efficiently produced.

Description

【発明の詳細な説明】 捉果上立板1分更 本発明は、化合物半導体結晶を溶液中で温度勾配を利用
して成長させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing compound semiconductor crystals in a solution using a temperature gradient.

葺】6針皮貨−ζ(Δ肌皿嘉 化合物半導体結晶の製造方法としては、高温部を上方に
低温部を下方にもつ縦型管状加熱炉内に全体が一定直径
の封管を挿入し、封管底のより気化し易い材料からの蒸
気と、封管上部のルツボ内に入れたより気化し難い材料
の融液とを反応させ。
The method for manufacturing compound semiconductor crystals is to insert a sealed tube with a constant diameter into a vertical tubular heating furnace with a high-temperature section at the top and a low-temperature section at the bottom. , the vapor from the more easily vaporized material at the bottom of the sealed tube reacts with the melt of the more difficult to vaporize material placed in the crucible at the top of the sealed tube.

融液中の温度勾配によって結晶として析出させる方法が
従来から行われている。たとえば第3図に示すように、
上下に設けた高温炉1と低温炉2の中に封管を挿入する
と、封管底のB成分(より気化し易い成分)が気化し、
上部のルツボ4内のA成分(より気化し難い成分)が溶
融し、融液表面で生成した化合物半導体ABは、ルツボ
底に単結晶5となって析出するものである(特公昭48
−20106号公報参照)。
Conventionally, a method has been used in which crystals are precipitated by a temperature gradient in the melt. For example, as shown in Figure 3,
When a sealed tube is inserted into the high-temperature furnace 1 and low-temperature furnace 2 provided above and below, the B component (component that vaporizes more easily) at the bottom of the sealed tube vaporizes.
The A component (component that is more difficult to vaporize) in the upper crucible 4 is melted, and the compound semiconductor AB produced on the surface of the melt is precipitated as a single crystal 5 at the bottom of the crucible (Japanese Patent Publication No. 1973).
-Refer to Publication No. 20106).

しかしながらこの場合、ルツボ底面と封管壁の間に存在
する空間のため底からの熱放散が悪く、また輻射される
熱も封管外にはほとんど放散されず、専ら封管下部を温
めるのみなので、ルツボ底の温度降下は少なく、20に
/1程度の温度勾配しか得られないという不利がある。
However, in this case, heat dissipation from the bottom is poor due to the space existing between the bottom of the crucible and the wall of the sealed tube, and the radiated heat is hardly dissipated outside the sealed tube and only warms the bottom of the sealed tube. However, there is a disadvantage that the temperature drop at the bottom of the crucible is small and a temperature gradient of only about 20/1 can be obtained.

また第4図に示すように、ルツボ底面よりの放熱をよく
するために、熱伝導率の高いカーボン等よりなる底形成
部材6および同じく熱伝導率の高いシリコンよりなる放
熱体7をルツボ4の底にあて、放熱を良くし温度勾配を
大きくする方法が行われている(実公昭59−3171
1号公報参照)。
In addition, as shown in FIG. 4, in order to improve heat dissipation from the bottom of the crucible, a bottom forming member 6 made of carbon or the like having high thermal conductivity and a heat dissipating body 7 made of silicon, which also has high thermal conductivity, are attached to the crucible 4. A method is used to improve heat dissipation and increase the temperature gradient by placing it on the bottom (Utility Model Publication No. 59-3171).
(See Publication No. 1).

しかしこの場合は、カーボンおよびシリコンが不純物と
して化合物半導体中に混入し、結晶の純度を下げ電気特
性を劣化させるおそれがある。
However, in this case, carbon and silicon may enter the compound semiconductor as impurities, lowering the purity of the crystal and deteriorating the electrical characteristics.

また第5図に示すように、温度勾配設定専用ヒーター8
を設け、50に、7cmにおよぶ温度勾配を得る方法も
行われたが(特公昭59−38199号公報参照)、装
置が複雑で高価なものとなり実用上問題がある。
In addition, as shown in Fig. 5, a heater 8 dedicated to temperature gradient setting is provided.
A method of obtaining a temperature gradient of as much as 7 cm was also carried out (see Japanese Patent Publication No. 59-38199), but this method resulted in a complicated and expensive apparatus and was problematic in practice.

さらに第6図に示すように、高温炉1と低温炉2を接し
て設け、挿入した封管内部に載置したルツボ4の下部か
ら低温炉に向はステンレス製筒9を挿通し、ルツボ内の
温度勾配を大きくしようとした例もあるが(Journ
al of Crystal Growth、52(1
981)、679〜683参照)、温度勾配は10〜1
5 K/の程度にしかならないので、結晶製造の効率化
に対し充分な効果は期待し得ない。
Furthermore, as shown in FIG. 6, a high temperature furnace 1 and a low temperature furnace 2 are placed in contact with each other, and a stainless steel tube 9 is inserted into the low temperature furnace from the lower part of the crucible 4 placed inside the inserted sealed tube. There are examples of attempts to increase the temperature gradient of the Jour
al of Crystal Growth, 52 (1
981), 679-683), the temperature gradient is 10-1
Since it is only about 5 K/, a sufficient effect on increasing the efficiency of crystal production cannot be expected.

皿亙博を  するための 本発明者は、上記従来技術の問題点を解消するため研究
を重ねた結果、ルツボ内の融液に大きな温度勾配を発生
させ、効率よく化合物半導体結晶を製造することに成功
し、本発明にいたったものである。すなわち本発明は、
上方を高温部下方を低温部としてこれを離間させた縦型
管状加熱炉に、中間の曲面状段差部によって下部が縮小
した円筒状封管を挿入し、該管底に化合物半導体のより
気化し易い原料を収納し、該段差部により気化し難い原
料を入れたルツボを載置することを特徴とする化合物半
導体結晶の製造方法である。
As a result of repeated research in order to solve the problems of the above-mentioned conventional technology, the inventor of the present invention has developed a method for efficiently manufacturing compound semiconductor crystals by generating a large temperature gradient in the melt in the crucible. This was successful and led to the present invention. That is, the present invention
A cylindrical sealed tube with a lower part reduced by a curved step in the middle is inserted into a vertical tubular heating furnace with a high temperature at the top and a low temperature section at the bottom. This is a method for manufacturing a compound semiconductor crystal, which is characterized in that a crucible containing a raw material that is easy to vaporize is placed therein, and a crucible containing a raw material that is difficult to vaporize is placed on the stepped portion.

以下に本発明の方法を図面に示す装置によってさらに詳
しく説明する。
The method of the invention will be explained in more detail below with reference to the apparatus shown in the drawings.

第1図は本発明を実施する装置の一例であって。FIG. 1 shows an example of an apparatus for implementing the present invention.

高温炉1を上方に、低温炉2を下方にしてこれを離間さ
せた縦型管状加熱炉を使用し、この中に円筒状封管3を
挿入した装置である。前記封管は上部が下部より直径が
大きく中間段差部10は曲面状である。封管底により気
化し易い材料を収納し、段差部に、より気化し難い材料
を入れたルツボ4を載置する。気化し易い材料の蒸気が
封管内に充満し、溶融した気化し難い材料と反応し化合
物半導体を生成する。融液内には上下の間に温度差があ
るため半導体は拡散し、下に移動し、底に結晶5となっ
て析出するにのときルツボ底と段差部の形状がほぼ同形
であるため、固体間の伝導によってルツボ底の熱は封管
壁へ伝わり、効率よく外気中へ放散される。封管上部の
直径が下部の2倍とすると、ルツボ底の75%が段差部
に接触放熱される。またルツボ底からの熱輻射も、下部
の直径が小さいため75%が封管壁をとおして外へ放熱
される。しかも高温炉1と低温炉2は離間し外気11と
連絡しているため、段差部およびこれに続く封管下部は
外気により冷却し易い、このとき送風機等を使えば段差
部付近を一層有効に冷却することができる。この結果ル
ツボ内の融液に大きな温度勾配を生じ、効率よく化合物
半導体結晶を製造できるうえ、ルツボの封管に対する安
定がよいので操作し易いという利点が与えられる。
This apparatus uses a vertical tubular heating furnace in which a high temperature furnace 1 is placed above and a low temperature furnace 2 is placed below, separated from each other, and a cylindrical sealed tube 3 is inserted into the furnace. The upper part of the sealed tube has a larger diameter than the lower part, and the intermediate step part 10 has a curved shape. A material that is easily vaporized is stored in the bottom of the sealed tube, and a crucible 4 containing a material that is more difficult to vaporize is placed on the stepped portion. The vapor of the easily vaporized material fills the sealed tube and reacts with the molten material that is difficult to vaporize, producing a compound semiconductor. Because there is a temperature difference between the top and bottom in the melt, the semiconductor diffuses, moves downward, and precipitates as crystals 5 at the bottom, since the shapes of the crucible bottom and the step are almost the same. Through conduction between solids, the heat at the bottom of the crucible is transferred to the wall of the sealed tube, where it is efficiently dissipated into the outside air. If the diameter of the upper part of the sealed tube is twice that of the lower part, 75% of the bottom of the crucible will contact the stepped portion and radiate heat. Also, 75% of the heat radiation from the bottom of the crucible is radiated outside through the sealed tube wall because the diameter of the bottom is small. Moreover, since the high-temperature furnace 1 and the low-temperature furnace 2 are separated and communicated with the outside air 11, the step part and the lower part of the sealed tube that follows it can be easily cooled by the outside air.In this case, if a blower or the like is used, the area around the step part can be more effectively cooled. Can be cooled. As a result, a large temperature gradient is generated in the melt in the crucible, and compound semiconductor crystals can be efficiently produced, and the crucible is stable against the sealed tube, giving the advantage of ease of operation.

この場合、化合物半導体がルツボ底に析出するためには
、気化し易い材料の蒸気圧を化合物半導体の分解圧より
高く選ばねばならぬことはもちろんである。
In this case, in order for the compound semiconductor to precipitate at the bottom of the crucible, it goes without saying that the vapor pressure of the easily vaporized material must be selected to be higher than the decomposition pressure of the compound semiconductor.

封管の材料として石英ガラスを使えば材料の封入を溶接
により容易に行なうことができるが、このほかに窒化ホ
ウ素、ステンレス鋼、アルミナあるいはその池のセラミ
ックスを封管材料とすることもできる。
If quartz glass is used as the material for the sealed tube, the material can be easily sealed by welding, but boron nitride, stainless steel, alumina, or ceramics thereof can also be used as the material for the sealed tube.

本発明は上記したように融液内の温度勾配を大きくする
効果があるので、化合物半導体の溶液成長法以外にも融
液成長法たとえば縦型ブリッジマン法、水平ブリッジマ
ン法等にも利用できるほか気相成長法、同相成長法にも
使用できる。
As described above, the present invention has the effect of increasing the temperature gradient in the melt, so it can be used not only for compound semiconductor solution growth methods but also for melt growth methods such as vertical Bridgman method, horizontal Bridgman method, etc. It can also be used for vapor phase growth and in-phase growth.

11銖 第1図に示す装置で、石英ガラス製封管の段差部にIn
を入れたルツボを載置し、直径の小さな封管下部底にP
を収納して縦型管状加熱炉に挿入し、Inを溶融しPを
気化させた。Pの蒸気はIn融液表面でInと反応して
InPを生成し、融液内の温度差によってルツボ底に移
動し結晶となって析出した。このときの条件、成果を次
表に示す。
11. Using the device shown in Figure 1, injects In into the step part of the quartz glass sealed tube.
Place the crucible containing P on the bottom bottom of the small diameter sealed tube.
was housed and inserted into a vertical tubular heating furnace to melt In and vaporize P. P vapor reacted with In on the surface of the In melt to generate InP, which moved to the bottom of the crucible due to the temperature difference within the melt and precipitated as crystals. The conditions and results at this time are shown in the table below.

この場合、結晶成長時に発生する潜熱が効率よく除かれ
るため、不必要な核発生が抑制され結晶成長面が安定し
、第2図に示すように長く大きな結晶の集合を得ること
ができた。上の表には同じ材料を使い従来法によってI
nPを生成した比較例の結果も同時に示すが1本発明の
すぐれていることは明白である。
In this case, since the latent heat generated during crystal growth was efficiently removed, unnecessary nucleation was suppressed and the crystal growth surface was stabilized, making it possible to obtain a collection of long and large crystals as shown in FIG. The table above shows I by the conventional method using the same materials.
The results of a comparative example in which nP was produced are also shown, and it is clear that the present invention is superior.

この方法はInPの他、GaP、GaAs、InAsな
どの化合物半導体結晶の製造にも適用可能である。
This method is applicable to the production of compound semiconductor crystals such as GaP, GaAs, and InAs in addition to InP.

m日[1 本発明は、ルツボを封管の段差部に載置することにより
、融液底部よりルツボ底面、封管段差部を通って熱を外
方へ伝え、しかも高温炉、低温炉が離間しているためこ
の熱を効率よく外気に排出することができる。またルツ
ボ底面より下方に輻射された熱も、封管壁より外部に放
散されて、封管下部の温度を上昇させることも少なく、
これによりルツボ内融液に充分な温度勾配をっくり一1
純度の高い化合物半導体結晶を効率よく製造することが
できる。しかも炉の構造は従来と変りなく。
m days [1] By placing the crucible on the stepped portion of the sealed tube, the present invention transmits heat from the bottom of the melt to the outside through the bottom of the crucible and the stepped portion of the sealed tube. Because they are spaced apart, this heat can be efficiently discharged to the outside air. In addition, the heat radiated downward from the bottom of the crucible is dissipated to the outside through the sealed tube wall, and the temperature at the bottom of the sealed tube is less likely to rise.
This creates a sufficient temperature gradient for the melt inside the crucible.
A highly pure compound semiconductor crystal can be efficiently produced. Moreover, the structure of the furnace remains unchanged.

封管の形状を工夫するのみで、きわめて実現容易であり
、産業上有用な発明である。
This is an industrially useful invention that is extremely easy to implement just by devising the shape of the sealed tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の説明図を、第2図は本
発明によって得られた結晶の外観を、第3図、第4図、
第5図、第6図は従来の方法を実施する装置の説明図を
示す。 1、・・・高温炉、 2・・・低温炉、 3・・・封管
。 4・・・ルツボ、 5・・・結晶、 6・・・底形成部
材、7・・・放熱体、 8・・・温度勾配設定専用ヒー
ター、9・・・ステンレス製筒、  10・・・段差部
、 11・・・外気、A・・・より気化し難い原料、 B・・・より気化し易い原料。 ニ==ヨ;コニ===ヨヨ至=コ 手続補正帯動式) 昭和60年12月4日 1、事件の表示 昭和60年特許願第200234号 2、発明の名称 化合物半導体結晶の製造方法 3、補正をする者 事件との関係 特許出願人 名称 信越半導体株式会社 4、代理人 住所〒103東京都中央区日本橋本町4丁目9番地発送
日:昭和60年11月26日 6、補正の対象 図面 7、補正の内容
FIG. 1 is an explanatory diagram of the apparatus for carrying out the present invention, FIG. 2 is the appearance of the crystal obtained by the present invention, FIGS. 3, 4,
FIGS. 5 and 6 show explanatory diagrams of an apparatus for carrying out the conventional method. 1. High-temperature furnace, 2. Low-temperature furnace, 3. Sealed tube. 4... Crucible, 5... Crystal, 6... Bottom forming member, 7... Heat sink, 8... Heater for temperature gradient setting, 9... Stainless steel tube, 10... Step Part 11: Outside air, A: Raw material that is more difficult to vaporize, B: Raw material that is easier to vaporize. December 4, 1985 1. Display of the incident 1985 Patent Application No. 200234 2. Name of the invention Method for manufacturing compound semiconductor crystals 3. Relationship with the case of the person making the amendment Patent applicant name: Shin-Etsu Semiconductor Co., Ltd. 4. Agent address: 4-9 Nihonbashi Honmachi, Chuo-ku, Tokyo 103 Date of dispatch: November 26, 1985 6. Subject of amendment Drawing 7, contents of correction

Claims (1)

【特許請求の範囲】 1)上方を高温部下方を低温部としてこれを離間させた
縦型管状加熱炉に、中間の曲面状段差部によって下部が
縮小した円筒状封管を挿入し、該管底に化合物半導体の
より気化し易い原料を収納し、該段差部により気化し難
い原料を入れたルツボを載置することを特徴とする化合
物半導体結晶の製造方法。 2)該段差部の曲面とルツボの底面がほぼ同形である特
許請求の範囲第1項記載の方法。 3)前記離間させた部分が外気と連絡している特許請求
の範囲第1項記載の方法。
[Scope of Claims] 1) A cylindrical sealed tube with a lower part reduced by a curved stepped portion in the middle is inserted into a vertical tubular heating furnace in which the upper part is a hotter part and the lower part is a colder part, which are separated from each other. 1. A method for manufacturing a compound semiconductor crystal, comprising storing a compound semiconductor raw material that is more easily vaporized at the bottom, and placing a crucible containing a less easily vaporized raw material at the stepped portion. 2) The method according to claim 1, wherein the curved surface of the stepped portion and the bottom surface of the crucible have substantially the same shape. 3) The method of claim 1, wherein the spaced apart portions are in communication with outside air.
JP20023485A 1985-09-10 1985-09-10 Production of compound semiconductor crystal Granted JPS6259592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20023485A JPS6259592A (en) 1985-09-10 1985-09-10 Production of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20023485A JPS6259592A (en) 1985-09-10 1985-09-10 Production of compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JPS6259592A true JPS6259592A (en) 1987-03-16
JPH0253395B2 JPH0253395B2 (en) 1990-11-16

Family

ID=16421038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20023485A Granted JPS6259592A (en) 1985-09-10 1985-09-10 Production of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS6259592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168332B2 (en) 2009-10-23 2015-10-27 Asahi Kasei Medical Co., Ltd. Hemodialysis apparatus, method of operating hemodialysis apparatus, and water content removal system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168332B2 (en) 2009-10-23 2015-10-27 Asahi Kasei Medical Co., Ltd. Hemodialysis apparatus, method of operating hemodialysis apparatus, and water content removal system

Also Published As

Publication number Publication date
JPH0253395B2 (en) 1990-11-16

Similar Documents

Publication Publication Date Title
EP1226291B1 (en) Growth of bulk single crystals of aluminum
JP5005651B2 (en) Method and apparatus for growing semiconductor crystals with rigid support with carbon doping, resistivity control, temperature gradient control
JPS5954697A (en) Manufacture of silicon carbide single crystal
JP2001102316A5 (en)
US3222217A (en) Method for producing highly pure rodshaped semiconductor crystals and apparatus
EP0186213B1 (en) Method for synthesizing compound semiconductor polycrystals and apparatus therefor
JPS6259592A (en) Production of compound semiconductor crystal
JPH06298600A (en) Method of growing sic single crystal
JP4836377B2 (en) Growth of aluminum nitride bulk single crystals from melts.
CN107687023A (en) The fixing device and fixing means of seed crystal or substrate in aluminum-nitride single crystal growth
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JPH0234592A (en) Growing method for compound semiconductor single crystal
US3395985A (en) Method for producing highly pure, particularly silicon-free aiiibv compounds
JPS5931711Y2 (en) Compound semiconductor solution growth equipment
KR100502467B1 (en) GaN single crystal and its manufacturing method and its growing apparatus
JP2662020B2 (en) Single crystal growth method of compound semiconductor by vertical board method
JP2706272B2 (en) Compound semiconductor single crystal growth method
JPS623408Y2 (en)
JPS6395192A (en) Apparatus for producing compound semiconductor crystal
JPH0449185Y2 (en)
JPS61227983A (en) Preparation of ga-as single crystal
JPH0940498A (en) Apparatus for producing gallium phosphate polycrystal
JPH02311393A (en) Method for growing crystal of epitaxial layer on seed crystal
JPS627693A (en) Device for growing compound semiconductor single crystal
JPH0517289A (en) Method and apparatus for producing compound semiconductor