JPS6259535A - Production of quartz glass and apparatus therefor - Google Patents

Production of quartz glass and apparatus therefor

Info

Publication number
JPS6259535A
JPS6259535A JP19576485A JP19576485A JPS6259535A JP S6259535 A JPS6259535 A JP S6259535A JP 19576485 A JP19576485 A JP 19576485A JP 19576485 A JP19576485 A JP 19576485A JP S6259535 A JPS6259535 A JP S6259535A
Authority
JP
Japan
Prior art keywords
pressure
additive
glass
gas
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19576485A
Other languages
Japanese (ja)
Other versions
JPH0667765B2 (en
Inventor
Shoichi Sudo
昭一 須藤
Toshito Hosaka
保坂 敏人
Fumiaki Hanawa
文明 塙
Yasuji Omori
保治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19576485A priority Critical patent/JPH0667765B2/en
Publication of JPS6259535A publication Critical patent/JPS6259535A/en
Publication of JPH0667765B2 publication Critical patent/JPH0667765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/24Doped silica-based glasses doped with non-metals other than boron or fluorine doped with nitrogen, e.g. silicon oxy-nitride glasses

Abstract

PURPOSE:To produce a quartz glass containing a proper amount of additive, easily, preventing the contamination with impurities, by exposing a porous glass in an atmosphere containing an additive at high temperature under high pressure thereby vitrifying the porous glass to transparent glass. CONSTITUTION:A porous glass material 5 having a bulk density of 0.1-1.5g/cm<3> is put into a closed vessel 4 placed at a position enclosed with the heater 3 of an electric furnace 1 packed with a heat-insulation material 2. A gas containing an additive such as F, N, Ne, Ar, etc., and an atmospheric gas are introduced into the furnace 1 and the vessel 4 through the pressure-regulators 7, 10 and the gas inlet pipes 6, 8 and the gases are discharged from the leak valves 11, 12 to keep the pressure in the vessel 4 and the furnace 1 to 1-8atm. The heater 3 is electrified and heated at 1,500-1,600 deg.C to sinter the porous glass 5 to transparent glass.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、石英ガラスの製造方法およびその製造装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing quartz glass and an apparatus for manufacturing the same.

〔発明の技術的背景〕[Technical background of the invention]

F 、 N s Ne−、八rSXe1Kr 、Nds
 Yb5Euなどの元素を含む石英ガラスの製造方法と
しては、従来、下記のような方法が知られていた。
F, Ns Ne-, 8rSXe1Kr, Nds
As a method for manufacturing silica glass containing elements such as Yb5Eu, the following method has been known.

(1)  5iCI4などのガラス形成用原料化合物を
火炎加水分解などによって作製した多孔質ガラス体を常
圧(1気圧)下で該元素を含む気体ガスに曝しながら、
焼結、透明ガラス化する方法(いわゆる「気相添加法」
)。
(1) While exposing a porous glass body prepared by flame hydrolysis or the like from a raw material compound for forming glass such as 5iCI4 to a gas containing the element under normal pressure (1 atm),
Sintering and transparent vitrification method (so-called "vapor phase addition method")
).

(2)火炎加水分解などによって作製した多孔質ガラス
体中に、該元素を含む液体を含浸させたのち、焼結、透
明ガラス化する方法(いわゆる「液浸法」)。
(2) A method in which a porous glass body prepared by flame hydrolysis or the like is impregnated with a liquid containing the element, and then sintered to form transparent glass (so-called "liquid immersion method").

(3)該添加元素を含む原料ガスを供給して多孔質ガラ
ス体を形成し、焼結、透明ガラス化する方法。
(3) A method of supplying a raw material gas containing the additive element to form a porous glass body, and sintering it to make it transparent vitrification.

しかしながら、」−律の方法はいずれも前記元素を1気
圧または1気圧以下で加熱焼結している六;め、該元素
の添加9を充分大きくできず、また茅気圧の高い元素は
添加できないという欠点があった。たとえばフッ素を添
加した石英ガラスを気相添加法で製造する場合、1気圧
の圧力下で多孔質ガラス体をフッ素を含む雰囲気ガスに
曝し、1500〜1600’Cに加熱焼結すると、比屈
折率差ΔnにしてΔn =−0,7%程度のフッ素添加
石英ガラスは得られるが、Δnが一1%以上の石英ガラ
スをえることは極めて困tl!であった。
However, in all of the above-mentioned methods, the element is heated and sintered at 1 atm or below 1 atm, so the addition of the element cannot be made sufficiently large, and elements with high pressure cannot be added. There was a drawback. For example, when manufacturing fluorine-doped quartz glass using the vapor phase addition method, the porous glass body is exposed to an atmospheric gas containing fluorine under a pressure of 1 atm, and when heated and sintered at 1500 to 1600'C, the relative refractive index Fluorine-doped silica glass with a difference Δn of Δn = -0.7% can be obtained, but it is extremely difficult to obtain quartz glass with a Δn of 11% or more! Met.

〔発明の概要〕[Summary of the invention]

本発明は」二連の点に鑑みなされたものであり、す、F
 、 N 、 Ne、 Ar、Xe5Kvs Nd 、
Yb、Euなどの元素を適当量含有さゼ・ることのでき
る石英ガラスの製造方法およびその方法を実施するため
の製造装置を提供することを目的とする。
The present invention has been made in view of two points.
, N, Ne, Ar, Xe5K vs Nd,
The object of the present invention is to provide a method for manufacturing quartz glass that can contain appropriate amounts of elements such as Yb and Eu, and a manufacturing apparatus for carrying out the method.

したがって、本発明による石英ガラスの製造方法は、多
孔質ガラス体を電気炉内で高温に加熱・焼結し透明ガラ
ス化する石英ガラスの製造方法において、前記焼結・透
明ガラス化は、1気圧を超える添加剤含有雰囲気ガス中
で行うことを特徴とするものである。
Therefore, the method for producing quartz glass according to the present invention is a method for producing quartz glass in which a porous glass body is heated to high temperature and sintered in an electric furnace to become transparent vitrified, and the sintering and transparent vitrification are performed at 1 atm. The method is characterized in that it is carried out in an atmospheric gas containing additives exceeding .

また本発明による石英ガラスの製造装置は、電気炉内に
設けられ、かつ多孔質ガラス体をその内部に設置可能な
密閉容器と、この密閉容器を加熱するための発熱体と、
前記電気炉内と密閉容器内の圧力をほぼ等しくなるよう
に調整でき、かつ前記容器内の添加物含有雰囲気ガスを
1気圧を超えた圧力に加圧可能な圧力調整装置とを有す
ることを特徴とするものである。
Further, the quartz glass manufacturing apparatus according to the present invention includes: a closed container that is provided in an electric furnace and in which a porous glass body can be installed; a heating element for heating the closed container;
It is characterized by having a pressure adjustment device that can adjust the pressures in the electric furnace and the closed container to be almost equal, and can pressurize the additive-containing atmospheric gas in the container to a pressure exceeding 1 atmosphere. That is.

本発明による石英ガラスの製造方法によれば、多孔質ガ
ラスを高温高圧下において添加剤を含む雰囲気ガスに曝
すので、所定量の添加剤を容易に添加可能であるという
利点がある。
According to the method for manufacturing quartz glass according to the present invention, porous glass is exposed to an atmospheric gas containing additives at high temperature and pressure, so there is an advantage that a predetermined amount of additives can be easily added.

また本発明による石英ガラスの製造装置によれば、1気
圧を超える添加剤雰囲気ガスの状態を達成でき、簡便に
、かつ良好に前記添加剤を添加した石英ガラスを製造で
きるとい・う利点がある。
Further, according to the quartz glass manufacturing apparatus according to the present invention, it is possible to achieve an additive atmosphere gas state of over 1 atm, and there is an advantage that quartz glass to which the additive is added can be easily and satisfactorily manufactured. .

〔発明の詳細な説明〕[Detailed description of the invention]

本発明による石英ガラスの製造方法によれ:ぼ、まず、
多孔質ガラス体を用意する。
According to the method for producing quartz glass according to the present invention: First,
Prepare a porous glass body.

このような多孔質ガラス体の製造方法は、本発明におい
て限定されるものではなく、従来の多孔質ガラス体を製
造する方法を有効に用いることができる9たとえばガラ
ス形成用原料化合物を火炎加水分解あるいは単に加水分
解くゾル・ゲル法など)して製造した炙孔質石英ガラス
であることができる。
The method for producing such a porous glass body is not limited in the present invention, and conventional methods for producing a porous glass body can be effectively used. Alternatively, it may be a porous quartz glass produced simply by hydrolysis (sol-gel method, etc.).

次ぎにこのような多孔質ガラス体を、1気圧を超える添
加剤台を雰囲気ガス中に、高温下において曝して、前記
多孔質ガラスを焼結、透明ガラス化する。
Next, such a porous glass body is exposed to an atmospheric gas with an additive pressure exceeding 1 atm at high temperature to sinter the porous glass and turn it into transparent vitrification.

一般に火炎加水分解あるいは単なる加水分解になどの方
法によって合成した多孔質ガラス体を添加剤を含む雰囲
気ガス中に曝しながら、焼結透明ガラス化して該添加剤
をガラス中に混入するメカニズム(気相添加法)は、次
のようなものであると考えられている。
In general, a porous glass body synthesized by flame hydrolysis or simple hydrolysis is exposed to an atmospheric gas containing additives, and the additives are mixed into the glass by sintering into transparent glass (vapor phase). Addition method) is considered to be as follows.

すなわち、炉内で添加剤を含む雰囲気ガス中に曝された
多孔質ガラス体は、炉内温度が上昇するにつれ、収縮し
、透明なガラス体になるが、この過程はつぎ04つの工
程に分けられる(文献、S。
That is, a porous glass body exposed to an atmospheric gas containing additives in a furnace shrinks and becomes a transparent glass body as the temperature inside the furnace rises, and this process can be divided into the following four steps. (Reference, S.

5UDOH他’ Sir+tering proces
s or porous prel’orlIls n
+ade by VAD method for op
tical fiber fabrication  
 ″ Trams、IECE  Japan、シo1.
E63.No、10.P、7(1)  多孔質ガラス体
の収縮、 (2)開孔状態、 (3)閉孔状態、 (4)閉孔の収縮。
5UDOH and others' Sir+tering processes
s or porous prel'orlIls n
+ade by VAD method for op
tical fiber fabrication
” Trams, IECE Japan, Si o1.
E63. No, 10. P, 7 (1) Shrinkage of porous glass body, (2) Open pore state, (3) Closed pore state, (4) Shrinkage of closed pores.

このような過程において、(1,1、(2)の段階では
、添加剤を含んだ雰囲気ガスは多孔質ガラス体の空隙を
自由に移動しうるが、多孔質ガラス体がさらに収縮して
(3)の閉孔状態になると雰囲気ガスはガス体中の閉孔
内に閉じ込められることになる。さらに、温度が上昇し
て該閉孔が収縮する段階で閉孔内の添加剤はガラス体中
へ溶解することとなる6′Jたがって、ガラス体中へ溶
解あるいは混入する添加剤の量は閉孔内に閉j:/込め
られる雰囲気ガス中の添加剤の量に依存することになる
In this process, at stages (1, 1, and (2)), the atmospheric gas containing the additive can freely move through the voids of the porous glass body, but the porous glass body further contracts ( When the closed pore state of 3) is reached, the atmospheric gas is confined within the closed pores in the gas body.Furthermore, when the temperature rises and the closed pores contract, the additives in the closed pores are released into the glass body. Therefore, the amount of the additive dissolved or mixed into the glass body depends on the amount of the additive in the atmospheric gas filled into the closed pores.

従来、上記気相添加は、1気圧の圧力下で行われていた
ため、閉孔中に閉じ込められる添加剤の雇は制限され、
したがって最終的に得られるガラス体中の添加剤濃度を
高くすることは困難であった。
Conventionally, the above gas phase addition was carried out under a pressure of 1 atmosphere, which limited the amount of additive trapped in the closed pores.
Therefore, it has been difficult to increase the additive concentration in the finally obtained glass body.

本発明は、前述のような従来技術の問題点を解決するた
め、多孔質ガラス体を高温下において、1気圧を超える
添加剤含有ガス雰囲気中?こ曝し、焼結・透明ガラス化
するものであり、この結果、閉孔内に閉じ込められる添
加剤を所望の量とすることができるとともに、最終的に
得られるガラス体の添加剤の量を増加できるものである
In order to solve the problems of the prior art as described above, the present invention aims to provide a porous glass body at high temperature in an additive-containing gas atmosphere exceeding 1 atm. As a result, the amount of additives trapped in the closed pores can be adjusted to the desired amount, and the amount of additives in the final glass body can be increased. It is possible.

本発明によって多孔質ガラス体に添加される添加剤とし
ては、たとえば前述のF 、、N 、 Ne、 Ar−
Examples of additives added to the porous glass body according to the present invention include the above-mentioned F,, N, Ne, Ar-
.

Xe、Kr、Nd、Yb、Euなどの元素を例として挙
げることができる。前述の添加剤は、単体あるいは高温
中で分解し、単体を生じるような化合物の形で雰囲気ガ
スに添加される。
Examples include elements such as Xe, Kr, Nd, Yb, and Eu. The above-mentioned additives are added to the atmospheric gas in the form of simple substances or compounds that decompose at high temperatures to produce simple substances.

この添加剤を含む雰囲気ガスの添加剤量は、たとえば光
学ガラスを製造する場合は1,5〜95%であるのが好
ましい。5%未満であると、多孔質ガラス体に充分に添
加剤を添加できない膚があり、一方95%を超えると、
製造された石英ガラスの光学特性に問題を生じる虞があ
る。
The amount of the additive in the atmospheric gas containing this additive is preferably 1.5 to 95%, for example, when producing optical glass. If it is less than 5%, there are cases where the additive cannot be added sufficiently to the porous glass body, while if it exceeds 95%,
This may cause problems in the optical properties of the manufactured quartz glass.

多孔質ガラス体は、このような添加剤を含む雰囲気ガス
中に高圧下で曝される4〉のであるが、この、ような圧
力は、多孔質ガラス体に添加される添加剤の量、種類、
多孔質ガラス体の嵩密度などにによって変化し、種々選
択可能である。しかしながら、通常圧力は2〜8気圧で
あるのが好ましい。
The porous glass body is exposed to atmospheric gas containing such additives under high pressure (4), but this pressure depends on the amount and type of additives added to the porous glass body. ,
It varies depending on the bulk density of the porous glass body, and various selections are possible. However, it is preferred that the normal pressure is between 2 and 8 atmospheres.

2気圧未満であると一通常の気相添加とあまり変化がな
くなり、8気圧を超えると、光学ガラ゛スの特性損なう
膚を生じる。
If it is less than 2 atm, there will be little difference from normal gas phase addition, and if it exceeds 8 atm, the properties of the optical glass will deteriorate.

また、前記多孔質ガラスの嵩密度は、好ましくは0.1
〜1.5 g /era3であるのがよい。前記嵩密度
が小さい程、基本的に添加剤量は多くなるが、嵩密度が
0.1 g 7cm3を超えると、多孔質ガラスの形状
を保持するのが困難になる。また、1.5g/cm3を
超えると、前記多孔質ガラス体中への添加剤の添加が極
めて困難になるからである。
Further, the bulk density of the porous glass is preferably 0.1
It is preferable that it is ~1.5 g/era3. Basically, the smaller the bulk density, the greater the amount of additive, but if the bulk density exceeds 0.1 g 7 cm3, it becomes difficult to maintain the shape of the porous glass. Moreover, if it exceeds 1.5 g/cm3, it becomes extremely difficult to add the additive into the porous glass body.

次ぎに本発明の石英ガラスの製造装置について説明する
Next, the quartz glass manufacturing apparatus of the present invention will be explained.

第1図は本発明による石英ガラスの製造装置の一実施例
の断面図であり、図中、1は炉体、2は断熱材、3は発
熱体、4は石英ガラス製などの密閉容器、5は多孔質ガ
ラス体、6は添加物ガス導入管、7は添加物ガス圧力調
整器、8.9は雰囲気ガス導入管、10は雰囲気ガス圧
力調整器、1).12はリークパルプである。
FIG. 1 is a sectional view of an embodiment of a quartz glass manufacturing apparatus according to the present invention, in which 1 is a furnace body, 2 is a heat insulating material, 3 is a heating element, 4 is a closed container made of quartz glass, etc. 5 is a porous glass body, 6 is an additive gas introduction pipe, 7 is an additive gas pressure regulator, 8.9 is an atmospheric gas introduction pipe, 10 is an atmospheric gas pressure regulator, 1). 12 is leak pulp.

この第1図より明らかなように、本発明による石英ガラ
スの製造装置においては、密閉された炉体1内に断熱材
2が備えられており、炉体1内の温度が一定に保持され
るようになっている。そして前記断熱材2の内側には、
この炉体1内を加熱するための発熱体3が設けられてお
り、この発熱体3に囲まれた位置に密閉容器4が設置さ
れている。この密閉容器4は、その内部に多孔質ガラス
体5が設置可能になっている。さらに、前記炉体1の上
部には添加物(あるいは添加物を含む化合物)を密閉容
器4内に供給するための添加物ガス導入管6が設けられ
、前記添加物ガス導入管6は添加物ガス圧力稠整器7を
介し、前記密閉容器4内に添加剤ガスを導入可能になっ
ている。このガス導入管6は雰囲気ガス導入管8と連通
しており、この雰囲気ガス導入管8はガス導入管9を介
して雰囲気ガス調整器10に接続している。このため前
記密閉容器4内に雰囲気ガスと添加剤ガスの混合ガス、
すなわち添加剤含有ガスを導入可能になる。さらに、ガ
ス導入管9は密閉容器4の周囲の炉体1内部にも連通し
ているため、前記炉体1と密閉容器4はほぼ等しい圧力
になる。
As is clear from FIG. 1, in the quartz glass manufacturing apparatus according to the present invention, a heat insulating material 2 is provided in a sealed furnace body 1, and the temperature inside the furnace body 1 is maintained constant. It looks like this. And inside the insulation material 2,
A heating element 3 for heating the inside of the furnace body 1 is provided, and a closed container 4 is installed at a position surrounded by the heating element 3. This airtight container 4 can have a porous glass body 5 installed therein. Furthermore, an additive gas introduction pipe 6 is provided in the upper part of the furnace body 1 for supplying additives (or compounds containing additives) into the closed container 4. Additive gas can be introduced into the closed container 4 through a gas pressure regulator 7. This gas introduction pipe 6 communicates with an atmospheric gas introduction pipe 8, and this atmospheric gas introduction pipe 8 is connected to an atmospheric gas regulator 10 via a gas introduction pipe 9. For this reason, a mixed gas of atmospheric gas and additive gas,
That is, it becomes possible to introduce an additive-containing gas. Furthermore, since the gas introduction pipe 9 also communicates with the interior of the furnace body 1 around the closed container 4, the pressures in the furnace body 1 and the closed container 4 are approximately equal.

さらに炉体1の下部および密閉容器4の下部にはそれぞ
れ、リークバルブ1)および12が備えられている。
Furthermore, leak valves 1) and 12 are provided at the bottom of the furnace body 1 and the bottom of the closed container 4, respectively.

前記添加剤ガス圧力調整器7および雰囲気ガス圧力調整
器10は前記密閉管4および炉体1内に導入する添加剤
ガスおよび雰囲気ガスの9および混合比などを制御し、
前記密閉容器4内および炉体1内の圧力を調整可能にな
っている。また、この圧力の制御の微調整は前記リーク
パルプ1)および12によって行われる。
The additive gas pressure regulator 7 and the atmospheric gas pressure regulator 10 control the additive gas and atmospheric gas 9 introduced into the sealed tube 4 and the furnace body 1, the mixing ratio, etc.
The pressure inside the closed container 4 and the furnace body 1 can be adjusted. Further, fine adjustment of this pressure control is performed by the leak pulps 1) and 12.

このような本発明による石英ガラスの製造装置によれば
、まず、密閉容器4内に、たとえばVAD法で製造した
多孔質ガラス体5を設置し、該炉体1内および該密閉容
器4内に、たとえば)Ieガス、およびSF6ガスを、
それぞれ圧力調整器10.7によって圧力を調整しなが
ら導入する。この際、密閉容器4内および炉体1内の圧
力は、リークバルブ12および1)によってガスを排出
するもとにより微調整される。また、密閉容器4と炉体
1内の圧力は、ガス導入管8によって連通しているので
、つねに等しい圧力になっている。
According to the quartz glass manufacturing apparatus according to the present invention, first, the porous glass body 5 manufactured by, for example, the VAD method is placed in the closed container 4, and the porous glass body 5 is placed inside the furnace body 1 and the closed container 4. , for example) Ie gas, and SF6 gas,
They are introduced while adjusting the pressure using a pressure regulator 10.7. At this time, the pressure within the closed container 4 and the furnace body 1 is finely adjusted by discharging the gas using the leak valves 12 and 1). Moreover, the pressures in the closed container 4 and the furnace body 1 are always equal because they are communicated through the gas introduction pipe 8.

このような状態において、この密閉容器4の廻りに設け
られた発熱体3に電力を供給し、1500〜1600℃
に加熱して、前記多孔質ガス体5を焼結・透明ガラス化
するものである。
In this state, power is supplied to the heating element 3 provided around the sealed container 4, and the temperature is increased to 1500 to 1600°C.
The porous gas body 5 is heated to sinter and become transparent vitrified.

実施例1 第1図に示す製造装置を用いて、石英ガラスを製造した
Example 1 Silica glass was manufactured using the manufacturing apparatus shown in FIG.

lieガスを圧力調整器10によって、2.0 Kg/
c+Jの圧力に調整し、ガス導入管8および9より炉体
1内および密閉容器4内にそれぞれ、前記lieガスを
導入した。またSF6ガスを圧力調整器7によって、2
.1 Kg/−の圧力に調整し、ガス導入管6より密閉
容器4内に導入した。多孔質ガラス体5としてはVAD
法によって製造したSi02ガラスのみよりなる多孔質
ガラス体5 (嵩密度0.2 g /cra3)を使用
した。
ie gas to 2.0 Kg/
The pressure was adjusted to c+J, and the lie gas was introduced into the furnace body 1 and the closed container 4 through the gas introduction pipes 8 and 9, respectively. In addition, SF6 gas is supplied by pressure regulator 7 to
.. The pressure was adjusted to 1 Kg/-, and the gas was introduced into the closed container 4 through the gas introduction pipe 6. VAD as the porous glass body 5
A porous glass body 5 made only of Si02 glass (bulk density 0.2 g/cra3) manufactured by the method was used.

そこで、発熱体3に電力を供給し、毎時100℃の割合
で昇温し、前記多孔質ガラス体5を圧力2゜0Kg/c
tAのHe−SF6混合ガス(組成比; He ニー2
5%、SFeニア5%)雰囲気下で焼結・透明ガラス下
した。
Therefore, power is supplied to the heating element 3 to raise the temperature at a rate of 100°C per hour, and the porous glass body 5 is heated to a pressure of 2°0 Kg/c.
tA of He-SF6 mixed gas (composition ratio; He knee 2
5%, SFe near 5%) atmosphere and placed under transparent glass.

このようにして製造された透明ガラス体の屈折率n1を
純粋なSi02ガラスの屈折率noとの比で測定した結
果、比屈折率差(Δn=n1/n。
As a result of measuring the ratio of the refractive index n1 of the transparent glass body manufactured in this manner to the refractive index no of pure Si02 glass, the relative refractive index difference (Δn=n1/n) was obtained.

−1)は−1,0%であった。また、上記条件において
、混合ガスの圧力を3.0 Kg/cm3としたときは
、Δnは−1,5%となった。しかしながら、上記条件
において、混合ガラスの圧力を1.0Kg/cdとした
ときの透明ガラス体の屈折率はΔn=0.6%であり、
本発明の方法によって良好にFが添加されていることが
確認された。
-1) was -1.0%. Further, under the above conditions, when the pressure of the mixed gas was 3.0 Kg/cm3, Δn was -1.5%. However, under the above conditions, when the pressure of the mixed glass is 1.0 Kg/cd, the refractive index of the transparent glass body is Δn=0.6%,
It was confirmed that F was added satisfactorily by the method of the present invention.

また前述のように作製された本発明による石英ガラスを
クラツド材として用いて光ファイバを製造したところ、
良好な特性の光ファイバが得られた。
Further, when an optical fiber was manufactured using the quartz glass according to the present invention manufactured as described above as a cladding material,
An optical fiber with good characteristics was obtained.

実施例2 前記第1図に示した装置において、雰囲気ガスの添加剤
ガスとしてSF6の変わりにN1)3を使用し、さらに
混合ガス圧力を3.0 Kg/cm3としたとき、Δn
は1.0%となった。さらに、このように製造したN 
ドープガラスをコアガラスとし、SiOtガラスをクラ
フトガラスとして光ファイバを作製した結果、良好な光
伝送特性を示した。
Example 2 In the apparatus shown in FIG. 1, when N1)3 was used instead of SF6 as the additive gas in the atmosphere gas and the mixed gas pressure was set to 3.0 Kg/cm3, Δn
was 1.0%. Furthermore, the N produced in this way
An optical fiber was fabricated using doped glass as the core glass and SiOt glass as the craft glass, and as a result, it showed good optical transmission characteristics.

また、加水分解反応によってゾル・ゲル法で作製した多
孔質ガラス体を使用した場合も同様な結果が期待できる
。この場合F等の添加量は、使用する多孔質ガラス体の
嵩密度に多く依存し、嵩密度が小さい程添加量が多くな
る傾向を示した。
Furthermore, similar results can be expected when using a porous glass body produced by a sol-gel method through a hydrolysis reaction. In this case, the amount of F, etc. added largely depended on the bulk density of the porous glass body used, and the smaller the bulk density, the larger the amount added tended to be.

また、N、Fのほか、Nb、 Euなどのハロゲン化物
を雰囲気ガス中に混合し、実施例1と同様の操作によっ
てNb、 Euなどを含む透明ガラス体が得られた。
Further, in addition to N and F, halides such as Nb and Eu were mixed into the atmospheric gas, and a transparent glass body containing Nb, Eu, etc. was obtained by the same operation as in Example 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による石英ガラスの製造方法
によれは、多孔質ガラスを1気圧を超える圧力下におい
て、添加剤を含む雰囲気ガスに曝し、焼結・透明ガラス
化するので、従来においては微小量しか添加できなかっ
たF、Nなどの添加剤の添加量を高濃度に添加できると
いう利点がある。
As explained above, according to the method for producing quartz glass according to the present invention, porous glass is exposed to an atmospheric gas containing additives under a pressure exceeding 1 atmosphere to sinter and become transparent glass, which is different from conventional methods. There is an advantage that additives such as F and N, which could previously be added only in minute amounts, can be added in high concentrations.

特に、Fなどを高濃度に添加した透明ガラス体の場合、
光フアイバクラッド層として使用すれば、良好な特性の
光ファイバを得られるという利点もある。
In particular, in the case of transparent glass bodies doped with F etc. at high concentrations,
When used as an optical fiber cladding layer, it has the advantage that an optical fiber with good characteristics can be obtained.

さらに本発明による製造装置によれば、前記方法を容易
に、かつ簡便に実施できるばかりでなく、多孔質ガラス
体を、たとえば石英ガラス製の密閉容器内に密閉してい
るため、意図したに不純物の混入を防止できるとともに
、前記石英ガラス製の密閉容器の内外が同圧に保持され
ているため、加熱によって石英ガラスが軟化しても前記
ガラスが変形することがなく、良好に1気圧以上の雰囲
気ガスを導入できるという利点がある。
Further, according to the manufacturing apparatus of the present invention, not only can the above-mentioned method be carried out easily and conveniently, but also the porous glass body is sealed in an airtight container made of quartz glass, for example, so that impurities can be removed as intended. In addition, since the inside and outside of the quartz glass airtight container are maintained at the same pressure, even if the quartz glass softens due to heating, the glass will not deform, and the pressure of 1 atm or more can be prevented. This has the advantage that atmospheric gas can be introduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による石英ガラスの製造装置の一実施例
の断面図である。 ■・・・炉体、2・・・断熱材、3・・・発熱体、4・
・・密閉容器、5・・・多孔質ガラス体、6・・・添加
物ガス導入管、7・・・添加物ガス圧力調整器、8.9
・・・雰囲気ガス導入管、810・・・雰囲気ガス圧力
調整器、1).12・・・リークバルブ。
FIG. 1 is a sectional view of an embodiment of a quartz glass manufacturing apparatus according to the present invention. ■...Furnace body, 2...Insulating material, 3...Heating element, 4...
... Sealed container, 5... Porous glass body, 6... Additive gas introduction pipe, 7... Additive gas pressure regulator, 8.9
...Atmosphere gas introduction pipe, 810...Atmosphere gas pressure regulator, 1). 12...Leak valve.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質ガラス体を電気炉内で高温に加熱・焼結し
透明ガラス化する石英ガラスの製造方法において、前記
焼結・透明ガラス化は、1気圧を超える添加剤含有雰囲
気ガス中で行うことを特徴とする石英ガラスの製造方法
(1) In a method for producing quartz glass in which a porous glass body is heated to high temperature in an electric furnace and sintered to become transparent vitrification, the sintering and transparent vitrification are performed in an additive-containing atmospheric gas exceeding 1 atm. A method for producing quartz glass, characterized in that:
(2)電気炉内に設けられ、かつ多孔質ガラス体をその
内部に設置可能な密閉容器と、この密閉容器を加熱する
ための発熱体と、前記電気炉内と密閉容器内の圧力をほ
ぼ等しくなるように調整でき、かつ前記容器内の添加物
含有雰囲気ガスを1気圧を超えた圧力に加圧可能な圧力
調整装置とを有することを特徴とする石英ガラスの製造
装置。
(2) A closed container that is installed in an electric furnace and in which a porous glass body can be installed, a heating element for heating this closed container, and a pressure generator that approximately maintains the pressure inside the electric furnace and the closed container. 1. A quartz glass manufacturing apparatus, comprising: a pressure adjusting device capable of adjusting the pressure so that the pressures are equal to each other and pressurizing the additive-containing atmospheric gas in the container to a pressure exceeding 1 atmosphere.
JP19576485A 1985-09-06 1985-09-06 Quartz glass manufacturing method and manufacturing apparatus Expired - Lifetime JPH0667765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19576485A JPH0667765B2 (en) 1985-09-06 1985-09-06 Quartz glass manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19576485A JPH0667765B2 (en) 1985-09-06 1985-09-06 Quartz glass manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPS6259535A true JPS6259535A (en) 1987-03-16
JPH0667765B2 JPH0667765B2 (en) 1994-08-31

Family

ID=16346568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19576485A Expired - Lifetime JPH0667765B2 (en) 1985-09-06 1985-09-06 Quartz glass manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0667765B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196021A (en) * 1987-10-06 1989-04-14 Mitsubishi Cable Ind Ltd Production of base material for optical functional element
JPH05345632A (en) * 1992-06-17 1993-12-27 Hitachi Cable Ltd Rare earth metal element-added multi-core fiber and its production
JP2019511985A (en) * 2016-02-12 2019-05-09 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method of manufacturing diffuser material of quartz glass manufactured by synthesis and molded body constituting whole or part thereof
WO2020251798A1 (en) * 2019-06-11 2020-12-17 Corning Incorporated Apparatuses and methods for processing optical fiber preforms

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196021A (en) * 1987-10-06 1989-04-14 Mitsubishi Cable Ind Ltd Production of base material for optical functional element
JP2582592B2 (en) * 1987-10-06 1997-02-19 三菱電線工業株式会社 Method for manufacturing base material for optical functional element
JPH05345632A (en) * 1992-06-17 1993-12-27 Hitachi Cable Ltd Rare earth metal element-added multi-core fiber and its production
JP2019511985A (en) * 2016-02-12 2019-05-09 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method of manufacturing diffuser material of quartz glass manufactured by synthesis and molded body constituting whole or part thereof
WO2020251798A1 (en) * 2019-06-11 2020-12-17 Corning Incorporated Apparatuses and methods for processing optical fiber preforms
US11554981B2 (en) 2019-06-11 2023-01-17 Corning Incorporated Apparatuses and methods for processing optical fiber preforms

Also Published As

Publication number Publication date
JPH0667765B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4323381A (en) Method for producing mother rods for optical fibers
KR950014100B1 (en) Method for consolidating a green body
US4038370A (en) Method of producing high-purity transparent vitreous silica
EP0473104B1 (en) Method for manufacturing a silica glass base material
US4324576A (en) Method for producing optical glass
US5547482A (en) Method of making fused silica articles
JPH07507033A (en) Sol-gel method for producing germania-doped silica glass rods
JPS58145634A (en) Manufacture of doped glassy silica
JPS6259535A (en) Production of quartz glass and apparatus therefor
JPH11314925A (en) Production of silica glass by sol-gel process
SUDO et al. Sintering process of porous preforms made by a VAD method for optical fiber fabrication
JPS60260436A (en) Manufacture of glass base material for optical fiber
JPS599497B2 (en) Optical glass manufacturing method
CA1260712A (en) Method of manufacturing monolithic glass members
JPS6234694B2 (en)
JPS58217441A (en) Manufacture of base material for optical fiber
US20040194511A1 (en) Sol-gel-derived halogen-doped glass
JPS599499B2 (en) Optical glass manufacturing method
JPS6238291B2 (en)
JPH10218627A (en) Production of glass and optical fiber
GB2075003A (en) Method for Producing Optical Glass
JPS6259536A (en) Production of quartz glass and apparatus therefor
JP3787850B2 (en) Silica glass and method for producing the same
JPH0369526A (en) Production of glass base material for optical fiber
JPS6065739A (en) Production of glass for optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term