JPS6259159B2 - - Google Patents

Info

Publication number
JPS6259159B2
JPS6259159B2 JP54160646A JP16064679A JPS6259159B2 JP S6259159 B2 JPS6259159 B2 JP S6259159B2 JP 54160646 A JP54160646 A JP 54160646A JP 16064679 A JP16064679 A JP 16064679A JP S6259159 B2 JPS6259159 B2 JP S6259159B2
Authority
JP
Japan
Prior art keywords
fatty acids
weight
acid
glycol
hydraulic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54160646A
Other languages
Japanese (ja)
Other versions
JPS5682892A (en
Inventor
Yasuyuki Maruyama
Masataro Yagi
Atsushi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP16064679A priority Critical patent/JPS5682892A/en
Publication of JPS5682892A publication Critical patent/JPS5682892A/en
Publication of JPS6259159B2 publication Critical patent/JPS6259159B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐金属摩耗性と消泡性とに極めてすぐ
れた水―グリコール型不燃性作動液(以下「水―
グリコール型作動液」と称す。)に関するもので
ある。 一般に不燃性作動液としてリン酸エステル型、
W/Oエマルシヨン型および水−グリコール型の
三つのタイプが使用されている。これらの中でも
リン酸エステル型作動液は高価であり、しかもシ
ール材の選択が限られるなどの問題がある。また
W/Oエマルシヨン型作動油は安価ではあるが、
エマルシヨンが分離し易い、バクテリアが発生し
易いなどの問題がある。一方水―グリコール型作
動液はそのすぐれた耐燃性と貯蔵安定性、ほとん
どの油圧機器材料との適合性、および比較的安価
であることなどの特徴により最も注目されてい
る。 一般に、水―グリコール型作動液はエチレング
リコール又はプロピレングリコールもしくは両者
の混合物と水とを基材とし、場合によつてはこれ
に粘度調整剤としてさらにエチレンオキサイド―
プロピレンオキサイドコポリマーやポリエチレン
グリコールを添加したものを基材とし、これに摩
耗防止剤(油性剤)、気相防錆剤、金属不活性
剤、(金属イオン封鎖剤)消泡剤、着色剤等を配
合したものから成る。例えば典型的な水―グリコ
ール型作動液の配合例は次のとおりである。 (1) 水 約35−45重量% (2) 上掲のグリコール 約30−45重量% (3) 粘度調整剤 約10−20重量% (4) 摩耗防止剤 約2.5−10重量% (5) 気相防錆剤 約0.1−1.0重量% (6) 金属不活性化剤 約0−0.5重量% (7) 消泡剤 約0.02−1.0重量% (8) 着色剤 約0−0.01重量% 上述したごとき水―グリコール型作動液は、火
災の危険防止の見地から燃えにくいという性質
が、他の諸性能に優先して要求される。例えば金
属を加熱して変形しやすい状態にして圧延した
り、溶融して成形する設備機械の作動液として鉱
油系作動油に代わり用いられている。 しかしながら従来の水―グリコール型作動液は
鉱油系作動油に比較して金属に対する耐摩耗性が
十分でなく、このために高圧力の油圧設備に適用
することができないという欠点がある。 例えば油圧システムに広く使用されているベー
スポンプについて述べると、鉱油系作動油から水
―グリコール型作動液に切換える場合、これまで
の水―グリコール型作動液では液温45℃、圧力
140Kg/cm2の使用条件でポンプ部品のカムリング
の摩耗が著しく、極端なものではわずか数時間ポ
ンプを運転しただけでカムリングが50mg以上摩耗
する。このため、特殊加工を施した高価なポンプ
部品を使用する必要があつた。 本発明者らは上記問題点を解決すべく鋭意検討
した結果、高級不飽和脂肪酸及び高級飽和脂肪
酸、さらには当該脂肪酸の中和当量以上のアルカ
リ金属を摩耗防止剤として水―グリコール型作動
液に一定量以上含有せしめることにより金属に対
する摩耗性も著しく低減すると共に水溶解安定性
が高く、かつ起泡性が少ないと同時に生じた泡の
消え易い実用上好適な水―グリコール型作動液を
提供し得ることを見出し、本発明をなすに至つ
た。すなわち本発明は、高級不飽和脂肪酸として
少くとも0.25重量%及び高級飽和脂肪酸として少
くとも6重量%を含有しかつ当該脂肪酸の中和当
量もしくはそれ以上のアルカリ金属を含有するこ
とを特徴とするものである。 以下本発明を詳しく説明する。 本発明において用いることのできるものは、高
級飽和脂肪酸及び高級不飽和脂肪酸もしくは、こ
れら脂肪酸のアルカリ金属塩であり脂肪酸を用い
る場合は、添加后にアルカリ金属の水酸化物にて
中和する必要がある。この中和は、上記酸に溶解
性を与える目的もあるが特には、酸による金属の
腐食を防止するためであり、水―グリコール型作
動液がアルカリ性を呈する方がよく、特に該作動
液が最終的にPH9〜11を示すように中和すること
が好ましい。 上記高級飽和脂肪酸(もしくは、そのアルカリ
金属塩)としては炭素数が10乃至14のものを一般
に用いることができ、炭素数が10以下では、金属
に対する耐摩耗性の改善効果が低く、又炭素数が
14以上では水溶解安定性が極端に低下し更には起
泡性及び消泡性に問題が生じる。これらの化合物
の具体的なものとしては、カプリン酸、ウンデカ
ン酸、ラウリン酸、トリデカン酸、ミリスチン酸
等及びこれらのカリウム、ナトリウム等の塩等を
用いることができ特にラウリン酸もしくはラウリ
ン酸カリウムが好ましい。又高級不飽和脂肪酸
(もしくはそのアルカリ金属塩)としては、炭素
数が16乃至18のものが一般に好ましく、具体的に
は、ゾーマリン酸、ペトロセンリン酸、オレイン
酸、エライジン酸、バクセン酸、リノール酸、リ
ノエライジン酸、エレオステアリン酸、リノレン
酸、バリナリン酸等及びこれらのカリウム、ナト
リウム等の塩等を用いることができ、特にはオレ
イン酸もしくは、オレイン酸カリウムが好まし
い。 本発明において、高級飽和脂肪酸(もしくは、
そのアルカリ金属塩)と高級不飽和脂肪酸(もし
くは、そのアリカリ金属塩)を併用する根拠は、
高級不飽和脂肪酸単独の使用では作動液の泡立ち
が激しくなり、一方高級飽和脂肪酸単独の使用で
は、水―グリコール型作動液に対する溶解性が低
いが、両者の併用により不飽和脂肪酸の泡立ち性
が低下するとともに飽和脂肪酸の溶解性が上昇
し、しかも金属に対する耐摩耗性も上昇するとい
う知見に基づく。 また本発明は上述のごとく不飽和脂肪酸と飽和
脂肪酸の併用に当り、不飽和脂肪酸として少くと
も0.25重量%ならびに飽和脂肪酸として少くとも
6重量%を水―グリコール型作動液にそれぞれ含
有させることを特徴的事項とするものであるが、
このような含量の規定は次のごとき試験結果に基
づく。 この試験は作動液に対する高級飽和脂肪酸の溶
解度に及ぼす高級不飽和脂肪酸の影響を調査した
ものであり、下記組成の水―グリコール型作動液
の基液に種々の量の高級不飽和脂肪酸を添加して
該基液における高級飽和脂肪酸の溶解量を調べ
た。 基液組成 () 蒸留水 43重量% プロピレングリコール 40.5 〃 エチレンオキサイド―プロピレンオキサイドコ
ポリマー 16.5 〃 基液組成 () 蒸留水 43重量% エチレングリコール 40.5 〃 エチレン―プロピレンコポリマー 16.5 〃 基液組成 () 蒸留水 43重量% エチレングリコール 40.5 〃 ポリエチレングリコール 16.5 〃 溶解性の試験結果を下記表1に示す。
The present invention is a water-glycol type nonflammable hydraulic fluid (hereinafter referred to as "water-glycol") that has excellent metal abrasion resistance and antifoaming properties.
It is called "glycol-type hydraulic fluid." ). Phosphate ester type is generally used as a nonflammable hydraulic fluid.
Three types are used: W/O emulsion type and water-glycol type. Among these, phosphate ester type hydraulic fluids are expensive and have problems such as limited selection of sealing materials. Also, although W/O emulsion type hydraulic oil is cheap,
There are problems such as the emulsion is likely to separate and bacteria are likely to occur. Water-glycol hydraulic fluids, on the other hand, have attracted the most attention due to their excellent flame resistance and storage stability, compatibility with most hydraulic equipment materials, and relatively low cost. In general, water-glycol type hydraulic fluids are based on ethylene glycol or propylene glycol or a mixture of both and water, and in some cases ethylene oxide as a viscosity modifier.
The base material is a propylene oxide copolymer or polyethylene glycol added, and to this is added an anti-wear agent (oil-based agent), a gas-phase rust preventive agent, a metal deactivator, a sequestrant (metal ion sequestering agent), an antifoaming agent, a coloring agent, etc. Consists of a combination of ingredients. For example, a typical water-glycol hydraulic fluid formulation example is as follows. (1) Water approximately 35-45% by weight (2) Glycols listed above approximately 30-45% by weight (3) Viscosity modifier approximately 10-20% by weight (4) Anti-wear agent approximately 2.5-10% by weight (5) Gas phase rust inhibitor: approximately 0.1-1.0% by weight (6) Metal deactivator: approximately 0-0.5% by weight (7) Defoamer: approximately 0.02-1.0% by weight (8) Colorant: approximately 0-0.01% by weight As described above Water-glycol type hydraulic fluids are required to be flammable over other properties in order to prevent fire hazards. For example, it is used in place of mineral oil-based hydraulic fluids as a hydraulic fluid for machinery that heats metals to make them more easily deformed and rolls them, or melts and molds them. However, conventional water-glycol type hydraulic fluids have the disadvantage that they do not have sufficient wear resistance against metals compared to mineral oil-based hydraulic fluids, and therefore cannot be applied to high-pressure hydraulic equipment. For example, when talking about base pumps that are widely used in hydraulic systems, when switching from mineral oil-based hydraulic fluid to water-glycol hydraulic fluid, conventional water-glycol hydraulic fluids require a fluid temperature of 45°C and a pressure of 45°C.
Under operating conditions of 140Kg/cm 2 , the cam ring of the pump component wears out significantly, and in extreme cases, the cam ring wears out more than 50 mg after just a few hours of pump operation. For this reason, it was necessary to use expensive pump parts that were specially processed. As a result of intensive studies to solve the above problems, the present inventors have found that higher unsaturated fatty acids, higher saturated fatty acids, and alkali metals in an amount equal to or higher than the neutralization equivalent of the fatty acids are used as anti-wear agents in water-glycol type hydraulic fluids. By containing more than a certain amount, we provide a water-glycol type hydraulic fluid which is suitable for practical use, which significantly reduces abrasiveness to metals, has high water solubility stability, has low foaming property, and at the same time easily eliminates generated foam. The present inventors have discovered that the present invention can be obtained. That is, the present invention is characterized by containing at least 0.25% by weight of higher unsaturated fatty acids and at least 6% by weight of higher saturated fatty acids, and containing an alkali metal equivalent to or more than the neutralization equivalent of the fatty acids. It is. The present invention will be explained in detail below. What can be used in the present invention are higher saturated fatty acids, higher unsaturated fatty acids, or alkali metal salts of these fatty acids. When fatty acids are used, it is necessary to neutralize them with an alkali metal hydroxide after addition. be. This neutralization has the purpose of imparting solubility to the above-mentioned acid, but in particular, it is to prevent corrosion of metals by the acid, and it is better for the water-glycol type hydraulic fluid to exhibit alkalinity. It is preferable to neutralize so that the final pH is 9 to 11. As the above-mentioned higher saturated fatty acids (or their alkali metal salts), those having 10 to 14 carbon atoms can generally be used. but
If it is 14 or more, water solubility stability will be extremely reduced and problems will arise in foaming and defoaming properties. Specific examples of these compounds include capric acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, and salts thereof such as potassium and sodium, with lauric acid and potassium laurate being particularly preferred. . As the higher unsaturated fatty acids (or their alkali metal salts), those having 16 to 18 carbon atoms are generally preferred, and specific examples include zomarinic acid, petrocene phosphoric acid, oleic acid, elaidic acid, vaccenic acid, and linoleic acid. , linoleaidic acid, eleostearic acid, linolenic acid, valinaric acid, etc., and their potassium, sodium, etc. salts can be used, and oleic acid or potassium oleate is particularly preferred. In the present invention, higher saturated fatty acids (or
The basis for using alkali metal salts) and higher unsaturated fatty acids (or alkali metal salts thereof) in combination is as follows:
When higher unsaturated fatty acids are used alone, the working fluid foams more intensely, whereas when higher saturated fatty acids are used alone, the solubility in water-glycol type hydraulic fluids is low, but when both are used in combination, the foaming properties of the unsaturated fatty acids decrease. This is based on the knowledge that the solubility of saturated fatty acids increases as well as the wear resistance of metals. Further, the present invention is characterized in that, when using unsaturated fatty acids and saturated fatty acids in combination as described above, the water-glycol type hydraulic fluid contains at least 0.25% by weight of unsaturated fatty acids and at least 6% by weight of saturated fatty acids, respectively. However,
Such content specifications are based on the following test results. This test investigated the effect of higher unsaturated fatty acids on the solubility of higher saturated fatty acids in hydraulic fluids, and various amounts of higher unsaturated fatty acids were added to the base liquid of a water-glycol type hydraulic fluid with the following composition. The amount of higher saturated fatty acids dissolved in the base liquid was investigated. Base liquid composition () Distilled water 43% by weight Propylene glycol 40.5 〃 Ethylene oxide-propylene oxide copolymer 16.5 〃 Base liquid composition () Distilled water 43% by weight Ethylene glycol 40.5 〃 Ethylene-propylene copolymer 16.5 〃 Base liquid composition () Distilled water 43 Weight% Ethylene glycol 40.5 Polyethylene glycol 16.5 Solubility test results are shown in Table 1 below.

【表】 表1に於いて各脂肪酸は当量以上の水酸化カリ
ウムを添加することにより中和し、PH9.5〜10.5
の範囲に調整した。上記表から理解し得るごとく
基液に対して不飽和脂肪酸を0.25重量%以上含有
させることにより、該基板に対する飽和脂肪酸の
溶解度を著しく上昇させることができる。 次に高級飽和脂肪酸の含量と金属摩耗の防止効
果との関係についてベーンポンプ試験を行つた結
果を下記表−2に示す。 なお試験に用いた基液の組成は下記のとおりで
あり、高級飽和脂肪酸としてラウリン酸を用い
た。 基液の組成:
[Table] In Table 1, each fatty acid was neutralized by adding more than an equivalent amount of potassium hydroxide, and the pH was 9.5 to 10.5.
adjusted to the range. As can be understood from the table above, by containing 0.25% by weight or more of unsaturated fatty acids in the base liquid, the solubility of saturated fatty acids in the substrate can be significantly increased. Next, a vane pump test was conducted to examine the relationship between the content of higher saturated fatty acids and the effect of preventing metal wear, and the results are shown in Table 2 below. The composition of the base liquid used in the test was as follows, and lauric acid was used as the higher saturated fatty acid. Base liquid composition:

【表】 サイドコポリマー
上記組成の各基液に金属不活性化剤0.1重量%
気相防錆剤0.5重量%および消泡剤0.05重量%を
それぞれ添加したものを作動液基液として用い
た。 なお各試料にはラウリン酸の溶解度を高めるた
めにその添加量に応じた量のオレイン酸を添加し
た。またラウリン酸およびオレイン酸を中和し、
PHを9.5〜10.5の範囲に調整するよう水酸化カリ
ウムを添加した。 ポンプ試験の概要は次の通りである。 1 油圧ポンプ
ビツカース社製V104−C型ベーンポンプ 2 液量 20 3 レリーフバルブ設定圧力 140Kg/cm2 4 回転数 1200rpm 5 タンク液温 45℃ 以上の測定装置・試験条件によりASTMD2882
−70Tに準じてポンプ試験を行なつた。
[Table] Side copolymer 0.1% by weight of metal deactivator in each base solution with the above composition
A hydraulic fluid base liquid containing 0.5% by weight of a gas-phase rust preventive agent and 0.05% by weight of an antifoaming agent was used as a base hydraulic fluid. Note that oleic acid was added to each sample in an amount corresponding to the amount of lauric acid added in order to increase the solubility of lauric acid. It also neutralizes lauric acid and oleic acid,
Potassium hydroxide was added to adjust the pH to a range of 9.5-10.5. The outline of the pump test is as follows. 1 Hydraulic pump V104-C type vane pump manufactured by Bitkers 2 Fluid volume 20 3 Relief valve setting pressure 140Kg/cm 2 4 Rotation speed 1200rpm 5 Tank liquid temperature 45℃ or higher measurement equipment and test conditions ASTMD2882
A pump test was conducted in accordance with -70T.

【表】 上記表から飽和脂肪酸を作動液に対して少くと
も6重量%添加することによりポンプ試験でのベ
ーンおよびカムリングの摩耗量が著しく低減する
ことが判る。この耐摩耗性は鉱油系耐摩耗性作動
油に匹敵するものである。 ところで不飽和脂肪酸特にオレイン酸自体が金
属に対して摩耗防止効果を有することは知られて
いるが、前述したごとく不飽和脂肪酸は起泡性が
高く高圧力条件での耐摩耗性が劣り、それ単独で
は作動液に適用できない。次に参考として不飽和
脂肪酸であるオレイン酸の作動液における泡立ち
性を試験した結果を下記表3に示す。 なお、作動液として下記組成の基液に消泡剤
0.05重量%添加したものを用いた。 基液の組成 蒸留水 43重量% プロピレングリコール 40.5 〃 エチレンオキサイド―プロピレンオキサイドコ
ポリマー 16.5 〃
[Table] From the above table, it can be seen that by adding at least 6% by weight of saturated fatty acids to the hydraulic fluid, the amount of wear of vanes and cam rings in pump tests is significantly reduced. This wear resistance is comparable to mineral oil-based wear-resistant hydraulic fluids. By the way, it is known that unsaturated fatty acids, especially oleic acid itself, have anti-wear effects on metals, but as mentioned above, unsaturated fatty acids have high foaming properties and poor wear resistance under high pressure conditions. It cannot be applied alone to hydraulic fluids. Next, as a reference, the results of testing the foaming properties of oleic acid, which is an unsaturated fatty acid, in a working fluid are shown in Table 3 below. In addition, as a working fluid, an antifoaming agent is added to the base fluid with the following composition.
The one containing 0.05% by weight was used. Base liquid composition Distilled water 43% by weight Propylene glycol 40.5 Ethylene oxide-propylene oxide copolymer 16.5

【表】【table】

【表】 表3に於いてオレイン酸は当量以上の水酸化カ
リウムを添加することにより中和し、PH9.5〜
10.5の範囲に調整した。 振とう法による泡立ちは次の試験方法により測
定した。 200ml分液ロートに試料液を100mlとり、振とう
機で5分間激しく振とうした後直ちに200mlメス
シリンダーに移し、所定の時間ごとに泡立ち量を
計測する。測定結果より最大泡量(ml)と泡の半
減期(mm)(生成した泡が半分に減少するに要す
る時間)を求める。 上記表3から高級不飽和脂肪酸は泡立ち性が激
しいためにそれ単独では作動液に適用し得ないこ
とが理解されるであろう。 次に不飽和脂肪酸の泡立ち性に対する飽和脂肪
酸の影響を試験した結果を示す。 試験方法は上述したと同様であるが、供試基液
は前掲表2のポンプ試験に用いたと同じ組成のも
のを適用した。 試験結果は下記表4の通りである。
[Table] In Table 3, oleic acid is neutralized by adding more than an equivalent amount of potassium hydroxide, and the pH is 9.5~
Adjusted to 10.5 range. Foaming by shaking method was measured by the following test method. Pour 100 ml of the sample solution into a 200 ml separating funnel, shake vigorously for 5 minutes with a shaker, then immediately transfer to a 200 ml measuring cylinder, and measure the amount of foaming at specified intervals. From the measurement results, determine the maximum foam volume (ml) and foam half-life (mm) (the time required for the generated foam to reduce by half). It will be understood from Table 3 above that higher unsaturated fatty acids cannot be used alone in hydraulic fluids because of their strong foaming properties. Next, the results of testing the influence of saturated fatty acids on the foaming properties of unsaturated fatty acids are shown. The test method was the same as described above, but the sample base liquid had the same composition as used in the pump test shown in Table 2 above. The test results are shown in Table 4 below.

【表】【table】

【表】 上記表と前掲の表3の測定値を参照すると、飽
和脂肪酸の存在により作動液における泡立ち性が
可成り低減し得ることが判る。 しかし、作動液中の不飽和脂肪酸の含量が高く
なると泡立ちが多くなる傾向があるので、不飽和
脂肪酸の添加量は多くとも飽和脂肪酸の添加量の
1/3を越えないように調整することが好ましい。 なお、不飽和脂肪酸の泡立ち性および飽和脂肪
酸に対する溶解性、および飽和脂肪酸の摩耗性を
総合的に考慮すると作動液中における不飽和脂肪
酸としての含量は0.25乃至3重量%が好ましく、
飽和脂肪酸としての含量は6乃至10重量が好まし
い。因みに、飽和脂肪酸の含量が10重量%を越え
ても摩耗性の効果は変らない。 以上述べたごとく、本発明は金属に対する摩耗
性が極めて低い水―グリコール型作動液を提供し
うるものであるから該作動油の実用的価値を著し
く向上させるものである。 以下に実施例を例示する。 実施例 下記組成の作動液に高級不飽和脂肪酸としてオ
レイン酸1.2重量%および高級飽和脂肪酸として
ラウリン酸6.3重量%を添加し、水酸化カリウム
2.35重量%を添加して中和しPHを10.2に調整し
た。 作動液組成: 蒸留水 45(重量%) プロピレングリコール 37.5 エチレンオキサイド―プロピレンオキサイドコ
ポリマー 17.5 金属不活性化剤 0.1 気相防錆剤 0.5 消泡剤 0.05 着色剤 50ppm 上述のようにして得られる作動液の性状は下記
表5のとおりである。 表 5 比重(15/4℃) 1.0574 流動点℃ −50.0 粘度(40℃) 45.40 Cst(50℃) 32.34 粘度指数 195 全酸価mgKOH/g 0.42 全塩基価mgKOH/g 22.3 銅板腐食(100℃、3時間) 1a 水分(VOL%) 41 また、本例の作動液について泡立ち性および摩
耗性を試験した結果を下記表6ならびに7に示
す。
[Table] Referring to the above table and the measured values in Table 3 above, it can be seen that the presence of saturated fatty acids can considerably reduce the foaming properties in the hydraulic fluid. However, as the content of unsaturated fatty acids in the hydraulic fluid increases, foaming tends to increase, so the amount of unsaturated fatty acids added is at most the amount of saturated fatty acids added.
It is preferable to adjust it so that it does not exceed 1/3. In addition, when comprehensively considering the foaming property of unsaturated fatty acids, the solubility in saturated fatty acids, and the abrasion properties of saturated fatty acids, the content of unsaturated fatty acids in the hydraulic fluid is preferably 0.25 to 3% by weight.
The content as saturated fatty acids is preferably 6 to 10% by weight. Incidentally, even if the content of saturated fatty acids exceeds 10% by weight, the effect on wear resistance does not change. As described above, the present invention can provide a water-glycol type hydraulic fluid with extremely low abrasiveness to metals, thereby significantly improving the practical value of the hydraulic fluid. Examples are illustrated below. Example 1.2% by weight of oleic acid as a higher unsaturated fatty acid and 6.3% by weight of lauric acid as a higher saturated fatty acid were added to a hydraulic fluid with the following composition, and potassium hydroxide was added.
2.35% by weight was added to neutralize and adjust the pH to 10.2. Working fluid composition: Distilled water 45 (wt%) Propylene glycol 37.5 Ethylene oxide-propylene oxide copolymer 17.5 Metal deactivator 0.1 Gas phase rust inhibitor 0.5 Antifoaming agent 0.05 Colorant 50 ppm The working fluid obtained as described above The properties are shown in Table 5 below. Table 5 Specific gravity (15/4℃) 1.0574 Pour point ℃ -50.0 Viscosity (40℃) 45.40 Cst (50℃) 32.34 Viscosity index 195 Total acid number mgKOH/g 0.42 Total base number mgKOH/g 22.3 Copper plate corrosion (100℃, 3 hours) 1a Moisture (VOL%) 41 Further, the results of testing the foaming properties and abrasion properties of the working fluid of this example are shown in Tables 6 and 7 below.

【表】【table】

【表】 表 7 ベーンポンプ試験による摩耗テスト (ASTM D2882) 100hr ベーン(mg) 5.9 カムリング(mg) 46.7 合 計(mg) 52.6 なお比較例として市販の水―グリコール型作動
油について同様の摩耗テストを行つた結果を下記
に示す。 A B ベーン(mg) 11.8 13.3 カムリング(mg) 590.5 528.0 合 計(mg) 602.3 541.3
[Table] Table 7 Wear test using vane pump test (ASTM D2882) 100hr Vane (mg) 5.9 Cam ring (mg) 46.7 Total (mg) 52.6 As a comparative example, a similar wear test was conducted using commercially available water-glycol type hydraulic fluid. The results are shown below. A B Vane (mg) 11.8 13.3 Cam ring (mg) 590.5 528.0 Total (mg) 602.3 541.3

Claims (1)

【特許請求の範囲】 1 高級不飽和脂肪酸として少くとも0.25重量%
及び高級飽和脂肪酸として少くとも6重量%を含
有しかつ当該脂肪酸の中和当量もしくはそれ以上
のアルカリ金属を含有することを特徴とする低摩
耗性水―グリコール型作動液。 2 高級不飽和脂肪酸の炭素数が16乃至18である
ことを特徴とする特許請求の範囲第1項記載の低
摩耗性水―グリコール型作動液。 3 高級飽和脂肪酸の炭素数が10乃至14であるこ
とを特徴とする特許請求の範囲第1項記載の低摩
耗性水―グリコール型作動液。
[Claims] 1. At least 0.25% by weight as higher unsaturated fatty acids
and a low-wear water-glycol type hydraulic fluid, which contains at least 6% by weight of a higher saturated fatty acid and an alkali metal equivalent to or more than the neutralization equivalent of the fatty acid. 2. The low-wear water-glycol hydraulic fluid according to claim 1, wherein the higher unsaturated fatty acid has 16 to 18 carbon atoms. 3. The low-wear water-glycol hydraulic fluid according to claim 1, wherein the higher saturated fatty acid has 10 to 14 carbon atoms.
JP16064679A 1979-12-11 1979-12-11 Water-glycol working fluid of low abrasion Granted JPS5682892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16064679A JPS5682892A (en) 1979-12-11 1979-12-11 Water-glycol working fluid of low abrasion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16064679A JPS5682892A (en) 1979-12-11 1979-12-11 Water-glycol working fluid of low abrasion

Publications (2)

Publication Number Publication Date
JPS5682892A JPS5682892A (en) 1981-07-06
JPS6259159B2 true JPS6259159B2 (en) 1987-12-09

Family

ID=15719427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16064679A Granted JPS5682892A (en) 1979-12-11 1979-12-11 Water-glycol working fluid of low abrasion

Country Status (1)

Country Link
JP (1) JPS5682892A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064004B4 (en) 2008-12-19 2011-11-24 Clariant International Limited Water-based hydraulic fluids containing dithiodi (arylcarboxylic acids) or their alkali metal, alkaline earth metal or ammonium salts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119280A (en) * 1974-08-06 1976-02-16 Sanyo Chemical Ind Ltd Shinkinamizu gurikoorugatafunenseisadoyu

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119280A (en) * 1974-08-06 1976-02-16 Sanyo Chemical Ind Ltd Shinkinamizu gurikoorugatafunenseisadoyu
US3992312A (en) * 1974-08-06 1976-11-16 Sanyo Chemical Industries, Ltd. Non-inflammable hydraulic fluid

Also Published As

Publication number Publication date
JPS5682892A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
AU595534B2 (en) Aqueous fluids
US4434066A (en) Water-based energy transmitting fluid compositions
EP1771533A1 (en) Food grade lubricant compositions
US9695380B2 (en) Water-glycol hydraulic fluid compositions
KR101925798B1 (en) Soluble cutting distraction and its manufacturing method based on electric water
JP5425202B2 (en) Method for preventing hydraulic fluid and steam corrosion
US4686058A (en) Thickened-water based hydraulic fluids
US2803603A (en) Heat exchange compositions
US3580847A (en) Hydraulic fluid
AU595637B2 (en) Aqueous fluids
JPH029080B2 (en)
US2944976A (en) Functional fluids
US3050465A (en) Water-in-oil emulsion hydraulic fluids
JPS6259159B2 (en)
CN111154529A (en) Hard water resistant vegetable oil emulsifying complexing agent and preparation thereof
JPS6123240B2 (en)
KR920009624B1 (en) Water-glycol fluid containing aliphatic carboxylic acids
US4569777A (en) Water-based hydraulic fluid compositions containing selected two-component anti-wear agents
JPS6121596B2 (en)
CN107109291B (en) Alpha-olefin adsorption-inhibiting lubricant composition, adsorption-inhibiting method, and adsorption inhibitor
US4569776A (en) Water-based hydraulic fluid compositions containing selected two-component anti-wear agents
JP5202850B2 (en) Hydrous lubricating oil composition and pH stabilizer used therefor
US5223164A (en) Rust and corrosion preventive compositions
RU2266948C1 (en) Water-miscible lubricating fluid
JP2000178576A (en) Water-soluble hydraulic fluid