JPS6258620A - Charged beam device - Google Patents

Charged beam device

Info

Publication number
JPS6258620A
JPS6258620A JP19782885A JP19782885A JPS6258620A JP S6258620 A JPS6258620 A JP S6258620A JP 19782885 A JP19782885 A JP 19782885A JP 19782885 A JP19782885 A JP 19782885A JP S6258620 A JPS6258620 A JP S6258620A
Authority
JP
Japan
Prior art keywords
sample
electron beam
charged
shield plate
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19782885A
Other languages
Japanese (ja)
Inventor
Korehito Matsuda
松田 維人
Kazumi Iwatate
岩立 和己
Kazuo Hirata
一雄 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19782885A priority Critical patent/JPS6258620A/en
Publication of JPS6258620A publication Critical patent/JPS6258620A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform a positioning operation by suppressing the effect of a charged beam inflicting on a sample by a method wherein a conductive body with an aperture part, through which the charged beam can be passed, is provided directly above the sample such as a large scale integrated circuit (LSI) and the like leaving an interval and covering the surface of the sample. CONSTITUTION:An X-Y stage 8 carrying sample 3 is arranged in a chamber. A device with which an electron beam 2 is generated, a deflector 1 with which the direction of the electron beam 2 is controlled, and an objective lens 9 with which the aperture for the electron beam 32 is controlled are provided on the upper part of the chamber, and using the above-mentioned materials, a control is performed for the purpose of projecting a charged beam on the sample 3. A thin film insulating layer 5', which is necessary in the process of manufacture, and a resist 6 are formed on the sample 3. A charged shield plate 10, having the aperture part 10A with which the range of irradiation of the electronic beam 2 on the sample 3 is controlled, is provided in the chamber, and the movement of the electron beam 2 is controlled by a shifting mechanism 11 so that the electron beam 2 is made to irradiate on the reference mark 4 of the sample 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高精度な位置検出を可能とする荷電ビーム装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charged beam device that enables highly accurate position detection.

[従来の技術] 荷電ビーム装置における位置検出技術は、主に半導体素
子製造とともに向上してきた。すなわち、LSI等のバ
タン形成における電子ビーム描画装置のビーム位置決め
技術や形成されたバタン評価における電子ビーム測長機
のバタン位置測定技術などである。これらの技術はバタ
ンの微細化とともに極めて重要な技術となってきている
[Prior Art] Position detection technology in charged beam devices has improved primarily with the development of semiconductor device manufacturing. That is, it includes a beam positioning technique for an electron beam lithography device in forming a batten of an LSI or the like, and a batten position measuring technique for an electron beam length measuring machine in evaluating a formed batten. These technologies are becoming extremely important as batons become smaller.

例えば、電子ビーム直接描画技術によるバタン形成を例
にして第3図にしたがって述べると、まず、偏向器lを
通過した電子ビーム2は試料3に前もって設けられた基
準マーク4を走査する。基準マーク4に入射した電子ビ
ームは試料中で後方散乱され、基準マーク上に蒸着ある
いは塗布されている薄膜金属層5やレジスト6を突き抜
は検出器7に捕獲される。つぎに検出器7で得た信号か
らビームとマークとの相対位置情報を算出し、ビーム位
置を補正して正しい位置に回路バタンを描画する。なお
、図において、8は×Yステージ、9は対物レンズであ
る。このように試料にあらかじめ設けられたマークを位
置の基準としてバタンを数層ないし十数層重ね合せてい
くので、精度の高い重ね合せが実現できる。しかし、素
子製造工程では、試料表面は酸化物、窒化物、 PSG
膜およびレジストなど絶縁材料で覆われることが多く、
それらに電子ビームを照射した場合チャージアップが起
こるため入射ビーム位置に誤差を生じることがたびたび
あった。また、試料基板としてGaAsなどの絶縁性基
板を用いた場合には、基板中に入射した電子は多くの場
合行き場がなく、そこで電荷が蓄積されてしまう、これ
により入射ビーム位置は数隼ツもずれることがあった。
For example, to describe the formation of a batten by the electron beam direct drawing technique with reference to FIG. 3, first, the electron beam 2 that has passed through the deflector 1 scans the reference mark 4 previously provided on the sample 3. The electron beam incident on the reference mark 4 is backscattered in the sample, penetrates the thin metal layer 5 or resist 6 deposited or coated on the reference mark, and is captured by the detector 7. Next, the relative position information between the beam and the mark is calculated from the signal obtained by the detector 7, the beam position is corrected, and the circuit button is drawn at the correct position. In addition, in the figure, 8 is a ×Y stage, and 9 is an objective lens. In this way, several layers to more than ten layers of battens are superimposed using the marks provided in advance on the sample as positional standards, making it possible to achieve highly accurate superposition. However, in the device manufacturing process, the sample surface is made of oxides, nitrides, and PSG.
Often covered with insulating materials such as films and resists,
When these were irradiated with an electron beam, charge-up occurred, which often caused errors in the position of the incident beam. Furthermore, when an insulating substrate such as GaAs is used as a sample substrate, the electrons incident on the substrate often have nowhere to go, and charge is accumulated there. There were times when it would shift.

従来、このような試料のチャージアップに対処するため
、例えばR,に、Wattg et alの論文(IE
EE丁rans、  Electron  Dvice
s、  Vol、ED−28,No、11゜P、+33
8.1981)や特開昭55−87434号公報に開示
されているように、試料表面またはレジスト表面にアモ
ルファスシリコンなどの導電性薄膜を薄着またはスパッ
タにより付着し、その薄膜をYXステージ8を介してア
ースと同電位にするという方法が採られていた。
Conventionally, in order to deal with such sample charge-up, for example, the paper by Wattg et al.
Electron Device
s, Vol, ED-28, No, 11°P, +33
8.1981) and Japanese Unexamined Patent Publication No. 55-87434, a conductive thin film such as amorphous silicon is deposited on the sample surface or resist surface by thin deposition or sputtering, and the thin film is passed through the YX stage 8. The method used was to set the voltage to the same potential as ground.

しかし、これらの方法では、薄膜の付着および除去とい
う工程が増えるばかりでなく、付着工程による試料の温
度上昇により試料そのものが劣化することもあった。ま
た、付着薄膜に入射した電子ビームが散乱されることに
より、レジストバタンの解像性が劣化するという欠点も
あった。また、試料が磁性材料である場合も試料からの
磁力線により電子ビーム軌道が曲げられてしまうという
同様の欠点があった。かかる事情は、電子ビームを用い
たバタン描画装置、測長装置、顕微鏡などに共通の問題
である。また、電子ビーム以外の荷電ビーム装置2例え
ばイオンビーム装置においても同様である。
However, in these methods, not only the steps of attaching and removing the thin film are increased, but also the sample itself may deteriorate due to the increase in temperature of the sample due to the attaching step. Another drawback is that the resolution of the resist batten deteriorates due to scattering of the electron beam incident on the adhered thin film. Furthermore, when the sample is a magnetic material, there is a similar drawback in that the electron beam trajectory is bent by magnetic lines of force from the sample. This situation is a common problem in baton drawing devices, length measuring devices, microscopes, etc. that use electron beams. The same applies to charged beam devices other than electron beams, such as ion beam devices.

[発明が解決しようとする問題点] 本発明の目的は、絶縁試料に蓄積された電荷の影響ある
いは磁化試料における磁気の影響を防ぎ、高精度なビー
ム位置決めを可能とする荷電ビーム装置を提供すること
にある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a charged beam device that prevents the influence of charges accumulated on an insulating sample or the influence of magnetism on a magnetized sample and enables highly accurate beam positioning. There is a particular thing.

[問題点を解決するための手段] かかる目的を達成するために、本発明による荷電ビーム
装置においては、試料直上に試料表面を覆って、荷電ビ
ームが通過する開口部を有する導電性体を設けている。
[Means for Solving the Problems] In order to achieve the above object, in the charged beam device according to the present invention, a conductive body is provided directly above the sample, covering the surface of the sample, and having an opening through which the charged beam passes. ing.

[作 用] この導電性体により絶縁試料に蓄積された電荷から発生
した電気力線は吸収され入射ビームに影響を及ぼしにく
くなる。従来の荷電ビーム装置では、第3図に示したご
とく、電子光学鏡筒の最下部に位置する対物レンズ下部
から試料面まで、電子光学系の設計定数や反射電子等の
検出器の大きさで決まる一定の空間(または距a)が必
要であった。この距離は概ね20〜50mm+であった
。絶縁試料に蓄積された電荷から伸びた電気力線は、対
物レンズ下部のアース接地された金属面で閉じるため、
対物レンズを通過した電子ビームは、試料面に到達する
まで電界により軌道を曲げられてしまう0本発明者等の
実験では入射ビーム軌道のずれ量は、対物レンズ下部か
ら試料面までの距離。
[Function] Electric lines of force generated from charges accumulated in the insulating sample are absorbed by this conductive material, making it difficult for them to affect the incident beam. In conventional charged beam devices, as shown in Figure 3, the distance from the bottom of the objective lens located at the bottom of the electron optical column to the sample surface is determined by the design constants of the electron optical system and the size of the detector for backscattered electrons. A certain space (or distance a) was required. This distance was approximately 20-50 mm+. The electric lines of force extending from the charges accumulated in the insulating sample are closed at the grounded metal surface at the bottom of the objective lens.
The trajectory of the electron beam passing through the objective lens is bent by the electric field until it reaches the sample surface. In the experiments conducted by the present inventors, the amount of deviation of the incident beam trajectory is determined by the distance from the bottom of the objective lens to the sample surface.

蓄積電荷量および入射ビームのエネルギーなどにより決
まることがわかっている0通常の半導体材料や有機ポリ
マーなとの絶縁試料を数keV以上のエネルギーで使用
する場合、対物レンズ下部から試料面までの距離が最も
重要な要因になるとの知見を得た。これらの知見は磁化
試料についても同様に当てはまる0本発明による導電性
体の設置によって入射ビーム軌道のずれは著しく減少す
る。
It is known that the distance from the bottom of the objective lens to the sample surface is determined by the amount of accumulated charge and the energy of the incident beam. We found that this is the most important factor. These findings apply equally to magnetized samples. By installing the conductive material according to the invention, the deviation of the incident beam trajectory is significantly reduced.

[実施例] 第1図は本発明の詳細な説明する図である。[Example] FIG. 1 is a diagram illustrating the present invention in detail.

この例では導電性体を電界シールド板として用いた電子
ビーム露光装置を示す0図中1は偏向器、2は電子ビー
ム、3は試料、5′は薄膜絶縁層、6はレジスト、7は
検出器、8はXYステージ、9は対物レンズ、10は電
界シールド板、11は電界シールド板移動機構である。
This example shows an electron beam exposure apparatus using a conductive material as an electric field shield plate. In the figure, 1 is a deflector, 2 is an electron beam, 3 is a sample, 5' is a thin film insulating layer, 6 is a resist, and 7 is a detector. 8 is an XY stage, 9 is an objective lens, 10 is an electric field shield plate, and 11 is an electric field shield plate moving mechanism.

電界シールド板10としてアルミニウム板を用い、それ
を試料直上1mmの位置に固定した。電界シールド板1
0は鏡体を介してアース接地されている。電界シールド
板lOの中央部にビーム偏向フィールドよりやや大きめ
の開口部10A(この実施例では2.5ma+’ )を
設け、開口部10Aを通して電子ビームを試料3に照射
できる。なお、ビーム軸と電界シールド板の開口部10
Aとの位置決めを容易にするため、電界シールド板移動
機構11を設けである。
An aluminum plate was used as the electric field shield plate 10, and was fixed at a position 1 mm directly above the sample. Electric field shield plate 1
0 is grounded via the mirror body. An opening 10A (2.5 ma+' in this embodiment), which is slightly larger than the beam deflection field, is provided in the center of the electric field shield plate 10, and the sample 3 can be irradiated with an electron beam through the opening 10A. Note that the beam axis and the opening 10 of the electric field shield plate
In order to facilitate positioning with A, an electric field shield plate moving mechanism 11 is provided.

このような構成になっているため、試料3上の薄膜絶縁
層5′やレジスト6に帯電した電荷による電界は試料3
と電界シールド板10のごく狭い範囲に限られるため、
入射ビーム軌道を曲げる作用をしなくなる。本実施例の
ように電界シールド板の開口部10Aを数■以下に保っ
た場合、開口部を通して伸びる電気力線は非常に少なく
なるため、試料上に金属薄膜を付着した従来の帯電防止
法と入射ビーム位置ずれに関して同程度の効果があった
Because of this configuration, the electric field due to charges on the thin film insulating layer 5' and the resist 6 on the sample 3 is applied to the sample 3.
and is limited to a very narrow range of the electric field shield plate 10,
It no longer acts to bend the incident beam trajectory. If the opening 10A of the electric field shield plate is kept to a few square meters or less as in this example, the number of electric lines of force extending through the opening will be very small. There was a similar effect on the incident beam position shift.

第2図は本発明の効果を示す実験データである。加速電
圧30kVでGaAs基板上に塗布したレジストにバタ
ン描画した時のビームの位置ずれ量と電界シールド板の
下面と試料表面との距離の関係を示している。各バタン
形成のために与えた照射量は1.2 X 10−’ l
:(レジスト感度にして2008LC/cm2)であり
、バタン相互間の位置ずれ量をビームの位置ずれ量とし
ている。この図から明らかなように電界シールド面から
試料までの距離が小さくなる程ビーム位置ずれ量は小さ
くなり、その距離が30Il1mの場合的1gmもずれ
ていたものが、数mm以下では全くずれなくなった。本
実験での照射量以上の照射量を与えた場合でもこの傾向
は全く変化なく通常のバタン形成(レジスト感度数〜数
+kc/crn2) 、バタン位置測長あるいは走査形
電子顕微鏡による像のシフトや解像性の劣化などに全く
問題ないことがわかった。
FIG. 2 shows experimental data showing the effects of the present invention. The figure shows the relationship between the amount of beam positional deviation and the distance between the lower surface of the electric field shield plate and the sample surface when performing slam writing on a resist coated on a GaAs substrate at an accelerating voltage of 30 kV. The radiation dose given for each baton formation was 1.2 X 10-' l
: (2008 LC/cm2 in terms of resist sensitivity), and the amount of positional deviation between the bangs is taken as the amount of positional deviation of the beam. As is clear from this figure, the smaller the distance from the electric field shield surface to the sample, the smaller the amount of beam position deviation.When the distance was 30Il1m, the deviation was as much as 1gm, but when the distance was less than a few mm, there was no deviation at all. . Even when the irradiation dose is higher than that in this experiment, this tendency does not change at all, resulting in normal batten formation (resist sensitivity number ~ number + kc/crn2), batten position measurement, or image shift using a scanning electron microscope. It was found that there was no problem with deterioration of resolution.

これらの結果から明らかなように従来の荷電ビーム装置
では、特別に電界シールド板を設けておらず、従って、
絶縁試料に帯電した電荷による入射ビーム位置への影響
が大きく、正しいビーム位と決めあるいは像観察のため
には、絶縁試料上に導電性薄膜を付着しなければならな
いという繁雑さがあった。本発明では、絶縁試料をその
まま描画、測長あるいは像観察試料として使用すること
ができる点、この種の問題に対して大きく改善されてい
る。
As is clear from these results, the conventional charged beam device does not have a special electric field shield plate, and therefore,
The electric charge on the insulating sample has a large influence on the incident beam position, and in order to determine the correct beam position or observe the image, it is complicated to attach a conductive thin film onto the insulating sample. The present invention greatly improves this type of problem in that an insulating sample can be used as it is as a sample for drawing, length measurement, or image observation.

なお、電界シールド板として、アルミニウムに限らず、
全ての導電性材料を用いることができるし、導電性材料
としてパーマロイなどの高透磁率材料を用いると電界お
よび磁界シールド板として作用することは明白である。
Note that the electric field shield plate is not limited to aluminum.
It is clear that any electrically conductive material can be used, and a high permeability material such as permalloy as the electrically conductive material will act as an electric and magnetic field shield plate.

また、それの取り付は部分として鏡体側壁に限らず、接
地できる場所ならどこでもよいことは明らかである。
Furthermore, it is clear that the mounting part is not limited to the side wall of the mirror body, but may be mounted anywhere as long as it can be grounded.

第1図の実施例では、電界シールド板としての導電性体
を試料表面から離して設けた例を示した。しかし、比較
的狭い範囲の像観察などでは、試料をXYステージに載
せた後、試料表面に接するように電界シールド板を配置
することも可能である。また、描画のように大きな試料
全面に電子線を照射する必要のある場合には、電界シー
ルド板を上・下方向に移動させる機構を付加して、XY
ステージを移動する直前に電界シールド板を試料から離
し所定の位置に移動した後、電界シールド板を再び試料
に接するように配置してもよい。
The embodiment shown in FIG. 1 shows an example in which a conductive body serving as an electric field shield plate is provided apart from the sample surface. However, for image observation in a relatively narrow range, it is also possible to place the electric field shield plate in contact with the surface of the sample after placing the sample on the XY stage. In addition, when it is necessary to irradiate the entire surface of a large sample with an electron beam, such as when drawing, a mechanism for moving the electric field shield plate upward and downward can be added to
Immediately before moving the stage, the electric field shield plate may be separated from the sample and moved to a predetermined position, and then the electric field shield plate may be placed in contact with the sample again.

さらに、このような構成は電子ビーム描画装置に限らず
、電子ビーム測長機や走査形電子顕微鏡などの荷電ビー
ム装置に適用することが可能である。また、電子ビーム
装置だけでなく、イオンビーム装置に適用することも可
能である。
Furthermore, such a configuration can be applied not only to an electron beam drawing device but also to a charged beam device such as an electron beam length measuring machine or a scanning electron microscope. Further, the present invention can be applied not only to electron beam devices but also to ion beam devices.

[発明の効果] 以」二説明したように、本発明では簡単な方法で絶縁試
料に帯電した電荷の影響を除去できるため、荷電ビーム
の位置決め精度を向上させるばかりでなく、従来、導電
性薄膜などを付着することができないような試料などに
対しても有効になるなど、荷電ビーム装置の適用範囲を
拡大できる利点がある。
[Effects of the Invention] As explained below, in the present invention, the influence of charges on an insulating sample can be removed by a simple method, which not only improves the positioning accuracy of the charged beam but also improves the accuracy of the conventional conductive thin film. This has the advantage of expanding the scope of application of the charged beam device, such as being effective even for samples to which it is impossible to attach.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例としての電子ビーム露光装置の
部分断面図、 第2図は電界シールド板と試料面との距離によるビーム
位置ずれの変化を示す図、 第3図は従来の電子ビーム露光装置の部分断面図である
。 1・・・偏向器、 2・・・電子ビーム、 3・・・試料、 4・・・基準マーク。 5・・・金属薄膜層、 5′・・・絶縁薄膜層。 6・・・レジスト、 7・・・検出器、 8・・・XYステージ、 9・・・対物レンズ、 10・・・電界シールド板、 10A・・・開口部、 11・・・電界シールド板移動機構。
Fig. 1 is a partial cross-sectional view of an electron beam exposure apparatus as an embodiment of the present invention, Fig. 2 is a diagram showing changes in beam position shift depending on the distance between the electric field shield plate and the sample surface, and Fig. 3 is a diagram showing a conventional electron beam exposure system. FIG. 2 is a partial cross-sectional view of a beam exposure device. 1... Deflector, 2... Electron beam, 3... Sample, 4... Reference mark. 5... Metal thin film layer, 5'... Insulating thin film layer. 6... Resist, 7... Detector, 8... XY stage, 9... Objective lens, 10... Electric field shield plate, 10A... Opening, 11... Electric field shield plate movement mechanism.

Claims (1)

【特許請求の範囲】[Claims] 荷電ビームを試料に照射する荷電ビーム装置において、
荷電ビームが通過する開口部を有する導電性体を前記試
料の表面を覆って設けたことを特徴とする荷電ビーム装
置。
In a charged beam device that irradiates a sample with a charged beam,
A charged beam device characterized in that a conductive body having an opening through which a charged beam passes is provided to cover the surface of the sample.
JP19782885A 1985-09-09 1985-09-09 Charged beam device Pending JPS6258620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19782885A JPS6258620A (en) 1985-09-09 1985-09-09 Charged beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19782885A JPS6258620A (en) 1985-09-09 1985-09-09 Charged beam device

Publications (1)

Publication Number Publication Date
JPS6258620A true JPS6258620A (en) 1987-03-14

Family

ID=16381014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19782885A Pending JPS6258620A (en) 1985-09-09 1985-09-09 Charged beam device

Country Status (1)

Country Link
JP (1) JPS6258620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110729A (en) * 1987-10-23 1989-04-27 Fujitsu Ltd Charged particle beam exposure apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394176A (en) * 1977-01-28 1978-08-17 Fujitsu Ltd Magnetic shielding device
JPS54137978A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Electron-beam irradiation unit
JPS55165630A (en) * 1979-06-12 1980-12-24 Nippon Telegr & Teleph Corp <Ntt> Apparatus for electron beam exposure
JPS5796525A (en) * 1980-12-09 1982-06-15 Fujitsu Ltd Method of charged beam exposure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394176A (en) * 1977-01-28 1978-08-17 Fujitsu Ltd Magnetic shielding device
JPS54137978A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Electron-beam irradiation unit
JPS55165630A (en) * 1979-06-12 1980-12-24 Nippon Telegr & Teleph Corp <Ntt> Apparatus for electron beam exposure
JPS5796525A (en) * 1980-12-09 1982-06-15 Fujitsu Ltd Method of charged beam exposure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110729A (en) * 1987-10-23 1989-04-27 Fujitsu Ltd Charged particle beam exposure apparatus

Similar Documents

Publication Publication Date Title
US5136169A (en) Energy beam locating
KR101101558B1 (en) Apparatus and method for investigating or modifying a surface with beam of charged particles
US4465934A (en) Parallel charged particle beam exposure system
CA1103813A (en) Apparatus for electron beam lithography
US5591971A (en) Shielding device for improving measurement accuracy and speed in scanning electron microscopy
KR101090639B1 (en) Electron beam dimension measuring device and electron beam dimension measuring method
JP2960746B2 (en) Beam irradiation method, electron beam drawing method, beam irradiation apparatus, and electron beam drawing apparatus
US6376136B1 (en) Charged beam exposure method
US4385238A (en) Reregistration system for a charged particle beam exposure system
US5712488A (en) Electron beam performance measurement system and method thereof
US5936252A (en) Charged particle beam performance measurement system and method thereof
JPS6258620A (en) Charged beam device
US6841402B1 (en) Alignment-mark detection methods and devices for charged-particle-beam microlithography, and microelectronic-device manufacturing methods comprising same
US6680481B2 (en) Mark-detection methods and charged-particle-beam microlithography methods and apparatus comprising same
CA2336557A1 (en) Microfabricated template for multiple charged particle beam calibrations and shielded charged particle beam lithography
US4983864A (en) Electronic beam drawing apparatus
JP4906409B2 (en) Electron beam size measuring apparatus and electron beam size measuring method
US6008060A (en) Detecting registration marks with a low energy electron beam
Farrow et al. Mark detection for alignment and registration in a high‐throughput projection electron lithography tool
JP2004095925A (en) Alignment method, alignment substrate, manufacturing method of alignment substrate, exposure method, aligner and manufacturing method of mask
EP0069728A1 (en) Parallel charged particle beam exposure system
JP2001284205A (en) Charged particle beam lithography system
JPH1074808A (en) Physical and chemical device, semiconductor manufacturing device, and inspection device using charged particle ray
JP3472564B2 (en) Pattern transfer mask, pattern transfer method, exposure method, method of manufacturing semiconductor device, and semiconductor device
JP2000348997A (en) Fiducial mark, charged particle beam exposure system having the same and manufacture of semiconductor device