JPS6258512B2 - - Google Patents

Info

Publication number
JPS6258512B2
JPS6258512B2 JP18958081A JP18958081A JPS6258512B2 JP S6258512 B2 JPS6258512 B2 JP S6258512B2 JP 18958081 A JP18958081 A JP 18958081A JP 18958081 A JP18958081 A JP 18958081A JP S6258512 B2 JPS6258512 B2 JP S6258512B2
Authority
JP
Japan
Prior art keywords
nonlinear element
liquid crystal
lit
selection
lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18958081A
Other languages
Japanese (ja)
Other versions
JPS5891499A (en
Inventor
Shinji Morozumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18958081A priority Critical patent/JPS5891499A/en
Publication of JPS5891499A publication Critical patent/JPS5891499A/en
Publication of JPS6258512B2 publication Critical patent/JPS6258512B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野〕 本発明は高デユーテイ化を可能にする液晶表示
装置の駆動方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a driving method for a liquid crystal display device that enables high duty.

〔従来技術〕[Prior art]

従来液晶表示装置は、卓上型電子計算器や電子
時計に多く用いられてきたが、近年マイクロコン
ピユータの低コスト化、高性能化が進むにつれて
小型薄型で低消費電力の液晶デイスプレイのマイ
クロコンピユータやポータブル端末への応用が考
えられるようになつた。このような用途は、パネ
ル面積も大きく、同時に多くの文字や絵を表示す
る必要がある。例えばワードプロセツサ用として
はアルフアベツト文字でも64文字の20行が同時に
表示することが必要である。この時マルチプレツ
クス駆動が不可欠であるが、この時の駆動デユー
テイは1/160となる。一方液晶そのものは応答ス
ピードが遅く、又それ由駆動できるデユーテイは
現状では通状の電圧平均化法では1/16が限界であ
り、要求と一桁悪くなつている。そこで、この駆
動デユーテイを改善する手段として液晶を非線形
素子やスイツチング素子を介して駆動し、駆動マ
ージンを大きくする方法で提案されてきた。非線
形素子とは金属−絶縁物−金属素子や、バリスタ
素子、ダイオード素子等が考えられ又スイツチン
グ素子としては化合物半導体やアモルフアスシリ
コンによる薄膜トランジスタ等である。第1図は
非線形素子の典型的な電気特性を示し、使用付近
での電流の立ち上がり電圧をシキイ値Vthとい
う。第2図はこの非線形素子を用いたマトリツク
スデイスプレイの概要図である。タイミング線と
呼ばれる時分割駆動時の書込み選択信号T1〜Tn
と被選択セルに表示データを書き込むためのデー
タ信号D1〜Doに各々接続されたn×mの表示ド
ツトよりなる。ここで非線形素子1と液晶素子2
はタイミング線とデータ線の間に直列に配列され
表示セル3を構成する。第3図aは1セルの構
成、bはその等価回路である。ここでRLC,RNL
はそれぞれ液晶、非線形素子の等価抵抗、CLC
NLは夫々液晶、非線形素子の等価容量であり非
線形素子は可変抵抗RNLとして表現してある。第
4図は動作原理を説明するために従来の電圧平均
化法に準じた駆動波形を印加した各々の波形を示
す。選択時間即ち書き込み時間twの間にデータ
線Diから書き込み信号がONとOFFに応じて夫々
液晶に書き込まれる。ONの場合はDiとTi間の電
位差は大きく、OFFの場合は小さく印加され、
非線形素子の等価抵抗を介して液晶の等価容量C
LCに電圧が印加される。この選択時にはRNL<R
LCとなつている。次に書き込みが終了すると、
Di−Tj間の電位はより小さくなり、従つてRNL
>RLCとなり、書き込まれた電圧はCLCに電荷と
して保存され、RLC・CLCの時定数に従つて放電
するが、この時定数は通常10m sec以上あり、従
つて10m sec以内に再び書き込み動作が行なわれ
ると液晶は非選択期間であつても常にある電位が
印加されていると同等の動作をする。この時液晶
の電極間に印加されている電圧VLCの実効値に関
し、ON時の実効値VONRが液晶の点灯電圧以上、
又OFF時の実効値VOFFRが非点灯電圧以下であ
ればうまく液晶のON−OFFコントロールが行な
え、目的にあつた表示がなされる。一般に行なわ
れているこのような素子を用いないマトリツクス
表示では選択時のみ電圧が印加されていたが、こ
のように非線型素子を用いることにより非選択時
でも、選択時に印加された電圧を維持できること
が、駆動デユーテイを向上できる原理である。こ
れはスイツチング素子も動作原理はほぼ同じであ
る。第5図はこのようなマトリツクス表示に従来
の電圧平均化法による駆動波形を印加した場合の
動作の実例を示すものである。液晶を交流駆動す
るにはフレーム周期TFの半分ずつ極性が反転す
る。ここで、A,B区間は、選択期間のみ点灯又
は非点灯、C,D区間は、選択期間、非選択期間
ともに点灯又は非点灯の場合を示す。駆動はV−
5V方式であるから、タイミング信号における選
択レベルは5VL又は0,非選択レベルは、VL
は4VLであり、データ信号における点灯レベルは
0又は5VL,非点灯レベルは2VL又は3VLであ
る。
Conventionally, liquid crystal display devices have been widely used in desktop electronic calculators and electronic clocks, but in recent years, as microcomputers have become lower in cost and higher in performance, small, thin, and low power consumption liquid crystal display microcomputers and portable microcomputers have become popular. Applications to terminals have become possible. For such uses, the panel area is large and it is necessary to display many characters and pictures at the same time. For example, for word processors, it is necessary to simultaneously display 20 lines of 64 alphanumeric characters. Multiplex drive is essential at this time, but the drive duty at this time is 1/160. On the other hand, the response speed of the liquid crystal itself is slow, and as a result, the duty that can be driven is currently limited to 1/16 using the standard voltage averaging method, which is an order of magnitude worse than the requirement. Therefore, as a means to improve this driving duty, a method has been proposed in which the liquid crystal is driven via a nonlinear element or a switching element to increase the driving margin. Nonlinear elements include metal-insulator-metal elements, varistor elements, diode elements, etc., and switching elements include thin film transistors made of compound semiconductors and amorphous silicon. Figure 1 shows the typical electrical characteristics of a nonlinear element, and the rising voltage of the current near use is called the threshold value Vth. FIG. 2 is a schematic diagram of a matrix display using this nonlinear element. Write selection signals T 1 to T n during time division driving called timing lines
and n×m display dots connected to data signals D 1 -D o for writing display data into selected cells, respectively. Here, nonlinear element 1 and liquid crystal element 2
are arranged in series between the timing line and the data line to form a display cell 3. FIG. 3a shows the configuration of one cell, and b shows its equivalent circuit. Here R LC , R NL
are the equivalent resistance of liquid crystal and nonlinear element, C LC ,
C NL is the equivalent capacitance of the liquid crystal and the nonlinear element, respectively, and the nonlinear element is expressed as a variable resistance R NL . FIG. 4 shows respective waveforms of applied driving waveforms based on the conventional voltage averaging method in order to explain the operating principle. During the selection time, that is, the write time tw, write signals are written to the liquid crystal from the data line Di according to ON and OFF, respectively. When ON, the potential difference between Di and Ti is large, and when OFF, it is small,
The equivalent capacitance C of the liquid crystal via the equivalent resistance of the nonlinear element
A voltage is applied to the LC . When this selection is made, R NL <R
It has become LC . Next, when the writing is finished,
The potential between Di-Tj becomes smaller, so R NL
> R LC , and the written voltage is stored as a charge in C LC and discharged according to the time constant of R LC・C LC , but this time constant is usually 10 m sec or more, so it will be discharged again within 10 m sec. When a write operation is performed, the liquid crystal operates as if a certain potential were always applied even during the non-selection period. Regarding the effective value of the voltage V LC applied between the electrodes of the liquid crystal at this time, the effective value V ONR when ON is higher than the lighting voltage of the liquid crystal,
Also, if the effective value V OFFR when OFF is less than the non-lighting voltage, ON-OFF control of the liquid crystal can be performed successfully and a display suitable for the purpose can be obtained. In the commonly used matrix display that does not use such elements, a voltage is applied only when a selection is made, but by using nonlinear elements in this way, the voltage applied when a selection is made can be maintained even when the selection is not made. This is the principle by which drive duty can be improved. The operating principle of the switching element is almost the same. FIG. 5 shows an example of the operation when a drive waveform based on the conventional voltage averaging method is applied to such a matrix display. To drive the liquid crystal with alternating current, the polarity is reversed every half of the frame period T F . Here, sections A and B indicate a case where the light is lit or not lit only during the selected period, and sections C and D indicate a case where the light is lit or not lit during both the selected period and the non-selected period. Drive is V-
Since it is a 5V system, the selection level in the timing signal is 5V L or 0, the non-selection level is V L or 4V L , the lighting level in the data signal is 0 or 5V L , and the non-lighting level is 2V L or 3V L. It is.

ここで液晶に実際に印加される選択時の書き込
み電圧VNは点灯信号であるので印加電圧5VL
りVth下がつた電圧よりやや小さい。即ちVN
5VL−Vth。次に非選択に切り替わると同時にデ
ータ線の信号は非点灯信号にかわるので、第4図
Mの電位とデータ線の電圧即ち非線形素子に印
加される電圧は(VN+VL)即ち(6VL−Vth)
となり、これは非線形素子のVthより大きいの
で、非線形素子は低抵抗となり簡単に非線形素子
側へ放電してしまう。このため自分のみ点灯、他
のセルは非点灯信号の時は図の如く、ONの実効
値VONRはかなり小さくなる。一方自分のみ非点
灯、他のセルは点灯の場合、データ線にはDi
(OFF)が印加されると、書き込み電圧VFは、
F=3VL−Vthとなる。この後非選択に切り替わ
ると、非線形素子に印加される電圧はVF−VL
ち(2VL−Vth)となり、これはVthより低いの
で、非線形素子は高抵抗となり、液晶の放電のみ
となり、図の如く書き込み電圧は維持され、従つ
て実効値は高い。この結果A,B区間ではVON
/VOFFRが1より小さいという逆転現象、即ち
点灯させるべき時につかず、非点灯の時につくと
いう結果になり誠に具合が悪い。
Here, since the writing voltage V N at the time of selection actually applied to the liquid crystal is a lighting signal, it is slightly smaller than the voltage Vth lower than the applied voltage 5V L. That is, V N
5V L −Vth. Next, at the same time as switching to non-selection, the signal on the data line changes to a non-lighting signal, so the potential of V M in FIG. L −Vth)
Since this is larger than the Vth of the nonlinear element, the nonlinear element has a low resistance and is easily discharged toward the nonlinear element. Therefore, when only one cell is lit and the other cells are not lit, the effective ON value V ONR becomes quite small as shown in the figure. On the other hand, if only one cell is not lit and the other cells are lit, the data line has a Di
(OFF) is applied, the write voltage V F is
V F =3V L −Vth. After this, when switching to non-selection, the voltage applied to the nonlinear element becomes V F - V L , that is, (2V L - Vth), which is lower than Vth, so the nonlinear element becomes high resistance, and only the liquid crystal discharges. As shown in the figure, the write voltage is maintained, so the effective value is high. As a result, V ON in sections A and B
R /V OFFR is smaller than 1, which is a reversal phenomenon, that is, the lamp does not turn on when it should be turned on, but it turns on when it is not lit, which is really bad.

一方C,D区間ではどのセルも点灯又は非点灯
状態の時である。まず点灯時は先ほどと同じよう
にVNまで書き込まれるが、非選択に切り替つて
もデータ線は点灯信号が維持されているので、非
線形素子に加わる電圧(5VL−Vth−VL=4VL
Vth)となり、この電圧はVthより低いので、非
線形素子は高抵抗を維持し、従つてCLC(ON)
は半フレーム間高い電圧のまま保たれる。一方非
点灯時は、A,B区間と大差ない。従つてこの場
合の点灯時の実効値VONRと非点灯時のVOFFR
比は1よりずつと大きく、点灯と非点灯は具合よ
くコントロールされる。
On the other hand, in sections C and D, all cells are in a lit or non-lit state. First, when lighting, up to V N is written as before, but even if the data line is switched to non-selection, the lighting signal is maintained, so the voltage applied to the nonlinear element (5V L −Vth − V L = 4V L
Vth) and since this voltage is lower than Vth, the nonlinear element maintains a high resistance and therefore C LC (ON)
remains at a high voltage for half a frame. On the other hand, when the lights are off, there is not much difference between the A and B sections. Therefore, in this case, the ratio of the effective value V ONR when the lamp is on and the V OFFR when the lamp is not lit is larger than 1, and the lighting and non-lighting can be well controlled.

〔従来技術における問題点〕[Problems with conventional technology]

上述の如く、従来の非線型素子を用いた液晶の
駆動方法においては、データ信号が選択時のみ点
灯又は非点灯あるいは、点灯と非点灯との存在数
の比が異なる場合は、選択、非選択時の全点灯、
全非点灯に比べて、液晶に印加される実効値が変
化してしまうため、完全な表示を得ることが困難
であるという問題があつた。
As mentioned above, in the conventional liquid crystal driving method using non-linear elements, if the data signal is lit or not lit only when selected, or if the ratio of the number of lit and non-lit signals is different, the data signal is selected or not selected. Full lighting of the hour,
There is a problem in that it is difficult to obtain a perfect display because the effective value applied to the liquid crystal changes compared to when all lights are off.

本発明は上記問題点を克服したものであり、点
灯時の実効値と非点灯時の実効値を大きくするこ
とにより、表示のさせかたによらず常に安定した
点灯、非点灯を得ることのできる液晶表示装置を
提供することができるものである。
The present invention overcomes the above problems, and by increasing the effective value when the light is on and the effective value when the light is off, it is possible to always obtain stable lighting and non-lighting regardless of the display method. Accordingly, it is possible to provide a liquid crystal display device that can be used.

〔実施例〕〔Example〕

ここで従来の駆動方法における点灯時の液晶に
加わる実行電圧について考慮してみる。第5図に
おいて、点灯時VONの実効値はA,B区間とC,
D区間で大分異なる。これはA,B区間ではデー
タ線の電位は、選択された画素のみ点灯、他は非
点灯、一方C,D区間では選択された画素、非選
択画素も点灯状態となつているからで、選択され
てVNまで書き込まれても、次に書き込まれるま
での保持区間の初期では、非線形素子に加わる電
圧は、A,B,C区間では(VN+VL)に対し、
C,D区間では(VN−VL)と低く、従つて非線
形素子の等価抵抗がA,B区間の方がずつと低く
なり、従つて書き込まれた電荷を非線形素子を介
して放電してしまうことにより、図の如くA,B
区間では点灯時の実効値は低下してしまう。一方
非点灯時は、保持区間での初期に区間A,Bでは
(VF+VL)、区間C,Dでは(VF−VL)とな
り、VFの値が低いので、ON時に比較すると非線
形素子の抵抗は常に高く、保持電荷の放電、又は
充電作用は少ない。従つて、従来の電圧平均化法
による駆動波形では、保持区間での非線形素子の
等価抵抗REに関し、自分のみ点灯で他は非点灯
である場合の抵抗RE(VN+VL)は、全画素が
非点灯である場合の抵抗RE(VF−VL)に比べ
小さいために液晶の保持時間における点灯時の実
効電圧が低下してしまうことになる。
Here, let us consider the effective voltage applied to the liquid crystal during lighting in the conventional driving method. In Fig. 5, the effective value of V ON during lighting is in sections A, B, C,
There is a big difference in section D. This is because in the A and B sections, the potential of the data line turns on only the selected pixel and the others are not lit, while in the C and D sections, the selected pixel and non-selected pixels are also in the lit state. Even if the data is written up to V N , at the beginning of the holding period until the next write, the voltage applied to the nonlinear element is (V N +V L ) in the A, B, and C periods.
In sections C and D, the equivalent resistance of the nonlinear element is as low as (V N -V L ), and therefore the equivalent resistance of the nonlinear element is lower in sections A and B, so that the written charge is discharged through the nonlinear element. By putting it away, A and B as shown in the diagram
In this section, the effective value at the time of lighting decreases. On the other hand, when the light is not lit, at the beginning of the holding section, it becomes (V F + V L ) in sections A and B, and (V F - V L ) in sections C and D, and the value of V F is low, so compared to when it is ON. The resistance of the nonlinear element is always high, and the effect of discharging or charging the stored charge is small. Therefore, in the drive waveform based on the conventional voltage averaging method, regarding the equivalent resistance R E of the nonlinear element in the holding interval, the resistance R E (V N +V L ) when only the nonlinear element is lit and the others are not lit is as follows: Since the resistance R E (V F −V L ) is smaller than the resistance R E (V F −V L ) when all pixels are not lit, the effective voltage during lighting during the liquid crystal retention time is reduced.

第6図は、本発明の基本的駆動波形を示す。本
実施例においては、タイミング信号Tjの非選択
電位を基準として、データ信号Diの点灯時の電
位差VNL及び非点灯時の電位差VFLを各々異なつ
た電位差に設定し、これらデータ線の電位差はタ
イミング線の選択電位の反対側へシフトしている
ものである。この駆動方式の一番簡単な例はVFL
=0とすることである。
FIG. 6 shows the basic drive waveform of the present invention. In this embodiment, the potential difference V NL when the data signal Di is lit and the potential difference V FL when it is not lit are set to different potential differences with respect to the non-selection potential of the timing signal Tj, and the potential difference between these data lines is It is shifted to the opposite side of the selection potential of the timing line. The simplest example of this drive method is V FL
= 0.

第7図はこの場合の駆動波形例である。これら
のタイミング信号、データ信号に対し画素の電圧
は図のようになる。この時非線形素子の等価抵抗
はRE(VN)RE(VF−VO)となり、ONと
OFFの実効値の比はかなり大きくとれる。
FIG. 7 shows an example of the drive waveform in this case. The pixel voltages for these timing signals and data signals are as shown in the figure. At this time, the equivalent resistance of the nonlinear element is R E (V N ) R E (V F - V O ), and it becomes ON.
The ratio of the effective value of OFF can be quite large.

ここで、非線形素子に印加される電圧とVthと
関係について説明する。
Here, the relationship between the voltage applied to the nonlinear element and Vth will be explained.

第9図a〜dは、この関係を説明するための図
である。まず第9図a,bは、従来の液晶駆動方
法において非線形素子に印加される電圧と非線形
素子のしきい値Vthの関係を示している。まず同
図aにおいて、前記第3図に示された点VMにお
ける電圧の波形VMが示されている。ここで、選
択時には、データ信号Diは、点灯ON1レベルであ
るとする。次に非選択期間のデータ信号Diのレ
ベルを点灯のレベルON2と非点灯レベルOFFと
について比較する。選択から非選択への切換後の
任意点0,0′において考えてみる。非選択期間が
点灯レベルON2の場合、0点において非線形素子
に実際に印加される電位差はAである。一方、非
選択期間が非点灯レベルOFFの場合、0′点にお
いて非線形素子に実際に印加される電位差はBで
ある。図aの各電位差A,Bを、図bの非線形素
子のV−I特性図にあてはめてみると、図bから
明白なように電位差Aは、非線形素子のしきい値
レベルVthより小さいために、完全に非線形素子
はOFF状態を維持している。しかし電位差B
は、このしきい値Vthを越えているために非線形
素子からはリークを生じてしまう。
FIGS. 9a to 9d are diagrams for explaining this relationship. First, FIGS. 9a and 9b show the relationship between the voltage applied to the nonlinear element and the threshold value V th of the nonlinear element in a conventional liquid crystal driving method. First, in FIG. 3A, the voltage waveform V M at the point V M shown in FIG. 3 is shown. Here, it is assumed that at the time of selection, the data signal Di is lit at 1 level. Next, the level of the data signal Di during the non-selection period is compared between the lighting level ON 2 and the non-lighting level OFF. Consider an arbitrary point 0,0' after switching from selection to non-selection. When the non-selection period is at the lighting level ON 2 , the potential difference actually applied to the nonlinear element at the 0 point is A. On the other hand, when the non-selection period is at the non-lighting level OFF, the potential difference actually applied to the nonlinear element at the 0' point is B. When applying each potential difference A and B in figure a to the VI characteristic diagram of the nonlinear element in figure b, it is clear from figure b that the potential difference A is smaller than the threshold level Vth of the nonlinear element. , the completely nonlinear element remains in the OFF state. However, the potential difference B
exceeds this threshold value Vth, so leakage occurs from the nonlinear element.

このように従来においては、選択期間で点灯状
態の後、非選択期間において連続点灯か又は非点
灯となるかによつて、非線形素子に印加される電
圧に大きな差が生じ、特に非点灯のレベルではし
きい値電圧を越えてしまうため、非線形素子の抵
抗が低下してリークを生ずることになる。
In this way, conventionally, after the lighting state in the selection period, there is a large difference in the voltage applied to the nonlinear element depending on whether the non-selection period is continuous lighting or non-lighting. Since the threshold voltage is exceeded, the resistance of the nonlinear element decreases and leakage occurs.

次に本実施例の駆動方法について同じ説明を第
9図c,dに基き行う。まず同図cにおいて、選
択時には、データ信号Diは、点灯レベルON1であ
る。次に、非選択期間のデータ信号Diのレベル
を点灯のON2レベルと非点灯のレベルOFFとに
ついて比較するのは従来と同じである。ただし本
実施例にあつては、非選択レベルに対し、ON2
電位差VNLを有し、OFFは電位差VFLを有して
いる点において従来も異なることは前述した通り
である。選択から非選択への切換の後の任意点
0,0′において考える。非選択期間が点灯レベル
ON2の場合、0点における非線形素子に印加され
る電位差はA′であり、一方非選択期間が非点灯
レベルOFFの場合、0′点における非線形素子に
印加される電位差はB′である。この電位差A′,
B′を図dの非線形素子V−I特性図にあてはめて
みると、いずれの電位差A′,B′も、非線形素子
のしきい値Vthより低い値となる。
Next, the same explanation regarding the driving method of this embodiment will be given based on FIGS. 9c and 9d. First, in c of the same figure, at the time of selection, the data signal Di is at the lighting level ON1 . Next, the level of the data signal Di during the non-selection period is compared between the ON 2 level of lighting and the OFF level of non-lighting, as in the conventional case. However, as described above, this embodiment differs from the conventional one in that ON 2 has a potential difference V NL and OFF has a potential difference V FL with respect to the non-selection level. Consider an arbitrary point 0,0' after switching from selection to non-selection. Lighting level during non-selection period
In the case of ON 2 , the potential difference applied to the nonlinear element at the 0 point is A', and on the other hand, when the non-selection period is at the non-lighting level OFF, the potential difference applied to the nonlinear element at the 0' point is B'. This potential difference A′,
When B' is applied to the nonlinear element VI characteristic diagram shown in FIG. d, both potential differences A' and B' have values lower than the threshold value Vth of the nonlinear element.

以上のように本実施例にあつては、選択期間で
点灯状態の後、非選択期間において連続点灯であ
れ、非点灯であれ、非線形素子に印加される電圧
は常にしきい値以下となるため、完全にOFF状
態が維持されるので、液晶には十分な実効電圧を
保持することができる。
As described above, in this embodiment, after the lighting state in the selection period, the voltage applied to the nonlinear element is always below the threshold value, regardless of whether it is continuously lit or not in the non-selection period. Since the completely OFF state is maintained, sufficient effective voltage can be maintained in the liquid crystal.

ここで、非線形素子のしきい値VTHが低い場
合、フレームの切り換り、即ち、極性が反転する
と、第7図VLC(ON)に見られるように、実効
値が切り換わり時に少し低下する。これは非線形
素子の抵抗値がRE(VN′)からRE(VN′+V
G)に変化することによる。これを防ぐために
は、フレームの反転を長周期で行なう。フレーム
の反転動作は本来液晶の寿命を伸ばすために行な
う。従つて時間に対し均一に反転していれば、そ
の周期を長くし、同一極性に対し何回も書き込み
を行なえばよい。この時気をつけるのは、余り反
転周期が長くなると、目の残像効果がなくなり、
フラツシングがわかつてしまい、デイスプレイの
品質が低下する。
Here, when the threshold value V TH of the nonlinear element is low, when the frame switches, that is, when the polarity is reversed, the effective value decreases a little at the time of switching, as shown in Figure 7, V LC (ON). do. This means that the resistance value of the nonlinear element varies from R E (V N ′) to R E (V N ′+V
G ) by changing to To prevent this, frame inversion is performed in long cycles. The frame reversal operation is originally performed to extend the life of the liquid crystal. Therefore, if the polarity is uniformly reversed over time, it is sufficient to lengthen the cycle and write to the same polarity many times. The thing to be careful about at this time is that if the inversion cycle becomes too long, the afterimage effect on the eyes will disappear.
The flashing will be distorted and the quality of the display will be degraded.

第8図は本発明の更に異なる具体例として、多
重書き込み動作をしてON時の実効値を低下させ
ることなくON−OFFの制御を一層やりやすくす
る波形を示している。フレーム周期Tfの半周期
間にn回同極性の書き込み動作を行なう。こうす
ると、書き込み毎に極性を反転することにより、
フレームの切り換わり時点で実効値が低下するこ
とを防ぐことができる。フレームの極性切り換わ
り点(P点)では、目には大きなフラツシングと
してうつるが、その間に細かい書き込み動作によ
るフラツシングに隠されて、視覚に感じない。こ
のため数秒〜数時間という長周期駆動も可能とな
る。
FIG. 8 shows a waveform as a further specific example of the present invention, which makes it easier to control ON-OFF without reducing the effective value during ON by performing multiple write operations. Write operations of the same polarity are performed n times during a half period of the frame period Tf. By doing this, by reversing the polarity every time you write,
It is possible to prevent the effective value from decreasing at the time of frame switching. At the frame polarity switching point (point P), large flashing appears to the eye, but it is hidden by flashing caused by fine writing operations during that time and is not perceived visually. Therefore, long-period driving of several seconds to several hours is also possible.

〔効果〕〔effect〕

上述の如く本発明は、一対の基板に液晶が封入
され、該基板上にはマトリクス状に配列された複
数の画素電極、タイミング線、データ線を有し、
該画素電極には非線形素子が接続され、該非線形
素子を介してデータ線より該画素電極の一方の電
極にデータ信号が印加され、該画素電極の他方の
電極にタイミング線を介してタイミング信号が印
加されてなる液晶表示装置において、前記タイミ
ング線の非選択電位を基準としてデータ線の点灯
時の電位差と非点灯時の電位差とが異なり、該デ
ータ線の電位差は該タイミング線の選択電位の反
対側へシフトされてなるようにしたから、データ
信号の非点灯時の実効値を増加させることなくし
て、点灯時の実効値を大幅に増加させることがで
きるので、表示のさせ方によらないで、常に安定
した点灯と非点灯の制御が可能となり、高分解能
の液晶表示の実現が可能となる。
As described above, the present invention includes a pair of substrates filled with liquid crystal, and a plurality of pixel electrodes, timing lines, and data lines arranged in a matrix on the substrates.
A nonlinear element is connected to the pixel electrode, a data signal is applied to one electrode of the pixel electrode from a data line via the nonlinear element, and a timing signal is applied to the other electrode of the pixel electrode via a timing line. In a liquid crystal display device in which a voltage is applied to the data line, a potential difference when the data line is lit is different from a potential difference when the data line is not lit based on the non-selection potential of the timing line, and the potential difference of the data line is opposite to the selection potential of the timing line. Since the data signal is shifted to the side, the effective value when the data signal is lit can be significantly increased without increasing the effective value when the data signal is not lit, so it does not depend on how it is displayed. This makes it possible to control stable lighting and non-lighting at all times, making it possible to realize high-resolution liquid crystal displays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、非線形素子の特性図、第2図はマト
リツク状に配列された液晶表示装置の全体図、第
3図は液晶表示装置の等価回路図、第4図は従来
の液晶表示装置の基本動作図、第5図は従来の液
晶表示装置の動作波形図、第6図は本発明の液晶
表示装置の1の実施例を駆動波形を示す図、第7
図は、本発明の他の実施例を示す波形図、第8図
は、本発明の他の実施例を示す波形図、第9図a
〜dは、本発明と従来の実施例の比較を示す図。
Fig. 1 is a characteristic diagram of a nonlinear element, Fig. 2 is an overall diagram of a liquid crystal display device arranged in a matrix, Fig. 3 is an equivalent circuit diagram of a liquid crystal display device, and Fig. 4 is a diagram of a conventional liquid crystal display device. 5 is an operation waveform diagram of a conventional liquid crystal display device, FIG. 6 is a diagram showing driving waveforms of one embodiment of the liquid crystal display device of the present invention, and FIG.
8 is a waveform diagram showing another embodiment of the present invention, FIG. 9 is a waveform diagram showing another embodiment of the present invention, and FIG.
- d are diagrams showing a comparison between the present invention and a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の基板に液晶が封入され、該基板上には
マトリクス状に配列された複数の画素電極、タイ
ミング線、データ線を有し、該画素電極には非線
型素子が接続され、該非線型素子を介してデータ
線より該画素電極の一方の電極にデータ信号が印
加され、該画素電極の他方の電極にタイミング線
を介してタイミング信号が印加されてなる液晶表
示装置において、前記タイミング線の非選択電位
を基準としてデータ線の点燈時の電位差と非点燈
時の電位差とが異なり、該データ線の電位差は該
タイミング線の選択電位の反対側へシフトされて
いることを特徴とする液晶表示装置。
1 A liquid crystal is sealed in a pair of substrates, a plurality of pixel electrodes, timing lines, and data lines are arranged on the substrates in a matrix, a nonlinear element is connected to the pixel electrode, and the nonlinear element In a liquid crystal display device in which a data signal is applied from a data line to one electrode of the pixel electrode via a timing line, and a timing signal is applied to the other electrode of the pixel electrode via a timing line, A liquid crystal characterized in that a potential difference when a data line is lit is different from a potential difference when the data line is not lit based on a selection potential, and the potential difference of the data line is shifted to the opposite side of the selection potential of the timing line. Display device.
JP18958081A 1981-11-26 1981-11-26 Driving system of liquid crystal display Granted JPS5891499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18958081A JPS5891499A (en) 1981-11-26 1981-11-26 Driving system of liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18958081A JPS5891499A (en) 1981-11-26 1981-11-26 Driving system of liquid crystal display

Publications (2)

Publication Number Publication Date
JPS5891499A JPS5891499A (en) 1983-05-31
JPS6258512B2 true JPS6258512B2 (en) 1987-12-07

Family

ID=16243703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18958081A Granted JPS5891499A (en) 1981-11-26 1981-11-26 Driving system of liquid crystal display

Country Status (1)

Country Link
JP (1) JPS5891499A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957288A (en) * 1982-09-27 1984-04-02 シチズン時計株式会社 Driving of matrix display
JPS60163020A (en) * 1984-02-03 1985-08-24 Citizen Watch Co Ltd Liquid crystal display device
JP2667111B2 (en) * 1993-12-24 1997-10-27 シチズン時計株式会社 Matrix display device

Also Published As

Publication number Publication date
JPS5891499A (en) 1983-05-31

Similar Documents

Publication Publication Date Title
JP4873760B2 (en) Liquid crystal display device and driving method thereof
JPH08251518A (en) Drive circuit
US6703995B2 (en) Bistable chiral nematic liquid crystal display and method of driving the same
EP1611564B1 (en) Active matrix displays and contrast control method
JPS6395420A (en) Driving method for active matrix type liquid crystal display device
JPS6258512B2 (en)
US7812803B2 (en) Driving method for cholesteric liquid crystal display
JPS63175890A (en) Driving of active matrix type liquid crystal panel
JPH0363077B2 (en)
US5666131A (en) Active matrix liquid-crystal display device with two-terminal switching elements and method of driving the same
JPH04255822A (en) Liquid crystal display device
JP3167135B2 (en) Two-terminal active matrix liquid crystal display device and driving method thereof
JPH06266318A (en) Driving method for active matrix type liquid crystal device
JPH0449712B2 (en)
JP2572578B2 (en) Image display device and driving method thereof
JP3515200B2 (en) Liquid crystal display device and driving method thereof
JP3548640B2 (en) Liquid crystal display device and driving method thereof
JP3485986B2 (en) Liquid crystal display device and driving method thereof
JP2770981B2 (en) Driving method of matrix type ferroelectric liquid crystal panel
JP3515201B2 (en) Liquid crystal display device and driving method thereof
JP3666195B2 (en) Liquid crystal element driving method, liquid crystal display device, and electronic apparatus
CN113948047A (en) Driving module for active matrix driving cholesterol liquid crystal display device and driving method thereof
JPH01251017A (en) Liquid crystal display device
JPS62136624A (en) Driving circuit for liquid crystal display device
JP5065417B2 (en) Display device having simple matrix display element