JPS6258379B2 - - Google Patents

Info

Publication number
JPS6258379B2
JPS6258379B2 JP2614080A JP2614080A JPS6258379B2 JP S6258379 B2 JPS6258379 B2 JP S6258379B2 JP 2614080 A JP2614080 A JP 2614080A JP 2614080 A JP2614080 A JP 2614080A JP S6258379 B2 JPS6258379 B2 JP S6258379B2
Authority
JP
Japan
Prior art keywords
polyamide
weight
polymerization
melamine
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2614080A
Other languages
Japanese (ja)
Other versions
JPS56122831A (en
Inventor
Tomoo Ito
Hironobu Kawasaki
Koichiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2614080A priority Critical patent/JPS56122831A/en
Publication of JPS56122831A publication Critical patent/JPS56122831A/en
Publication of JPS6258379B2 publication Critical patent/JPS6258379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明方法はメラミンシアヌレヌト含有ポリア
ミド組成物の補造法に関する。 本発明者等は、さきにメラミンずシアヌヌル酞
をポリアミドの重合時含氎条件䞋に添加するこず
により䞀挙にメラミンシアヌレヌト含有ポリアミ
ド組成物が埗られるずずもにかくしお埗られた組
成物は、メラミンシアヌレヌトをポリアミドに添
加する方法における欠点もなくメラミンシアヌレ
ヌトの分散状態が本質的に異なる異質の組成物を
補造できる方法の知芋をえ、出願を行぀た。しか
し、この発明方法によ぀お埗られる難燃ポリアミ
ドの䞻たる甚途分野である電気郚品材料分野にお
いおは難燃性ず䞊んで高床な耐熱性、特に耐熱゚
ヌゞング特性が芁求され、この耐熱性の点で該難
燃ポリアミドは必ずしも満足できるものではない
こずが刀明した。 本発明方法は、かゝる問題を解決し、ある限定
された熱安定剀を䜵甚添加するこずにより、高床
の耐熱性を有し高品質のメラミンシアヌレヌト含
有難燃ポリアミドを補造する方法を提䟛するもの
である。 即ち、本発明方法は、メラミン及びそれず実質
的に等モル量のシアヌヌル酞を添加しおなるポリ
アミド圢成単量䜓を、該ポリアミド圢成単量䜓に
察し少なくずも重量の氎の存圚䞋に加熱しお
重合させ、か぀該重合時あるいは重合埌に、䞋蚘
、及びから遞ばれた䞀皮類の熱安定剀を配
合するこずを特城ずする難燃ポリアミドの補造方
法、である。 ポリアミドに察し0.001〜0.2重量の銅化合
物 ポリアミドに察し0.001〜0.2重量の銅化合
物ず0.005〜1.0重量のハロゲン化アルカリ金
属化合物 ポリアミドに察し0.001〜0.2重量の銅化合
物ず0.005〜1.0重量のハロゲン化アルカリ金
属化合物ず0.001〜0.5重量の錫化合物 本発明方法に甚いられるポリアミド圢成単量䜓
ずしおは、ナむロン、ナむロン66、ナむロン
12、ナむロン612、ナむロン66共重合䜓等の
ポリアミドを圢成しうるいづれの単量䜓の䜿甚も
可胜である。具䜓的にはε−カプロラクタムある
いはこれを含有する共重合䜓系等が包含される。
メラミンずシアヌヌル酞は実質䞊等モル量にお重
合系ぞ添加される。たずえば䞀方が1.5倍モルの
ように実質䞊等モルずいえない量関係で添加した
堎合はポリアミドの重合床䜎䞋をきたすずずもに
プレヌトアりトやブルヌミング珟象の発生原因ず
なる。勿論厳密に等モルであるこずは必ずしも必
芁でなく、䞊蚘欠点が事実䞊発珟しない範囲での
若干の倉動は蚱容される。尚シアヌヌル酞ぱノ
ヌル型ずケト型の䞡者が䜿甚できる。メラミンず
シアヌヌル酞の添加は、䞡者を城粉末状で添加す
る方法、スラリヌ状で添加する方法等適宜の方法
を甚いうる。添加時期は重合系に高分子量のポリ
アミドが生成する以前の状態、通垞は単量䜓ない
しオリゎマヌ存圚時に添加される。埓぀お本発明
におけるポリアミド圢成性単量䜓ずは䞊蚘に䟋瀺
したような狭矩の単量䜓だけでなく、それらのオ
リゎマヌも包含する。メラミンずシアヌヌル酞の
添加量は、最終組成物䞭メラミンシアヌレヌトず
しお〜25重量であるこずが奜たしい。重量
未満では充分な難燃効果を付䞎できず、たた25
重量を越えるず着色成圢時に通垞量の顔料を甚
いお鮮明な着色を付䞎するこずが䞍可胜ずなり、
たた成圢流動性も䜎䞋する等の欠点が珟われる。 本発明方法の実斜に圓぀おは重合系にポリアミ
ド圢成単量䜓に察し少くずも重量の氎の存圚
が必芁であり、奜たしくは重量以䞊である。
該氎量はたた添加するメラミン及びシアヌヌル酞
の量ずも関係し、メラミンずシアヌヌル酞の添加
量が増すに埓぀お氎の必芁量も増加する。氎が
重量より少ない量しか存圚しない堎合には充分
量のメラミンシアヌレヌトが生成せず、ポリアミ
ドの重合床も䜎䞋し、城现に分散されたメラミン
ゞアヌレヌトを含有するポリアミドを埗るこずは
できない。氎量の䞊限に぀いおは䞀旊倚量の氎を
加えた埌系を濃瞮する等の手段で調敎が可胜であ
り、特に制限はないが重合反応開始時に300重量
以䞋が奜たしい。尚䟋えばε−カプロラクタム
を重量皋床の氎を觊媒ずしお甚いお重合させ
る方法はよく知られおいるが、本発明方法におけ
る氎の存圚はメラミンシアヌレヌト分散䜓を重合
系内で生成させるために䞍可欠のものであり、専
ら重合觊媒ずしお機胜する埓来のポリアミド補造
技術における氎ずはその䜜甚効果が本質的に異な
る。 本発明方法はかかる系を加熱するこずによ぀お
実斜されるが、加熱枩床は200〜300℃の範囲で、
できるだけ高枩条件を避けるこずが望たしい。 本発明方法においお添加配合される熱安定剀ず
は、䞋蚘〜から遞ばれた䞀皮類の添加剀であ
る。 銅化合物 銅化合物ずハロゲン化アルカリ金属化合物 銅化合物ずハロゲン化アルカリ金属化合物ず
錫化合物 䞊蚘の銅化合物ずしおは、ポリアミドに均䞀配
合可胜なものであ぀お有機・無機銅塩あるいは銅
キレヌト化合物であり、䟋えば塩化第銅、塩化
第銅、ペり化第銅、硫酞第銅、硝酞第
銅、サリチル酞第銅、ステアリン酞第銅、酢
酞第銅、安息銙酞第銅、セバシン酞銅が挙げ
られる。これらのうち、塩化第銅や酢酞第銅
が奜たしい。たた、ハロゲン化アルカリ金属化合
物ずしおは、ペり化カリりム、臭化カリりム、塩
化カリりム、ペり化ナトリりム、臭化ナトリり
ム、塩化ナトリりム等が挙げられる。さらに、錫
化合物ずしおは、塩化第錫、塩化第錫のよう
な無機錫塩、シペり酞錫のような有機酞の錫塩、
氎酞化第錫、氎酞化第錫のような氎酞化物等
が挙げられ、奜たしいものずしおは䟡の錫の無
機酞塩であり、塩化第錫が最も奜たしい。 これら熱安定剀の䜿甚量は、ポリアミド暹脂に
察しお、銅化合物は0.001〜0.2重量、奜たしく
は0.01〜0.05重量、ハロゲン化アルカリ金属化
合物は0.005〜1.0重量、奜たしくは0.05〜0.5重
量、たた錫化合物は0.001重量〜0.5重量、
奜たしくは0.005重量〜0.1重量が望たしい。
これら熱安定剀による耐熱安定性の効果は銅化合
物単独でも耐熱性が改良されるが、銅化合物ずハ
ロゲン化アルカリ金属化合物ずの組み合せで䞀局
改良され、曎に銅化合物ずハロゲン化アルカリ金
属化合物ず錫化合物ずの組合せにより改良され
る。いづれの熱安定剀も、䞊蚘した䜿甚量の䞋限
倀を䞋回る量では効果が充分でなく、䞊限倀を䞊
回る量では重合物が著しく倉色したり、機械物性
の䜎䞋をきたしたり、堎合によ぀おはポリアミド
を劣化させる。なお、銅化合物ずハロゲン化アル
カリ金属化合物の組合せにおいおは、前者に察し
埌者を〜15倍重量になるように䜿甚するず
効果が顕著になるので奜たしい。 本発明方法における䞊蚘熱安定剀をポリアミド
組成物ぞ添加配合する方法ずしおは、該ポリアミ
ド組成物の重合時に添加配合する方法、即ちメラ
ミンずシアヌヌル酞を添加したポリアミド圢成単
量䜓に熱安定剀を添加しお氎の存圚䞋に重合を開
始する方法あるいはメラミンずシアヌヌル酞を添
加したポリアミド圢成単量䜓を氎の存圚䞋に重合
を開始し、その重合途䞭に該熱安定剀を添加配合
する方法、たたは該ポリアミド組成物の重合埌に
添加配合する方法即ち、重合で生成したメラミン
アクリレヌト含有ポリアミド組成物に該熱安定剀
を抌出機あるいは射出成圢機を甚いお溶融混合し
配合する方法等、適宜の方法を甚いうる。 このようにしお埗られた難燃性ポリアミドは、
高床に耐熱性が付䞎されおいる䞊、ポリアミド䞭
にメラミンシアヌレヌトが極めお均䞀か぀城现に
分散されたものであり、ポリアミドにメラミンシ
アスレヌトを機械的に混入しお埗た組成物ずは単
に分散粒子の倧きさだけでなく圢状等も異なり党
く別の組成物ずいうこずができる。そしお本発明
の難燃ポリアミドは難燃性ず耐熱性に優れるこず
はもずより、機械的性質、着色性、成圢流動性に
も著しく優れおいる。たたその射出成圢品は埓来
䞍可避ずされたり゚ルドラむンがほずんど珟われ
ず、商品䟡倀の極めお高いものである。さらには
溶融玡糞、溶融補膜によ぀お難燃性ず耐熱性の優
れた高品質の繊維やフむルムを補造するこずもで
きる。 次に本発明方法を実斜䟋及び比范䟋により、さ
らに詳现に説明する。なお、各䟋䞭詊隓及び枬定
法は䞋蚘のずおりである。 (1) ポリアミドの重合床の枬定 JIS−K6810に準じおポリアミドの溶液にお
ける盞察粘床ηを枬定しお求めた。 (2) 接回折枬定 詊料の平板を成圢し、その成圢品を理孊電機
補ガむガヌフレツクスDS型線回折装眮にか
け、銅タヌゲツトで回折角床〜40゜の範囲で
回折図圢を描かせ、メラミンシアヌレヌト、メ
ラミン及びシアヌヌル酞特有の回折ピヌクによ
り、その存圚の有無を枬定した。 (3) 難燃性 UL−94の垂盎燃焌詊隓を厚さ1/16むンチの
射出成圢詊隓片に぀いお行な぀た。 (4) 着色性 詊隓組成物のペレツト97.5重量郚に黒着色甚
カラヌマスタヌバツチのナむロンペレツト商
品名レオナLCO20−M3300旭化成補2.5重
量郚を配合しお射出成圢し、埗られた成圢品の
黒色の皋床を肉県で芳察するずずもに色差蚈を
甚いおハンタヌ癜床を枬定した。 (5) プレヌトアりトずブルヌミング プレヌトアりトに぀いおは射出成圢機で燃焌
詊隓甚成圢詊隓片を射出成圢する際、成圢䞭の
金型を芳察しおプレヌトアりトの有無を刀定し
た。ブルヌミングに぀いおは該燃焌詊隓甚成圢
詊隓片を甚い150℃の熱颚オヌブンに10日間攟
眮しお成圢品の衚面を芳察した。 (6) 機械的性質 射出成圢詊隓片でASTM−D638に準じお匕
匵匷床を枬定した。 (7) 耐熱性 ASTM−D638に芏定する匕匵詊隓甚ダンベ
ル片を成圢し、150℃の熱颚オヌブン䞭に攟眮
し、匕匵匷床保持率ず熱劣化による倉色の床合
に぀いお枬定した。 実斜䟋  80耐圧オヌトクレヌブに18.0Kgのε−カプロ
ラクタムず、9907.8モルのメラミン粉末ず
10107.8モルのシアヌヌル酞ず氎4.5Kgを入
れ、さらにの酢酞第銅を氎にずかしお2.5
重量氎溶液ずしたものず36のペり化カリを氎
にずかしお20重量氎溶液ずしたものを添加し、
ただちに密封し撹拌しながら、加熱し重合反応を
開始した。重合反応はたず加熱ゞダケツト枩床
200℃で時間密封状態を保ち、次いで埐々に攟
圧しながら玄時間かけお内圧を垞圧たで䞋げ、
さらに窒玠ガスを流しながら垞圧に時間保ち、
この間、内枩を200℃から最埌には250℃たで昇枩
させた。合蚈13時間の反応重合を終了埌、内容物
をストランド状に排出し、氎冷埌カツタヌでmm
〓×mm長の円柱状ペレツトに切断しポリアミド
組成物を補造した。埗られた組成物の重合床を枬
定した。結果は盞察粘床η2.4で充分実甚的
な重合床であ぀た。次に線回折の枬定を行な぀
た。線回折図からはメラミンシアヌレヌトのピ
ヌクのみ怜出され、メラミン及びシアヌヌル酞は
怜出されなか぀た。さらに該組成物の難燃性、機
械的性質、プレヌトアりトずブルヌミング及び着
色性を枬定した。その結果を衚に瀺す。たた耐
熱性の枬定を行な぀た。その結果を衚に瀺す。 比范䟋  酢酞第銅氎溶液ずペり化カリ氎溶液の添加を
しない他は党く実斜䟋ず同じ組成同じ重合条件
でポリアミド組成物を補造した。該ポリアミド組
成物に぀いお実斜䟋ず同様な枬定を行な぀た。
その結果を衚ず衚に瀺す。 比范䟋  添加する氎の量を0.6Kgずした以倖は党お実斜
䟋ず同じ条件でポリアミド組成物を補造した。
埗られた組成物の重合床、線回折、機械的性
質、プレヌトアりトずブルヌミングを枬定した。
その結果を衚に瀺す。 比范䟋  添加するメラミンずシアヌヌル酞の量を各々
1.19Kgず0.81Kgずしモル比で1.51.0ずした以倖
は党お実斜䟋ず同じ条件でポリアミド組成物を
補造した。埗られた組成物に぀いお比范䟋ず同
じ枬定を行な぀た。その結果を衚に瀺す。 比范䟋  実斜䟋の装眮を甚い、18Kgのε−カプロラク
タムず、実斜䟋ず同じ量の酢酞銅氎溶液ずペり
化カリ氎溶液を投入し、さらに觊媒氎0.6Kgを添
加し、実斜䟋ず同様な重合条件でη2.4の
熱安定剀含有ナむロンペレツトを補造した。該
ナむロンペレツト9.0Kgず平均粒埄Όのメラ
ミンシアヌレヌト城粉末1.0Kgを予備混合し40mm
〓抌出機ぞ䟛絊し抌出枩床265℃でストランド状
に抌出し、氎冷し、カツタヌで切断しmm〓×
mm長のペレツト状のポリアミド組成物を埗た。該
組成物に぀いお実斜䟋ず同様な評䟡を行な぀
た。その結果を衚及び衚に瀺す。 実斜䟋 、、 η2.5のナむロンペレツトず衚に掲げ
る皮類ず量の各皮熱安定剀粉末を予備混合し、比
范䟋で甚いたのず同じ抌出機を甚い抌出枩床
265℃で抌出し、皮類の熱安定剀濃厚ポリアド
組成物ペレツトを補造した。次いで該組成物ペレ
ツトず比范䟋のメラミンシアヌレヌト含有ポリ
アミドペレツトを重量比19の割合で予備混合
し、射出成圢機ぞ䟛し、耐熱性枬定甚詊隓片を成
圢した。そしお該詊隓片に぀いお耐熱性を枬定し
た。その結果を衚に瀺す。 実斜䟋  ナむロン66に盞圓する結合単䜍90重量、ナむ
ロンに盞圓する結合単䜍10重量を含むナむロ
ン66共重合䜓を18.8Kg補造するのに必芁な単
量䜓氎溶液を、50重量のアゞピン酞ヘキサメチ
レンゞアンモニりム塩氎溶液39.2Kgずε−カプロ
ラクタム1.9Kgずを混合しお調敎した。次に該単
量䜓氎溶液を単量䜓濃床70重量たで濃瞮し、実
斜䟋で甚いたのず同じ装眮ぞ泚入した。そしお
曎にメラミン5904.7モルに氎Kgを加えお
スラリヌ状にしたものずシアヌヌル酞6104.7
モルに氎Kgを加えおスラリヌ状にしたものを
泚入し、さらにはKgの酢酞第銅を氎にずかし
お2.5重量氎溶液ずしたものず90のペり化カ
リを氎にずかしお20重量氎溶液ずしたものを添
加し、ただちにかくはんしながら加熱し、枩床ず
圧力を調敎しお玄時間40分重合反応を行な぀
た。重合反応䞭の枩床及び圧力ず時間の関係を図
に瀺す。図䞭曲線は加熱ゞダケツト枩床、は
オヌトクレヌブ内圧、はオヌトクレヌブ内枩を
瀺す。このようにしおポリアミド組成物を補造し
た。該組成物に぀いお実斜䟋ず同様な枬定を行
な぀た。その結果を衚及び衚に瀺す。 実斜䟋  実斜䟋、実斜䟋及び比范䟋のポリアミド
組成物に぀いおり゚ルドラむンの評䟡を行な぀
た。即ち長さむンチ×巟0.5むンチ×厚さ0.03
むンチの矩圢成圢品を射出成圢するのに長さ方向
の䞡端に各々ゲヌト郚を備えた金型を甚い、250
℃で射出成圢した。成圢品には䞭倮郚に䞡端から
流入した溶融暹脂が合流した郚分が存圚するが、
その郚分を肉県芳察した。その結果、実斜䟋ず
実斜䟋の組成物の成圢片ではり゚ルドラむンが
ほずんど日立たないのに察し、比范䟋の組成物
ではり゚ルドラむンが著しく目立぀た。
The method of the present invention relates to a method for producing polyamide compositions containing melamine cyanurate. The present inventors have discovered that by first adding melamine and cyanuric acid to polyamide under water-containing conditions during polymerization, a melamine cyanurate-containing polyamide composition can be obtained all at once, and the composition thus obtained contains melamine cyanurate. We have found a method that can produce a heterogeneous composition in which the dispersion state of melamine cyanurate is essentially different without the drawbacks of the method of adding melamine cyanurate to polyamide, and have filed an application. However, in the field of electrical component materials, which is the main field of use of the flame-retardant polyamide obtained by the method of this invention, a high degree of heat resistance, especially heat aging resistance, is required in addition to flame retardancy. It has been found that the flame-retardant polyamides are not always satisfactory. The method of the present invention solves such problems and provides a method for producing a high quality flame-retardant polyamide containing melamine cyanurate with a high degree of heat resistance by adding a certain limited heat stabilizer in combination. It is something to do. That is, the method of the present invention involves heating a polyamide-forming monomer obtained by adding melamine and cyanuric acid in a substantially equimolar amount to the polyamide-forming monomer in the presence of at least 5% by weight of water based on the polyamide-forming monomer. This is a method for producing a flame-retardant polyamide, which comprises polymerizing the flame-retardant polyamide, and adding one type of heat stabilizer selected from the following during or after the polymerization. 0.001-0.2% by weight of copper compounds based on polyamide 0.001-0.2% by weight of copper compounds and 0.005-1.0% by weight of alkali metal halide compounds based on polyamide 0.001-0.2% by weight of copper compounds and 0.005-1.0% by weight based on polyamide % of an alkali metal halide compound and 0.001 to 0.5% by weight of a tin compound. Polyamide-forming monomers used in the method of the present invention include nylon 6, nylon 66, nylon
It is also possible to use any monomer capable of forming polyamides, such as 12, nylon 612, and nylon 66/6 copolymers. Specifically, ε-caprolactam or a copolymer system containing the same is included.
Melamine and cyanuric acid are added to the polymerization system in substantially equimolar amounts. For example, if one is added in an amount that cannot be said to be substantially equimolar, such as 1.5 times the mole of one, the degree of polymerization of the polyamide will be lowered and plate-out and blooming phenomena will occur. Of course, it is not necessarily necessary that the molar ratio be strictly equimolar, and a slight variation is allowed as long as the above-mentioned drawbacks do not actually occur. Both enol and keto forms of cyanuric acid can be used. Melamine and cyanuric acid can be added by any appropriate method, such as adding them in powdered form or slurry form. It is added before high molecular weight polyamide is produced in the polymerization system, usually when monomers or oligomers are present. Therefore, the polyamide-forming monomer in the present invention includes not only monomers in the narrow sense as exemplified above, but also oligomers thereof. The amount of melamine and cyanuric acid added is preferably 2 to 25% by weight as melamine cyanurate in the final composition. If it is less than 2% by weight, sufficient flame retardant effect cannot be imparted, and 25
If the percentage by weight is exceeded, it will be impossible to provide clear coloring using a normal amount of pigment during color molding.
Further, there are drawbacks such as a decrease in molding fluidity. When carrying out the method of the present invention, the presence of water in the polymerization system is required to be at least 5% by weight, preferably at least 8% by weight, based on the polyamide-forming monomers.
The amount of water is also related to the amount of melamine and cyanuric acid added; as the amount of melamine and cyanuric acid added increases, the amount of water required increases. water is 5
If the amount is less than % by weight, a sufficient amount of melamine cyanurate will not be produced and the degree of polymerization of the polyamide will decrease, making it impossible to obtain a polyamide containing finely dispersed melamine dianurate. The upper limit of the amount of water can be adjusted by adding a large amount of water and then concentrating the system, and is not particularly limited, but it is preferably 300% by weight or less at the start of the polymerization reaction. For example, a method of polymerizing ε-caprolactam using about 1% by weight of water as a catalyst is well known, but the presence of water in the method of the present invention is necessary to produce a melamine cyanurate dispersion within the polymerization system. It is essential and its effects are essentially different from water in conventional polyamide production technology, which functions exclusively as a polymerization catalyst. The method of the present invention is carried out by heating such a system, and the heating temperature is in the range of 200 to 300°C.
It is desirable to avoid high temperature conditions as much as possible. The heat stabilizer added and blended in the method of the present invention is one type of additive selected from the following. Copper Compounds Copper Compounds and Alkali Metal Halides Compounds Copper Compounds, Alkali Metal Halides and Tin Compounds The above copper compounds are organic/inorganic copper salts or copper chelate compounds that can be uniformly blended into polyamide. For example, cuprous chloride, cupric chloride, cuprous iodide, cupric sulfate, cupric nitrate, etc.
Examples include copper, cupric salicylate, cupric stearate, cupric acetate, cupric benzoate, and copper sebacate. Among these, cuprous chloride and cupric acetate are preferred. Examples of the alkali metal halide compounds include potassium iodide, potassium bromide, potassium chloride, sodium iodide, sodium bromide, and sodium chloride. Furthermore, tin compounds include inorganic tin salts such as stannous chloride and stannic chloride, tin salts of organic acids such as tin oxalate,
Examples include hydroxides such as stannous hydroxide and stannous hydroxide, preferred are inorganic acid salts of divalent tin, and stannous chloride is most preferred. The amount of these heat stabilizers to be used is 0.001 to 0.2% by weight, preferably 0.01 to 0.05% by weight of the copper compound, and 0.005 to 1.0% by weight, preferably 0.05 to 0.5% by weight of the alkali metal halide compound, based on the polyamide resin. %, and tin compounds from 0.001% to 0.5% by weight,
Preferably 0.005% to 0.1% by weight is desirable.
The effect of heat resistance stability by these heat stabilizers is that heat resistance is improved even when a copper compound is used alone, but it is further improved by a combination of a copper compound and an alkali metal halide compound, and even more so when a copper compound, an alkali metal halide compound, and a tin compound are combined. Improved by combination with other compounds. Any heat stabilizer will not be sufficiently effective if used in an amount below the lower limit mentioned above, and if the amount exceeds the upper limit, the polymer may noticeably discolor, deteriorate mechanical properties, or in some cases. degrades polyamide. In addition, in the combination of a copper compound and an alkali metal halide compound, it is preferable to use the latter in an amount of 5 to 15 times (by weight) the former because the effect becomes noticeable. In the method of the present invention, the heat stabilizer is added to the polyamide composition during polymerization of the polyamide composition, that is, the heat stabilizer is added to the polyamide-forming monomer to which melamine and cyanuric acid are added. A method in which polymerization is initiated in the presence of water by adding melamine and cyanuric acid, or a method in which polymerization is initiated in the presence of water of a polyamide-forming monomer to which melamine and cyanuric acid have been added, and the heat stabilizer is added and blended during the polymerization. , or a method of adding and blending the polyamide composition after polymerization, that is, a method of melt-mixing and blending the heat stabilizer into the melamine acrylate-containing polyamide composition produced by polymerization using an extruder or injection molding machine, etc. method can be used. The flame-retardant polyamide thus obtained is
In addition to being highly heat resistant, melamine cyanurate is extremely uniformly and finely dispersed in polyamide, and it is simply different from a composition obtained by mechanically mixing melamine shea slate into polyamide. The dispersed particles differ not only in size but also in shape and can be said to be completely different compositions. The flame-retardant polyamide of the present invention not only has excellent flame retardancy and heat resistance, but also extremely excellent mechanical properties, colorability, and molding fluidity. In addition, the injection molded product has almost no weld lines, which were considered unavoidable in the past, and has extremely high commercial value. Furthermore, high quality fibers and films with excellent flame retardancy and heat resistance can be produced by melt spinning and melt film forming. Next, the method of the present invention will be explained in more detail with reference to Examples and Comparative Examples. The tests and measurement methods in each example are as follows. (1) Measurement of degree of polymerization of polyamide The relative viscosity ηr of a polyamide solution was determined according to JIS-K6810. (2) X-direction diffraction measurement A flat plate of the sample was molded, and the molded product was applied to a Geigerflex DS model X-ray diffractometer manufactured by Rigaku Denki, and a diffraction pattern was drawn in the diffraction angle range of 5 to 40° using a copper target. The presence or absence of melamine cyanurate, melamine, and cyanuric acid was determined by diffraction peaks specific to melamine and cyanuric acid. (3) Flame retardancy A UL-94 vertical flame test was conducted on injection molded specimens with a thickness of 1/16 inch. (4) Colorability 97.5 parts by weight of pellets of the test composition were blended with 2.5 parts by weight of nylon pellets of a color masterbatch for black coloring (trade name Leona LCO20-M3300; manufactured by Asahi Kasei) and injection molded. The degree of blackness of the molded product was observed with the naked eye, and Hunter whiteness was measured using a color difference meter. (5) Plate-out and blooming Regarding plate-out, when molding test pieces for combustion tests were injection-molded using an injection molding machine, the mold during molding was observed to determine the presence or absence of plate-out. Regarding blooming, the molded test pieces for combustion tests were left in a hot air oven at 150° C. for 10 days, and the surface of the molded products was observed. (6) Mechanical properties Tensile strength of injection molded test pieces was measured according to ASTM-D638. (7) Heat Resistance A dumbbell piece for tensile testing specified in ASTM-D638 was molded and left in a hot air oven at 150°C, and the tensile strength retention rate and degree of discoloration due to thermal deterioration were measured. Example 1 18.0 kg of ε-caprolactam and 990 g (7.8 mol) of melamine powder were placed in an 80 pressure autoclave.
Add 1010g (7.8mol) of cyanuric acid and 4.5kg of water, and then dissolve 4g of cupric acetate in water to make 2.5kg of cyanuric acid.
A wt % aqueous solution and a 20 wt % aqueous solution made by dissolving 36 g of potassium iodide in water were added.
Immediately, the container was sealed and heated while stirring to initiate a polymerization reaction. The polymerization reaction begins at the heating jacket temperature.
The container was kept sealed at 200℃ for 4 hours, and then the internal pressure was lowered to normal pressure over about 1 hour while gradually releasing the pressure.
Furthermore, while flowing nitrogen gas, maintain the pressure at normal pressure for 8 hours.
During this time, the internal temperature was raised from 200°C to 250°C. After completing the reaction polymerization for a total of 13 hours, the contents were discharged in the form of a strand, cooled with water, and cut into 3 mm pieces with a cutter.
A polyamide composition was prepared by cutting into cylindrical pellets with a length of 3 mm. The degree of polymerization of the resulting composition was measured. The result was a relative viscosity ηr=2.4, which was a sufficiently practical degree of polymerization. Next, X-ray diffraction measurements were performed. From the X-ray diffraction diagram, only the peak of melamine cyanurate was detected, and melamine and cyanuric acid were not detected. Furthermore, the flame retardancy, mechanical properties, plate-out and blooming, and coloring properties of the composition were measured. The results are shown in Table 1. Heat resistance was also measured. The results are shown in Table 2. Comparative Example 1 A polyamide composition was produced using the same composition and polymerization conditions as in Example 1, except that an aqueous cupric acetate solution and an aqueous potassium iodide solution were not added. The same measurements as in Example 1 were performed on the polyamide composition.
The results are shown in Tables 1 and 2. Comparative Example 2 A polyamide composition was produced under the same conditions as in Example 1 except that the amount of water added was 0.6 kg.
The degree of polymerization, X-ray diffraction, mechanical properties, plate-out and blooming of the resulting composition were measured.
The results are shown in Table 1. Comparative Example 3 The amounts of melamine and cyanuric acid to be added are
A polyamide composition was produced under the same conditions as in Example 1 except that the weights were 1.19Kg and 0.81Kg and the molar ratio was 1.5:1.0. The same measurements as in Comparative Example 2 were performed on the obtained composition. The results are shown in Table 1. Comparative Example 4 Using the apparatus of Example 1, 18 kg of ε-caprolactam, the same amounts of copper acetate aqueous solution and potassium iodide aqueous solution as in Example 1 were added, and further 0.6 kg of catalyst water was added. Heat stabilizer-containing nylon 6 pellets with ηr=2.4 were produced under similar polymerization conditions. 9.0kg of the nylon 6 pellets and 1.0kg of melamine cyanurate powder with an average particle size of 3Ό are premixed to form a 40mm powder.
〓Feed it to an extruder and extrude it into a strand at an extrusion temperature of 265℃, cool it with water, and cut it with a cutter to 3mm × 3
A polyamide composition in the form of pellets with a length of mm was obtained. The composition was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2. Examples 2, 3, 4 Nylon 6 pellets with ηr = 2.5 and various heat stabilizer powders of the type and amount listed in Table 3 were premixed, and the extrusion temperature was adjusted using the same extruder as used in Comparative Example 4.
Three types of heat stabilizer concentrated polyad composition pellets were produced by extrusion at 265°C. Next, the composition pellets and the melamine cyanurate-containing polyamide pellets of Comparative Example 1 were premixed at a weight ratio of 1:19, and the mixture was sent to an injection molding machine to form a test piece for measuring heat resistance. Then, the heat resistance of the test piece was measured. The results are shown in Table 2. Example 5 50% by weight of the monomer aqueous solution required to produce 18.8 kg of a nylon 66/6 copolymer containing 90% by weight of bonding units corresponding to nylon 66 and 10% by weight of bonding units corresponding to nylon 6. % aqueous solution of hexamethylene diammonium adipate and 1.9 kg of ε-caprolactam. The aqueous monomer solution was then concentrated to a monomer concentration of 70% by weight and injected into the same apparatus used in Example 1. Furthermore, 590 g (4.7 mol) of melamine was added to 1 kg of water to make a slurry, and 610 g (4.7 mol) of cyanuric acid was added.
1 kg of water was added to make a slurry, and then 6 kg of cupric acetate was dissolved in water to make a 2.5% aqueous solution by weight, and 90 g of potassium iodide was dissolved in water to make a slurry. % aqueous solution was added and immediately heated while stirring, and the temperature and pressure were adjusted to conduct a polymerization reaction for about 4 hours and 40 minutes. The figure shows the relationship between temperature, pressure, and time during the polymerization reaction. In the figure, curve 1 shows the heating jacket temperature, 2 shows the autoclave internal pressure, and 3 shows the autoclave internal temperature. A polyamide composition was thus produced. The same measurements as in Example 1 were performed on the composition. The results are shown in Tables 1 and 2. Example 6 The polyamide compositions of Example 1, Example 5, and Comparative Example 4 were evaluated for weld lines. i.e. 5 inches long x 0.5 inches wide x 0.03 thick
A mold with gates at each end of the length is used to injection mold a 250-inch rectangular shaped product.
Injection molded at ℃. There is a part in the center of the molded product where the molten resin flowing from both ends joins together.
The part was observed with the naked eye. As a result, in the molded pieces of the compositions of Examples 1 and 5, the weld lines were hardly noticeable, whereas in the composition of Comparative Example 4, the weld lines were very noticeable.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 成物に察する添加重量
実斜䟋  実斜䟋の組成物ず比范䟋の組成物の耐衝撃
性、匕匵䌞床、着色性、り゚ルドラむンの倖芳の
評䟡をした。 その結果を衚に瀺すが、実斜䟋の組成物が
優れおいるこずがわかる。 (1) 耐衝撃性 (ã‚€) 萜錘衝撃匷床 ASTMD−1709に埓い厚さmmの詊隓片に
぀いお枬定した。 (ロ) ダむンスタツト衝撃匷床 英囜芏栌BS1330の動的詊隓方法に埓い厚
さmmの詊隓片に぀いお枬定した。 (ハ) 匕匵衝撃匷床 ASTMD−1822に埓い、タむプ詊隓片に
぀いお枬定した。 (2) 匕匵䌞床 JIS K6301に埓い、号圢厚さmmの詊隓片
を甚いお枬定し、次匏により蚈算した。 匕匵䌞床匕匵䌞びcmチダツク間距離
cm×100 (3) り゚ルドマヌク 詊料ペレツト19重量郚に青色カラヌマスタヌ
バツチ旭化成工業瀟補、カラヌコンセントレ
ヌト−8800重量郚を添加し、長方圢金型
65×90mmに射出成圢した。この際、金型の
ゲヌトからcmの䜍眮に、金型の長手方向䞭心
線䞊に察角線が䞀臎する方向で20mm蟺の正方圢
ナむロン板を暹脂流れ阻害板ずしおセツトし、
その埌方郚分に珟れるり゚ルドマヌクを芳察し
た。 (4) 着色性 り゚ルドマヌク甚詊隓片に぀いお、同時に着
色状態を芳察した。
[Table] Weight percentage added to the product
Example 7 The composition of Example 5 and the composition of Comparative Example 4 were evaluated for impact resistance, tensile elongation, colorability, and appearance of weld lines. The results are shown in Table 4, and it can be seen that the composition of Example 5 is excellent. (1) Impact resistance (a) Falling weight impact strength Measured on a 1 mm thick test piece according to ASTMD-1709. (b) Dine-stud impact strength Measured on a 1 mm thick test piece according to the dynamic test method of British standard BS1330. (c) Tensile impact strength Measured on an S type test piece according to ASTMD-1822. (2) Tensile elongation Measured according to JIS K6301 using a No. 3 type test piece with a thickness of 1 mm, and calculated using the following formula. Tensile elongation (%) = Tensile elongation (cm) / Distance between chucks (
cm) x 100 (3) Weld mark Add 1 part by weight of blue color masterbatch (manufactured by Asahi Kasei Corporation, Color Concentrate M-8800) to 19 parts by weight of sample pellet and inject into a rectangular mold (65 x 90 mm). Molded. At this time, a square nylon plate with a side of 20 mm was set as a resin flow inhibiting plate at a position 1 cm from the mold gate in a direction whose diagonal line coincided with the longitudinal center line of the mold.
A weld mark appearing on the rear part was observed. (4) Colorability The coloring state of the weld mark test piece was also observed at the same time.

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明方法の䞀実斜態様である実斜䟋
における重合条件の経時的倉化を衚わすグラフ
を瀺す。
The drawing shows a graph showing changes over time in polymerization conditions in Example 5, which is an embodiment of the method of the present invention.

Claims (1)

【特蚱請求の範囲】  メラミン及びそれず実質的に等モル量のシア
ヌヌル酞を添加しおなるポリアミド圢成単量䜓
を、該ポリアミド圢成単量䜓に察し少なくずも
重量の氎の存圚䞋に加熱重合させ、か぀該重合
時あるいは重合埌に䞋蚘、及びから遞ばれ
た皮類の熱安定剀を配合するこずを特城ずする耐
熱性の優れた難燃ポリアミドの補造方法。 ポリアミドに察し0.001〜0.2重量の銅化合
物。 ポリアミドに察し0.001〜0.2重量の銅化合
物ず0.005〜1.0重量のハロゲン化アルカリ金
属化合物。 ポリアミドに察し0.001〜0.2重量の銅化合
物ず0.005〜1.0重量のハロゲン化アルカリ金
属化合物ず0.001〜0.5重量の錫化合物。
[Scope of Claims] 1. A polyamide-forming monomer obtained by adding melamine and cyanuric acid in a substantially equimolar amount to the polyamide-forming monomer, at least 5% of the polyamide-forming monomer.
A method for producing a flame-retardant polyamide with excellent heat resistance, characterized by carrying out thermal polymerization in the presence of % by weight of water, and adding a heat stabilizer selected from the following during or after the polymerization. . 0.001-0.2% by weight of copper compounds based on polyamide. 0.001-0.2% by weight of copper compounds and 0.005-1.0% by weight of alkali metal halide compounds based on the polyamide. 0.001-0.2% by weight of copper compounds, 0.005-1.0% by weight of alkali metal halides compounds and 0.001-0.5% by weight of tin compounds based on the polyamide.
JP2614080A 1980-03-04 1980-03-04 Preparation of fire-retardant polyamide with excellent heat resistance Granted JPS56122831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2614080A JPS56122831A (en) 1980-03-04 1980-03-04 Preparation of fire-retardant polyamide with excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2614080A JPS56122831A (en) 1980-03-04 1980-03-04 Preparation of fire-retardant polyamide with excellent heat resistance

Publications (2)

Publication Number Publication Date
JPS56122831A JPS56122831A (en) 1981-09-26
JPS6258379B2 true JPS6258379B2 (en) 1987-12-05

Family

ID=12185236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2614080A Granted JPS56122831A (en) 1980-03-04 1980-03-04 Preparation of fire-retardant polyamide with excellent heat resistance

Country Status (1)

Country Link
JP (1) JPS56122831A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE301719T1 (en) * 1987-07-27 1990-12-20 MB Group plc, Reading, Berkshire PACKAGING AGENTS.
CN100341941C (en) * 2005-11-10 2007-10-10 四川倧孊 Trimeric cyanamide cyanureate fire retarding polyamide nano-composite meterial and its preparation method
CN102911355B (en) * 2012-11-20 2016-01-13 䞭囜石油化工股仜有限公叞 The preparation method of a kind of high gloss high workability PA6

Also Published As

Publication number Publication date
JPS56122831A (en) 1981-09-26

Similar Documents

Publication Publication Date Title
US4317766A (en) Flame-retardant polyamide resin composition with melamine cyanurate uniformly dispersed therein
DE69213730T2 (en) Polyamide compositions containing the 2-methyl-pentamethylene diamine monomer unit
US5543452A (en) Flame-resistant polyamide resin compositions and flame retardants therefor
KR101611497B1 (en) Filled poly vinyl chloride composition
CA1039882A (en) Moldable flameproofed polyamides
JPS63150349A (en) Flame-retardant polyamide resin composition
GB1586204A (en) Stabilization of thermoplastic nylons
US3663495A (en) Self-extinguishing polyamide moulding compositions
EP0448221B1 (en) Flame-retardant nylon resin composition
CA2321551A1 (en) Improved thermally stable flame retardant polyamides
CA2347260C (en) Polyamide composition stabilized with copper salt and an aromatic halogen compound
JPS6258379B2 (en)
US3630988A (en) White and colorable flame resistant polyamide
EP0333457B1 (en) Flame-resistant polyamide resin compositions
US4383064A (en) Flame retardant polyamide composition
JPS5853652B2 (en) Manufacturing method for polyamide that can be molded at lower temperatures
JP4353565B2 (en) Polyamide resin composition
EP0929600B1 (en) Color stable flame retarded polyamide resin
JPS6217607B2 (en)
US4564650A (en) Flame retardant amine terminated polyamide composition
US4410653A (en) Flame-retardant polyamide blends
JPH07502293A (en) Heat-resistant polyamide composition
US4356281A (en) Polyethylene terephthalate molding composition having reduced flammability, and molded products made therefrom
JPS6345410B2 (en)
JPH05320503A (en) Flame-retardant polyamide resin composition