JPS6345410B2 - - Google Patents

Info

Publication number
JPS6345410B2
JPS6345410B2 JP2613880A JP2613880A JPS6345410B2 JP S6345410 B2 JPS6345410 B2 JP S6345410B2 JP 2613880 A JP2613880 A JP 2613880A JP 2613880 A JP2613880 A JP 2613880A JP S6345410 B2 JPS6345410 B2 JP S6345410B2
Authority
JP
Japan
Prior art keywords
polyester
melamine
composition
amount
melamine cyanurate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2613880A
Other languages
Japanese (ja)
Other versions
JPS56122829A (en
Inventor
Hironobu Kawasaki
Koichiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2613880A priority Critical patent/JPS56122829A/en
Publication of JPS56122829A publication Critical patent/JPS56122829A/en
Publication of JPS6345410B2 publication Critical patent/JPS6345410B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は難燃性ポリエステルの製造方法に関す
る。 (従来技術と発明の解決すべき課題) 従来、メラミンシアヌレートを熱可塑性ポリエ
ステルに添加し、該ポリエステルに優れた難燃効
果を付与することは既に知られている(特開昭53
−88854号)。 この方法はメラミンとシアヌール酸を単独また
は併用してポリエステルに添加する方法に比し
て、いわゆるプレートアウトやブルーミング現象
を顕著に抑制することができるという効果を示す
が、該生成組成物の透明性が失なわれ、着色性が
悪く、また成形流動性にも劣る等、ポリエステル
が本来有している性質が著しく損なわれる。また
溶融紡糸や溶融製膜により品質良好な難燃性繊維
やフイルムを得ることも事実上不可能である。 本発明者らは、ポリエステルが本来有している
性質を損なうことなくメラミンシアヌレートの有
する特長を効果的に発現しうる難燃性ポリエステ
ルを製造する方法を確立すべく検討し、本発明を
完成するに至つた。 (課題解決の手段) 即ち、本発明は、メラミン及びそれと実質的に
等モル量のシアヌール酸を添加してなる熱可塑性
ポリエステル形成性のジカルボン酸およびジオー
ルからなる、単量体を該ポリエステル形成性単量
体に対し少なくとも20重量%の水の存在下に加熱
重合させることからなる難燃性ポリエステルの製
造方法である。 本発明方法に用いられる熱可塑性ポリエステル
形成単量体としては、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート及びこれらを主
成分とする共重合ポリエステル等の周知の熱可塑
性ポリエステルを形成しうるいづれの単量体の使
用も可能である。具体的にはテレフタル酸とエチ
レングリコールまたは1,4ブタンジオールとの
組み合せ、ジメチルテレフタレートとエチレング
リコールまたは1,4ブタンジオールとの組み合
せ等が挙げられる。 メラミンとシアヌール酸は実質上等モル量にて
重合係へ添加される。例えば一方が1.5倍モル過
剰のように実質上等モルといえない量関係で添加
した場合は生成組成物にプレートアウトやブルー
ミング現象を生じる。もちろん厳密に等モルであ
ることは必ずしも必要でなく、上記欠点が事実上
発現しない範囲での若干の変動、例えば約0.1モ
ル程度の変動は許容される。なお、シアヌール酸
はエノール型とケト型の両者が使用できる。 メラミンとシアヌール酸の添加は、両者を微粉
末状で添加する方法、スラリー状で添加する方法
等適宜の方法を用いうる。添加時期は重合系に高
分子量のポリエステルが生成する以前の状態、通
常は単量体ないしオリゴマー存在時に添加され
る。従つて本発明における熱可塑性ポリエステル
形成単量体とは上記に例示したような狭義の単量
体だけでなくそれらのオリゴマーも包含する。 メラミンとシアヌール酸の添加量は、最終組成
物中、メラミンシアヌレートとして2〜30重量%
であることが好ましい。2重量%未満では充分な
難燃効果を付与できず、また30重量%を越えると
着色成形時に通常量の顔料を用いて鮮明な着色を
付与することが不可能となる等の欠点が現われ
る。最終組成物中のメラミンシアヌレートを所定
の量とする方法としては、該組成物を直接重合で
製造する際、メラミンとシアヌール酸を生成する
メラミンシアヌレートの量に応じた量を添加して
製造する方法、あるいはあらかじめ重合でメラミ
ンシアヌレート含量が高濃度の組成物を製造し、
該組成物をポリエステルの製造時に単量体に溶融
混合して所定のメラミンシアヌレートの量にする
方法などがある。 本発明方法の実施に当つては、重合系にポリエ
ステル形成単量体に対し少なくとも20重量%の水
の存在が必要である。該水量はまた添加するメラ
ミン及びシアヌール酸の量とも関係し、メラミン
とシアヌール酸の添加量が増すに従つて水の必要
量も増してくる。水が20重量%より少ない量しか
存在しない場合には充分量のメラミンシアヌレー
トが生成せず、微細に分散されたメラミンシアヌ
レートを含有するポリエステルは得られない。ま
た生成組成物にはプレートアウトやブルーミング
が生じる。水量の上限については一たん多量の水
を加えて後、系を濃縮する等の手段で調整可能で
あり、特に制限はないが、重合反応開始時に300
重量%以下が好ましい。 本発明方法はかかる系を加熱し、添加した水及
びエステル化の際生じるメタノールや水等を除去
し、さらに重縮合で発生するグリコール類を除去
することによつて実施されるが、加熱温度は200
〜300℃の範囲でできるだけ高温条件を避けるこ
とが望ましい。また重縮合の際には、ポリエステ
ル重合触媒、顔料、帯電防止剤、耐熱安定剤、酸
化防止剤等適宜の添加剤を添加しうる。 このようにして得られた難燃性ポリエステルは
ポリエステル中にメラミンシアヌレートが均一か
つ微細に分散したものであり、ポリエステルにメ
ラミンシアヌレートを機械的に混入して得た組成
物とは単に分散粒子の大きさだけでなく形状も異
なり、全く別の組成物ということができる。本発
明の難燃性ポリエステルは難燃性に優れることは
もとより、機械的性質、着色性成形流動性も著し
く優れており商品価値の極めて高いものである。
さらには溶融紡糸、溶融製膜により高品質の難燃
性繊維やフイルムを製造することもできる。 (実施例) 次に、本発明を実施例及び比較例により詳細に
説明する。なお、各例中試験及び測定法は下記の
とおりである。 (1) ポリエステルの重合度 還元粘度ηsp/Cを測定した。即ちオルトク
ロルフエノール中1%溶液における比粘度を測
定し、その値をもとに算出した。 (2) X線回折測定 試料の平板を成形し、該成形品を理学電機製
ガイガーフレツクスDS型X線回折装置にかけ、
銅ターゲツトで回折角度5〜40゜の範囲で回折
図形を描かせ、メラミンシアヌレート、メラミ
ン及びシアヌール酸特有の回折ピークによりそ
の存在の有無を測定した。 (3) 難燃性 UL―94の垂直燃焼試験を厚さ1/16インチの
射出成形試験片について行なつた。 (4) プレートアウトとブルーミング プレートアウトについては射出成形機で難燃
性測定用試験片を成形する際、成形中の金型を
観察してプレートアウトの有無を判定した。ブ
ルーミングについては該難燃性測定用試験片を
150℃熱風オーブンに7日間放置して成形品の
表面を観察した。 (5) 着色性 試料ペレツト100重量部にカーボンブラツク
黒色顔料0.1重量部を配合して射出成形し、得
られた成形品の黒色の程度を肉眼で観察すると
ともに色差計を用いてハンター白度を測定し
た。 実施例 1 13.6Kgの高純度テレフタル酸、18.4Kgの1.4ブタ
ンジオール(ポリブチレンテレフタレート18.0Kg
相当)、0.6gの水酸化ナトリウム、2.5gの酸化
アンチモン、0.99Kgのメラミン、1.1Kgのシアヌ
ール酸(メラミンシアヌレート2.0Kg相当)及び
10.0Kgの水を耐圧オートクレーブへ入れ、撹拌し
ながら圧力4.5Kg/cm2、温度230℃に昇温昇圧し、
その圧力及び温度で2時間保持する。その後、内
圧を常圧に下げ内温を250℃まで昇温し、さらに
圧力を0.2mmHgに減圧し、温度280℃で2時間保
ち重合を行つた。得られた重合物をオートクレー
ブ下部からロープ状に排出して水冷したのち、カ
ツターで切断し、3mmφ×3mm長のペレツト状の
ポリエステル組成物を製造した。得られたポリエ
ステル組成物の重合度、X線回折を測定した。重
合度については還元粘度=0.52で充分実用的な重
合度であつた。X線回折図の測定からは、メラミ
ンシアヌレートのピークのみ検出され、メラミン
とシアヌール酸のピークは全く検出されなかつ
た。次に難燃性、プレートアウトとブルーミン
グ、着色性を測定した。その結果を表1に示す。 比較例 1 添加する水の量を0.1Kgとした以外は全て実施
例1と同じ組成、同じ重合条件でポリエステル組
成物を製造した。得られた組成物のX線回折の測
定ではメラミンシアヌレートのピークが微かに検
出されたにすぎず、充分量のメラミンシアヌレー
トは生成していなかつた。該組成物のプレートア
ウトとブルーミングを測定した。その結果を表1
に示す。 比較例 2 還元粘度=0.52のポリブチレンテレフタレート
ペレツト9.0Kgと平均粒径3μのメラミンシアヌレ
ート微粉末1.0Kgを予備混合し、40mmφ押出機へ
供給し、押出温度260℃でストランド状に押出し、
水冷し、カツターで切断し、3mmφ×3mm長のペ
レツト状のポリエステル組成物を得た。該組成物
について実施例1と同様な測定を行なつた。その
結果を表1に示す。 実施例 2 実施例1の装置を用い13.8Kgのテレフタル酸、
10.3Kgのエチレングリコール(ポリエチレンテレ
フタレート16.0Kg相当)、0.5gの水酸化ナトリウ
ム、1.5gの酸化アンチモン、1.48Kgのメラミン
と1.52Kgのシアヌール酸(メラミンシアヌレート
3Kg相当)及び水5.0Kgを出発物質として、実施
例1と同様な重合条件で重合した。ただしポリエ
チレンテレフタレートの融点を考慮して重合後期
の内温を265〜270℃とした。得られた重合組成物
のX線回折の測定を行なつたところメラミンシア
ヌレートのみ検出されメラミンとシアヌール酸は
検出されなかつた。その他の測定評価を実施例1
と同様にして行なつた。その結果を表1に示す。 比較例 3、4 添加するメラミンとシアヌール酸の量を表2に
示すような割合にした以外は全て実施例1と同じ
組成、同じ重合条件でポリエステル組成物を製造
した。得られた組成物のプレートアウトとブルー
ミングを測定した。その結果を表2に示す。
(Industrial Application Field) The present invention relates to a method for producing flame-retardant polyester. (Prior Art and Problems to be Solved by the Invention) It is already known that melamine cyanurate can be added to thermoplastic polyester to impart excellent flame retardant effects to the polyester (Japanese Patent Laid-Open No. 53
−88854). Compared to the method of adding melamine and cyanuric acid alone or in combination to polyester, this method has the effect of significantly suppressing so-called plate-out and blooming phenomena, but the transparency of the resulting composition The inherent properties of polyester are significantly impaired, such as poor coloring properties and poor molding fluidity. Furthermore, it is virtually impossible to obtain flame-retardant fibers or films of good quality by melt spinning or melt film forming. The present inventors have studied to establish a method for producing flame-retardant polyester that can effectively express the characteristics of melamine cyanurate without impairing the inherent properties of polyester, and have completed the present invention. I came to the conclusion. (Means for Solving the Problems) That is, the present invention provides monomers consisting of melamine and a thermoplastic polyester-forming dicarboxylic acid and diol to which cyanuric acid is added in a substantially equimolar amount to the polyester-forming monomer. This is a method for producing flame-retardant polyester, which comprises heating and polymerizing the monomers in the presence of at least 20% by weight of water. As the thermoplastic polyester-forming monomer used in the method of the present invention, any monomer capable of forming a well-known thermoplastic polyester, such as polyethylene terephthalate, polybutylene terephthalate, and copolyester containing these as main components, is used. is also possible. Specific examples include a combination of terephthalic acid and ethylene glycol or 1,4-butanediol, and a combination of dimethyl terephthalate and ethylene glycol or 1,4-butanediol. Melamine and cyanuric acid are added to the polymerization mixture in substantially equimolar amounts. For example, if one of the two is added in a 1.5-fold molar excess, which cannot be said to be substantially equimolar, plate-out or blooming phenomena occur in the resulting composition. Of course, it is not necessarily necessary that the moles be strictly equimolar, and a slight variation, for example, a variation of about 0.1 mole, is allowed as long as the above-mentioned drawbacks do not actually occur. In addition, both enol type and keto type of cyanuric acid can be used. Melamine and cyanuric acid may be added by any appropriate method, such as adding both in the form of fine powder or in the form of a slurry. It is added before high molecular weight polyester is produced in the polymerization system, usually when monomers or oligomers are present. Therefore, the thermoplastic polyester-forming monomer in the present invention includes not only monomers in the narrow sense as exemplified above but also oligomers thereof. The amount of melamine and cyanuric acid added is 2 to 30% by weight as melamine cyanurate in the final composition.
It is preferable that If it is less than 2% by weight, sufficient flame retardant effect cannot be imparted, and if it exceeds 30% by weight, disadvantages arise such as it becomes impossible to impart clear coloring using a normal amount of pigment during colored molding. A method for adjusting the amount of melamine cyanurate in the final composition is to add an amount corresponding to the amount of melamine cyanurate that produces melamine and cyanuric acid when producing the composition by direct polymerization. or by pre-polymerizing to produce a composition with a high concentration of melamine cyanurate,
There is a method in which the composition is melt-mixed with monomers to obtain a predetermined amount of melamine cyanurate during the production of polyester. In carrying out the process of the invention, the presence of at least 20% water by weight based on the polyester-forming monomers in the polymerization system is required. The amount of water is also related to the amount of melamine and cyanuric acid added; as the amount of melamine and cyanuric acid added increases, the amount of water required increases. If water is present in an amount less than 20% by weight, a sufficient amount of melamine cyanurate will not be produced and a polyester containing finely dispersed melamine cyanurate will not be obtained. Plate-out and blooming also occur in the resulting composition. The upper limit of the amount of water can be adjusted by adding a large amount of water and then concentrating the system, and there is no particular limit, but the upper limit of the amount of water can be adjusted by adding a large amount of water and then concentrating the system.
It is preferably less than % by weight. The method of the present invention is carried out by heating such a system to remove added water, methanol, water, etc. generated during esterification, and further remove glycols generated during polycondensation. 200
It is desirable to avoid high temperature conditions as much as possible in the range of ~300°C. Further, during polycondensation, appropriate additives such as a polyester polymerization catalyst, pigment, antistatic agent, heat stabilizer, and antioxidant may be added. The flame-retardant polyester thus obtained has melamine cyanurate uniformly and finely dispersed in the polyester, and is different from a composition obtained by mechanically mixing melamine cyanurate into polyester, which is simply dispersed particles. They differ not only in size but also in shape, and can be said to be completely different compositions. The flame-retardant polyester of the present invention not only has excellent flame retardancy, but also has extremely excellent mechanical properties, colorability, and molding fluidity, and has extremely high commercial value.
Furthermore, high quality flame retardant fibers and films can also be produced by melt spinning and melt film forming. (Example) Next, the present invention will be explained in detail using Examples and Comparative Examples. The tests and measurement methods in each example are as follows. (1) Degree of polymerization of polyester The reduced viscosity ηsp/C was measured. That is, the specific viscosity of a 1% solution in orthochlorophenol was measured, and the calculation was made based on that value. (2) X-ray diffraction measurement A flat plate of the sample is molded, and the molded product is subjected to a Geigerflex DS model X-ray diffractometer manufactured by Rigaku Denki.
A diffraction pattern was drawn using a copper target within a diffraction angle range of 5 to 40 degrees, and the presence or absence of melamine cyanurate, melamine, and cyanuric acid was determined based on their unique diffraction peaks. (3) Flame retardancy A UL-94 vertical combustion test was conducted on injection molded specimens with a thickness of 1/16 inch. (4) Plate-out and blooming Regarding plate-out, when a test piece for flame retardancy measurement was molded using an injection molding machine, the mold during molding was observed to determine the presence or absence of plate-out. For blooming, use the test piece for flame retardancy measurement.
The molded product was left in a hot air oven at 150°C for 7 days, and the surface of the molded product was observed. (5) Colorability 100 parts by weight of sample pellets were mixed with 0.1 part by weight of carbon black black pigment and injection molded, and the degree of blackness of the obtained molded product was observed with the naked eye, and Hunter whiteness was measured using a color difference meter. It was measured. Example 1 13.6Kg of high purity terephthalic acid, 18.4Kg of 1.4-butanediol (18.0Kg of polybutylene terephthalate)
equivalent), 0.6g sodium hydroxide, 2.5g antimony oxide, 0.99Kg melamine, 1.1Kg cyanuric acid (equivalent to 2.0Kg melamine cyanurate), and
Put 10.0Kg of water into a pressure-resistant autoclave, and raise the pressure to 4.5Kg/cm 2 and the temperature to 230℃ while stirring.
Hold at that pressure and temperature for 2 hours. Thereafter, the internal pressure was lowered to normal pressure, the internal temperature was raised to 250°C, the pressure was further reduced to 0.2 mmHg, and the temperature was maintained at 280°C for 2 hours to carry out polymerization. The obtained polymer was discharged from the lower part of the autoclave in the form of a rope, cooled with water, and then cut with a cutter to produce a polyester composition in the form of pellets with a diameter of 3 mm and a length of 3 mm. The degree of polymerization and X-ray diffraction of the obtained polyester composition were measured. Regarding the degree of polymerization, the reduced viscosity was 0.52, which was a sufficiently practical degree of polymerization. From the measurement of the X-ray diffractogram, only the peak of melamine cyanurate was detected, and the peaks of melamine and cyanuric acid were not detected at all. Next, flame retardancy, plate-out and blooming, and colorability were measured. The results are shown in Table 1. Comparative Example 1 A polyester composition was produced under the same composition and polymerization conditions as in Example 1, except that the amount of water added was 0.1 kg. In X-ray diffraction measurements of the resulting composition, only a faint peak of melamine cyanurate was detected, indicating that a sufficient amount of melamine cyanurate was not produced. Plate out and blooming of the composition was measured. Table 1 shows the results.
Shown below. Comparative Example 2 9.0 kg of polybutylene terephthalate pellets with a reduced viscosity of 0.52 and 1.0 kg of melamine cyanurate fine powder with an average particle size of 3 μm were premixed, supplied to a 40 mmφ extruder, and extruded into a strand at an extrusion temperature of 260°C.
The mixture was cooled with water and cut with a cutter to obtain a polyester composition in the form of pellets with a diameter of 3 mm and a length of 3 mm. The same measurements as in Example 1 were performed on the composition. The results are shown in Table 1. Example 2 Using the apparatus of Example 1, 13.8 kg of terephthalic acid,
Starting materials: 10.3Kg of ethylene glycol (equivalent to 16.0Kg of polyethylene terephthalate), 0.5g of sodium hydroxide, 1.5g of antimony oxide, 1.48Kg of melamine, 1.52Kg of cyanuric acid (equivalent to 3Kg of melamine cyanurate) and 5.0Kg of water. Polymerization was carried out under the same polymerization conditions as in Example 1. However, considering the melting point of polyethylene terephthalate, the internal temperature in the latter stage of polymerization was set at 265 to 270°C. When the obtained polymer composition was subjected to X-ray diffraction measurement, only melamine cyanurate was detected, and melamine and cyanuric acid were not detected. Example 1 of other measurement evaluations
I did it in the same way. The results are shown in Table 1. Comparative Examples 3 and 4 A polyester composition was produced under the same composition and polymerization conditions as in Example 1, except that the amounts of melamine and cyanuric acid added were changed to the ratios shown in Table 2. Plate out and blooming of the resulting compositions were measured. The results are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 メラミン及びそれと実質的に等モル量のシア
ヌール酸を添加してなる、熱可塑性ポリエステル
形成性のジカルボン酸およびジオールからなる、
単量体を、該ポリエステル形成性単量体に対し少
なくとも20重量%の水の存在下に加熱重合させる
ことを特徴とする難燃性ポリエステルの製造方
法。
1 consisting of a thermoplastic polyester-forming dicarboxylic acid and diol to which melamine and substantially equimolar amount of cyanuric acid are added;
A method for producing a flame-retardant polyester, which comprises heating and polymerizing a monomer in the presence of at least 20% by weight of water based on the polyester-forming monomer.
JP2613880A 1980-03-04 1980-03-04 Preparation of fire-retardant polyester Granted JPS56122829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2613880A JPS56122829A (en) 1980-03-04 1980-03-04 Preparation of fire-retardant polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2613880A JPS56122829A (en) 1980-03-04 1980-03-04 Preparation of fire-retardant polyester

Publications (2)

Publication Number Publication Date
JPS56122829A JPS56122829A (en) 1981-09-26
JPS6345410B2 true JPS6345410B2 (en) 1988-09-09

Family

ID=12185181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2613880A Granted JPS56122829A (en) 1980-03-04 1980-03-04 Preparation of fire-retardant polyester

Country Status (1)

Country Link
JP (1) JPS56122829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107132U (en) * 1990-02-16 1991-11-05
WO2016189165A1 (en) 2015-05-28 2016-12-01 Coim Asia Pacific Pte. Ltd. Flame retardant and auto-catalytic polyesters for polyurethanes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029357A1 (en) * 1995-03-20 1996-09-26 Desmepol B.V. Use of 1,3,5-triazines which are substituted in the 2-, 4- and 6-position or tautomers thereof for controlling the crystallization of linear polyesters and/or polyester polyols and method for the preparation thereof
EP2964687A2 (en) * 2013-03-08 2016-01-13 DSM IP Assets B.V. Polyester
RU2721424C2 (en) * 2015-05-28 2020-05-19 Коим Асиа Пасифик Пте. Лтд. Fire-retardant and autocatalytic polyesters for polyurethanes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107132U (en) * 1990-02-16 1991-11-05
WO2016189165A1 (en) 2015-05-28 2016-12-01 Coim Asia Pacific Pte. Ltd. Flame retardant and auto-catalytic polyesters for polyurethanes
CN107980047A (en) * 2015-05-28 2018-05-01 新加坡科意亚太有限公司 Fire-retardant and self-catalysis polyester for polyurethane

Also Published As

Publication number Publication date
JPS56122829A (en) 1981-09-26

Similar Documents

Publication Publication Date Title
US3922232A (en) Fluorescent colorants
KR101862620B1 (en) Polyester resin composition and polyester film using the same
US4332921A (en) Polycarbonate/polyphosphonate thermoplastic composition
US4207230A (en) Block copolyesters which crystallize rapidly
US20140336300A1 (en) High dimensional stability polyester compositions
US3709859A (en) Method for the production of polyesters with a novel multicomponent catalyst
DE2744648C2 (en)
US3479318A (en) Mouldable polyester compositions containing finely divided pyrophyllite
JPS6345410B2 (en)
CN111808273B (en) Polyester-polycarbonate copolymer, polyester product, preparation method and application thereof
DE2744617C2 (en)
US4313903A (en) Process for injection molding of polyethylene terephthalate compositions at reduced mold temperature
US3578730A (en) Thermoplastic polyester-poly-3-methyl butene-1 moulding compositions
US4043981A (en) Copolyesters derived from ethoxylated 3,5-dibromo-4-hydroxybenzoic acid
KR101262833B1 (en) Flame-retardant polyester compostion
KR20080109264A (en) Flame retardant copolyester composition containing 1,4-cyclohexanedimethanol, its preparation and products using it
KR101083773B1 (en) A flame retardant polyester with excellent color tone, and a process of preparing the same
JP3144972B2 (en) Polyester resin composition
JPS5928346B2 (en) Flame retardant polyester composition
GB1583698A (en) Process for the preparation of compositions comprising isophthalate or terephthalate polyesters and aromatic carbonates or polycarbonates
JPS6217607B2 (en)
JPH039126B2 (en)
KR101552429B1 (en) Polyester resin having an excellent surface-active and shielding property the light and preparing process thereof
CN111777753B (en) Heat-resistant flame-retardant polyester, polyester product, preparation method and application thereof
JPS6258379B2 (en)