JPS6258286B2 - - Google Patents

Info

Publication number
JPS6258286B2
JPS6258286B2 JP55075434A JP7543480A JPS6258286B2 JP S6258286 B2 JPS6258286 B2 JP S6258286B2 JP 55075434 A JP55075434 A JP 55075434A JP 7543480 A JP7543480 A JP 7543480A JP S6258286 B2 JPS6258286 B2 JP S6258286B2
Authority
JP
Japan
Prior art keywords
molded product
mold
injection molded
resin
polyphenylene ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55075434A
Other languages
Japanese (ja)
Other versions
JPS571733A (en
Inventor
Akihiro Wada
Kicha Tazaki
Tamotsu Tawara
Keiji Suzuki
Yukihisa Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7543480A priority Critical patent/JPS571733A/en
Publication of JPS571733A publication Critical patent/JPS571733A/en
Publication of JPS6258286B2 publication Critical patent/JPS6258286B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリフエニレンエーテル系樹脂の外観
良好な成形品に関するものである。 ポリフエニレンエーテル系樹脂(以下PPE樹脂
と略す。)は成形加工性、該成形品の剛性、強
さ、タフネス、寸法精度、寸法安定性等がすぐれ
かつ、耐熱性、耐水性にすぐれ、難燃性にすぐれ
る等の多くの特徴を有する。このため、電気機器
のハウジング、電装部品や工業部品等の用途に多
く使われている。ところが、該樹脂の射出成形品
の外観はかならずしを良いとはいえず、その成形
品の光沢は通常の場合ASTM D523に規定された
光沢度Gs(60゜)%が40〜50%であり、上述の
幾多の利点をもつているにもかかわらず、外観が
良くないためその利用範囲が狭められている。ど
うしても外観を必要とする用途の場合には、塗装
する等して使用されている。 PPE樹脂の射出成形品の外観が良くない原因は
明確には判らないが、次の2点が考えられる。そ
の1つは、PPE樹脂はその分子構造上溶融粘度が
高い、即ち加工流動性が悪いこと、固化温度が高
く、ヒートセツト性が良いことのため、金型内に
おいて該樹脂に対する射出圧力の伝達性が一般の
汎用樹脂等に比較し悪い。従つて、金型面の成形
品に対する転写性が良くないために高光沢成形品
が得られない。 いま1つはPPE樹脂として市販されているもの
はその実用性能を良くするため、何らかの補強効
果をもたす目的で該樹脂と相容性のあるスチレン
−ブタジエン共重合体と複合されており、該スチ
レン−ブタジエン共重合体におけるゴム分が射出
成形時に金型内を流動する時に該樹脂中のゴムが
変形し、かつ該ゴムの変形が金型に接触、冷却さ
れ、樹脂の金型接触面、即ち樹脂の射出成形品表
面に変形したゴムが露出するか、或は変形ゴムの
影響で射出成形品表面が凸凹になるために、高光
沢成形品が得られないことが考えられる。 また、PPE樹脂を中心とする熱可塑性樹脂の射
出成形の原理を再考察すると、一般的に熱可塑性
樹脂成形品の射出成形においては熱可塑性樹脂の
可塑性を利用、換言すればスクリユー等を利用し
熱可塑性樹脂を加熱流動化、付形し然るのち金型
内で冷却固化することにより成形品を得ることを
基本原理としている。すなわち固化、成形品を金
型より離型、取り出すためには該熱可塑性樹脂の
加熱変形温度より冷却し金型外に取り出す。その
ため一般的に金型は加熱変形温度より低く保持す
る。更に生産性を上げるために結露寸前の温度ま
で冷媒を利用金型を冷却することが行なわれてい
る。即ち現在行なわれている射出成形においては
金型を冷却し、溶融樹脂の温度等で加熱、蓄熱さ
れる場合でもその原理上金型温度は該熱可塑性樹
脂の加熱変形温度を上まわらない様に制御し成形
する。換言すると金型表面と熱可塑性樹脂とが接
触するとその接触面で熱可塑性樹脂が急速に冷却
され熱可塑性樹脂の流動性が著しく乏しくなるた
め金型表面に熱可塑性樹脂の密着が悪く、成形品
表面の凸凹が激しい。よつて、前述の通りPPE樹
脂成形品の表面も前述の理由により凸凹があつた
りして外観が良くない。 これらの樹脂を外観の美しさを要求される成形
品として利用する場合は、塗装、フイルム貼付等
の他薄膜材料を熱可塑性樹脂成形品の表面に付着
する方法が採用されているが熱可塑性樹脂本来の
やわらかい光沢を有する外観の成形品を得ること
が出来ずまたその製作に手間がかかり、従つて高
価になる等の欠点を有する。更に塗装の場合は塗
膜を形成させるために熱可塑性樹脂を溶かすため
衝撃強さ等の機械的強さが減少する。またフイル
ムを貼付ける場合も成形品形状が複雑な場合は成
形品全面を覆うことは工業生産上不可能に近い。 また成形品の外観を部分的に修正、光沢を付与
する方法としては、バフをかけることも時々行わ
れる。しかしながら、バフをかけ修正できるの
は、軽度の外観不良であり、かつ該作業により均
一な外観を得るには、熟練者の技術がいる。ま
た、熟練者といえどもバフをかけた時のバフによ
るキズ(バブキズ)は該成形品に残る。また凸凹
やミゾのある成形品はバフによつても均一に光る
成形品は得られない。無理にバフをかけると成形
品のコーナー部等のRがとれるなど不都合が発生
する。また、いずれにしても後加工に手間がかか
ること、バフ材が表面に残る等の欠点がある。 換言すると高光沢のPPE樹脂射出成形品を得る
こと、更には工業生産性の見地から何ら後加工を
ほどこさずに該均一、高光沢のPPE樹脂射出成形
品の出現が希求されていた。本発明者等は、かか
る欠点を解決するためにPPE樹脂成形品において
成形品表面付近において配向の少ない層、ゴムの
変形の少ない層を形成させ、成形品表面に熱可塑
性樹脂本来の光沢を有し、高光沢、光沢勾配、フ
ローマーク、シルバーストリーク等の外観不良現
象がない、良好な外観を有するPPE樹脂射出成形
品を得ることに成功した。この良好な外観を有す
るPPE樹脂射出成形品は単純な形状の成形品はも
ちろんのこと、格子状の複雑な形状をもつ射出成
形品でも成形品表面付近において1〜100μのゴ
ムの変形の少ない層、配向の少ない表皮層を形成
ていることが好ましい。 すなわち、本発明は、ポリフエニレンエーテル
樹脂又は補強ゴム成分を含有するポリフエニレン
エーテル樹脂組成物の射出成形品において、該成
形品の表面附近には少なくとも1〜100μのゴム
の変形の少ない層、配向の少ない表皮層が実質的
に接合界面を有さず射出成形時に一体的に形成さ
れてなり、該成形品表面がASTMD523に規定さ
れる入射角60゜における光沢度Gs(60゜)%が
少なくとも70%、好ましくは90%以上であること
を特徴とするポリフエニレンエーテル樹脂射出成
形品を提供する。 また、本発明の射出成形品は成形品表面の光沢
が良好であるばかりでなく、PPE樹脂成形品の欠
点であるゴムの表面への現出および、シルバース
トリークやフローマーク等の射出成形時のPPE樹
脂の流れ及び流れムラに起因する外観上の不良現
象もない良好な外観を有するPPE樹脂射出成形品
である。すなわち射出成形品表面が滑らかでかつ
熱可塑性樹脂特有のやわらかな光沢を有し、かつ
シルバーストリークやフローマーク等の外観不良
のないこと/ウエルドラインが実質的に目だたな
いことを特徴とするPPE樹脂射出成形品である。
通常の射出成形においてはウエルドラインは樹脂
の合流点に発生する合流ラインであり、該ライン
の垂直断面を顕微鏡観察すると巾10μ以上、深さ
3〜5μ以上の凹部を形成している。 本発明でいう、「ウエルドラインが実質的に目
だたない」とは巾5μ以下、深さ1μ以下の凹部
でライン状外観が見えないことをいう。フローマ
ークもその発生原因は種々考えられる。例えば、
成形品肉厚変動がある場合等に、該部分で樹脂の
流れが乱れたり、圧力の伝達が不均一になり、該
不均一樹脂が金型面で冷却固化されたため、外観
上の不均一が発生すると考えられるが、本発明に
なる成形品は該フローマークがない。 シルバーストリークは樹脂中の揮発生物質等が
成形中に揮散し、該揮散中に樹脂が冷却固化する
とき成形品の表面に銀条痕を生じるもので、本発
明になる成形品には該シルバーストリークがな
い。 ジエツテイングは成形品のゲート部等によく見
られる現象で、射出成形時ゲート部等樹脂の流路
が狭められた部分等で、樹脂流速が早くなつたた
め、樹脂が金型内で部分的にとび出した痕跡が成
形品に残るものではあるが、本発明品は該ジエツ
テイングがない。 これら金型内樹脂流動状態の不均一により発生
する外観不良が、本発明品においては、該樹脂流
動状態の不均一状態のまま冷却固化されることは
ないので、上記外観不良現象のない高光沢、均一
光沢の成形品の作製が可能となるのである。また
光沢勾配が実質的にないとは成形品のゲート部の
光沢とデツドエンド部の光沢との差異がほとんど
なく樹脂の流動距離L、成形品平均肉厚tとした
場合L/t=10〜20以上の成形品において前記光
沢度の差異が0〜0.5%/cm、好ましくは0〜0.2
%/cmであることをいう。ちなみに通常の成形品
においては光沢勾配は1〜5%/cmあることが多
い。 本発明の射出成形品を得るための方法は次の通
りである。樹脂と金型との密着を良くするために
は金型表面をPPE樹脂の加熱変形温度以上に保持
することにより可塑性を保持したまま成形する。
一方金型の表面をPPE樹脂の加熱変形温度以上に
保持したまま金型より離型することは不可能であ
り、変型のない所望の成形品を得るためには該金
型を冷却し成形品の温度が該熱可塑性樹脂の加熱
変形温度より低温に冷却、固化させた状態で金型
より離型する。この加熱、冷却には高周波誘導加
熱の原理を利用、金型の表層部を選択的に加熱す
ることにより、金型表面を急加熱急冷却すること
により本発明の射出成形品が得られる。 次に本発明になる成形品とその成形方法を図面
をまじえ説明する。 PPE樹脂の射出成形において、第1図に示す様
に固定側金型と移動側金型との中間に高周波誘導
加熱のインダクターを設置する。移動側金型と固
定側金型との間にインダクターをはさみこみ、は
さみこまれた状態で高周波を発振させたところ第
2図に示すように金型表面(A点やB点)のみ急
激に温度が上昇し、金型内部(C点やD点)の温
度は高周波誘導加熱によつては温度上昇がほとん
どないことが確認できる。第2図の例の場合は金
型の冷却水による冷却は行なつておらず、単純に
高周波誘導加熱による金型の温度分布の経時変化
の例を示したものである。しかるのちに金型を一
度開きインダクターを固定側及び移動側金型の間
より抜き出し再度金型を閉じ通常の射出成形と同
じ要領でPPE樹脂を射出成形したところ目的とす
る外観の美しいPPE樹脂射出成形品を得た。 本発明になる前述のPPE樹脂製成形品の外観の
良さ、光沢度を定量化するためASTM D523によ
り成形品の光沢度Gs(60゜)を測定した結果102
%であつた。一方金型温度70℃の成形品は光沢度
50%であり、本発明になる成形品外観の平滑性、
光沢の良さを示している。また本発明になる成形
品は射出成形時の流動抵抗が少なく配向歪が発生
しずらいためか、JIS K6871に規定された加熱変
形温度を測定したところ通常の成形品に比較し加
熱変形温度が2〜3℃向上し、いわゆる実用耐熱
温度が向上すること、成形品の落下強さ等比較し
た結果実用タフネスも向上することを確認した。 なお、本発明において成形品の光沢を評価する
にASTM D523におけるGs(60゜)%を利用して
いるが、これは従来よりプラスチツク成形品の外
観・光沢を評価するのに入射角60度の光沢度Gs
(60゜)%を使用する慣習にしたがつたもので正
確にASTM D523の規定に従がうとGs(60゜)%
が70%以上の場合に入射角20度の光沢Gs(20
゜)%を適用することになつている。 そこで本発明になる成形品及び比較例を含めた
成形品に関しGs(60゜)%とGs(20゜)%とを
測定し両者の相関を求めると第3図のようにな
る。従つてASTM D523に正確に従がうとGs(60
゜)%が70%以上の光沢度を示す成形品に関して
は第3図より対応るGs(20゜)%の値を表示す
べきではあるが、従来からの業界の慣例と比較例
との関係よりその差異が明確になるとの意味で、
あえてGs(60゜)%を利用したことをことわつ
ておく。 本発明でいうPPE樹脂とは一般式: (ここにR1,R2は炭素数1〜4アルキル基
を、nは重合度を示す。)で表わされるポリフエ
ニレンエーテル又はスチレン系化合物をグラフト
共重合せしめたポリフエニレンエーテル及びこれ
らポリフエニレンエーテル20〜80重量%とスチレ
ン系重合体20〜80重量%を添加した樹脂組成物が
主成分(80重量%以上)となりその他必要に応じ
て添加剤(例えば難燃剤、滑剤、等)を混合した
ものを言う。 本発明の上記一般式で示されるポリフエニレン
エーテルの例としては、ポリ(2,6−ジメチル
フエニレン−1,4−エーテル)、ポリ(2,6
−ジエチルフエニレン−1,4−エーテル)、ポ
リ(2−メチル−6−エチルフエニレン−1,4
−エーテル)、ポリ(2−メチル−6−プロピル
フエニレン−1,4−エーテル)、ポリ(2,6
−ジプロピルフエニレン−1,4−エーテル)、
ポリ(2−エチル−6−プロピルフエニレン−
1,4−エーテル)、ポリ(2−メチル−6−ブ
チルフエニレン−1,4−エーテル)、ポリ(2
−エチル−6−ブチルフエニレン−1,4−エー
テル)などが挙げられる。 本発明に用いるスチレン系化合物をグラフト共
重合せしめたポリフエニレンエーテルにおいて、
スチレン系化合物とは、スチレン及びスチレンの
アルキル化物、ハロゲン化物などの誘導体を含
み、それらの具体例としては、スチレン、α−メ
チルスチレン、2,4−ジメチルスチレン、モノ
クロルスチレン、ジクロルスチレン、p−メチル
スチレン、エチルスチレン等が挙げられる。 これ等は、重合に際して共重合可能なビニル化
合物例えばメチルメタクリレート、アクリロニト
リル、メタクリロニトリル、ブチルアクリレート
などを併用することも可能であり、またスチレン
系化合物を二種以上共存せしめて共重合グラスト
したものでもよい。 ここにいうスチレン系重合体の構成成分は、前
記のグラフト共重合に際して用いうる化合物と同
一のものを示し、更にスチレン系重合体には、通
常知られているゴム補強された樹脂も包含され
る。たとえば、ゴム補強ポリスチレン樹脂、アク
リロニトリル−ブタジエン−スチレン共重合樹
脂、EPDMゴムを利用したポリスチレン樹脂など
も本発明の範囲に含まれる。 更に、又、PPE樹脂中にはゴム補強材の他に
種々の目的に応じて各種充填材が添加されていて
もよい。 前記の如きPPE樹脂を用いた場合には本発明の
方法により得られる射出成形品の光沢度は一般的
に70%以上、好ましくは90%以上である。 本発明で高周波誘導加熱に利用する高周波の周
波数は50Hz〜10MHz、好ましくは1KHz〜1000KHz
が適切である。 実施例 1 通常の市販されているPPE樹脂を通常のインラ
イン型射出成形機で成形した。金型は通常のS−
45C鋼材を利用し、直径10cm、深さ2cm、平均肉
厚3.5mmの皿状の成形品を成形できる金型になつ
ており、ゲートはセンターダイレクトゲートであ
る。インダクターは6mm径の銅管を5mm間隔の渦
巻状に皿形状にそわせ型づくり、それを3cmの厚
さになる様にエポキシ樹脂で注型し平板状に固定
固化作成する。 射出成形条件は該PPE樹脂の温度が270℃にな
るようにシリンダー温度を設定した。該PPE樹脂
を金型に射出する前に上述のインダクターを金型
の間にはさみこみ400KC,6KWの高周波発振器
により15秒間発振し、しかるのち金型を開きイン
ダクターを金型間より抜き出し再度金型を閉じ
た。その間金型冷却水は金型内を流れないように
しておく、しかるのち通常の射出成形と同様に金
型内に該PPE樹脂を60Kg/cm2の射出圧で10秒間射
出ししかるのち金型に冷却水を通し20秒間冷却後
成形品を取り出した。全サイクル時間は60秒であ
つた。 該成形品の表面は従来のPPE製成形品では考え
られないほど光沢がありGs(60゜)%は102%で
あつた。かつゲート部のフローマークもなくかつ
ゲート部と皿縁部(成形品流動末端部)の光沢も
全く同じGs(60゜)%が102%でありいわゆるツ
ヤ勾配のない成形品を得た。 従来のPPE成形品の概念をくつがえすほどピカ
ツトひかつた成形品を得た。 実施例 2 通常ののPPEを通常の射出成形機で樹脂温度
280℃で成形した。 金型はJIS K6871に規定された形状のダンベル
及び短冊を得る事が出来る金型で、材質はS−
55Cで作成されている。インダクターは3mm径の
銅管を5mm間隔で渦巻状に配置し、これをエポキ
シ樹脂で2cm厚の平板に注型し固定固化したもの
を使用した。成形方法は実施例1と同様であるが
4KHz,6KW、高周波発振時間10秒、射出10秒、
冷却15秒、全成形サイクル50秒、射出圧50Kg/cm2
である。かくてPPE樹脂の美しい、光沢の有る成
形品を得た。 成形品をJIS K6871に従がい物性を評価した結
果は表1に示す通りである。 表1の結果より明らかなように外観、光沢、物
性のすぐれた成形品を得ることが出来た。 実施例 3 オーデイオ・カセツトのハウジング(業界では
カセツト・ハーフと呼称している)1対を成形で
きる金型を利用、通常の射出成形機でPPE樹脂を
成形した。 インダクターは5mm径の銅管を5mm間隔の渦巻
形に平面状に配置し、これを3cm厚さの平板にな
るようにエポキシ樹脂で注型し、銅管を固定、固
化したものを使用した。該インダクターを金型間
にはさみこみ7KHz,20KWの高周波を15秒間発振
し然るのちインダクターを金型間より抜き出し、
実施例1の場合と同様の要領で射出成形を行なつ
た。 該成形品はリブやボス、穴あき部、シボ部等複
雑な形状をしており、通常の成形ではフローマー
クや、ウエルドライン等が目立つ成形品である
が、本実施例の成形品は成形品外観が美しくフロ
ーマークは全くなく、ウエルドラインも見えず、
かつシボ部分は光沢度が向上したためもあり、い
わゆるシツトリしたシボになり、著しく商品価値
を上げた。なお寸法精度も従来品と同じであり、
ソリ等もない。 該成形品における平面部の光沢度を測定したと
ころ本実施例の成形品のGs(60゜)は98%であ
つたが、従来の方法による成形品のGs(60゜)
は45%であつた。 実施例 4 縦12cm、横8cm、深さ2cmの外寸法を有するポ
ケツト・ラジオのハウジングをPPE樹脂で成形し
た。 インダクターは実施例3の場合とほぼ同じ要領
で作成、同じ要領で成形した。ただし成形温度は
PPE温度を280℃で成形した。 本成形品は従来ポケツトラジオのスピーカーグ
リル部や、各種ツマミ類の穴があいている部品に
ウエルドラインや、フローマークが出るためにア
クリル系の塗装をして、該外観不良をカバーし商
品化していたものであるが本実施例の成形品は全
くフローマーク、ウエルドラインが見えず塗装す
る必要が全くないほど各部の光沢もGs(60゜)
が98〜100%であり均一、かつ高光沢の成形品を
得た。 比較例 1 実施例2の場合と同一成形機、金型を利用、同
一成形材料を利用し樹脂温度280℃、金型温度80
℃、射出10秒、冷却15秒、全成形サイクル40秒、
射出圧50Kg/cm2で成形した該成形品の物性を測定
した結果は第1表比較例1に示す。
The present invention relates to a molded article made of polyphenylene ether resin and having a good appearance. Polyphenylene ether resin (hereinafter abbreviated as PPE resin) has excellent molding processability, rigidity, strength, toughness, dimensional accuracy, and dimensional stability of the molded product, as well as excellent heat resistance and water resistance. It has many characteristics such as excellent flammability. For this reason, it is often used in applications such as housings for electrical equipment, electrical parts, and industrial parts. However, the appearance of injection molded products made of this resin is not necessarily good, and the gloss of the molded products is usually 40 to 50% of the gloss level Gs (60°)% specified by ASTM D523. Despite having many of the above-mentioned advantages, its use is limited due to its poor appearance. In cases where the appearance is absolutely necessary, it is used by painting. Although it is not clear why the appearance of injection molded products made of PPE resin is not good, the following two points can be considered. One of these is that PPE resin has a high melt viscosity due to its molecular structure, which means it has poor processing fluidity, and has a high solidification temperature and good heat setting properties, so it is difficult to transmit injection pressure to the resin in the mold. is worse than general purpose resins. Therefore, since the transferability of the mold surface to the molded product is not good, a high gloss molded product cannot be obtained. Another is that commercially available PPE resins are composited with a styrene-butadiene copolymer that is compatible with the resin in order to provide some kind of reinforcing effect in order to improve their practical performance. When the rubber component in the styrene-butadiene copolymer flows through the mold during injection molding, the rubber in the resin deforms, and the deformed rubber contacts the mold and is cooled, causing the resin to contact the mold surface. That is, it is conceivable that a high-gloss molded product cannot be obtained because the deformed rubber is exposed on the surface of the resin injection molded product, or because the surface of the injection molded product becomes uneven due to the influence of the deformed rubber. Also, if we reconsider the principles of injection molding of thermoplastic resins, mainly PPE resins, we find that generally, in injection molding of thermoplastic resin molded products, the plasticity of the thermoplastic resin is used, in other words, screws, etc. are used. The basic principle is to obtain a molded product by heating, fluidizing and shaping a thermoplastic resin, and then cooling and solidifying it in a mold. That is, in order to solidify and release the molded product from the mold, the thermoplastic resin is cooled below the heating deformation temperature and taken out of the mold. Therefore, the mold is generally maintained at a temperature lower than the heating deformation temperature. Furthermore, in order to increase productivity, a refrigerant is used to cool the mold to a temperature on the verge of condensation. In other words, in the injection molding currently practiced, the mold is cooled, and even if it is heated and heat is stored at the temperature of the molten resin, in principle the mold temperature does not exceed the heating deformation temperature of the thermoplastic resin. Control and shape. In other words, when the mold surface and thermoplastic resin come into contact, the thermoplastic resin is rapidly cooled at the contact surface, and the fluidity of the thermoplastic resin becomes extremely poor, resulting in poor adhesion of the thermoplastic resin to the mold surface, resulting in a molded product. The surface is extremely uneven. Therefore, as described above, the surface of the PPE resin molded product is uneven and does not have a good appearance due to the above-mentioned reasons. When using these resins for molded products that require a beautiful appearance, methods such as painting, pasting a film, or attaching a thin film material to the surface of the thermoplastic resin molded product are used. This method has the disadvantage that it is not possible to obtain a molded product with an appearance that has the original soft luster, and that it is time-consuming and expensive to manufacture. Furthermore, in the case of painting, mechanical strength such as impact strength is reduced because the thermoplastic resin is melted to form a coating film. Furthermore, when attaching a film, if the shape of the molded product is complex, it is almost impossible in terms of industrial production to cover the entire surface of the molded product. Buffing is also sometimes used to partially modify the appearance of a molded product and add luster to it. However, only minor appearance defects can be corrected by buffing, and it requires the skill of a skilled person to obtain a uniform appearance through this work. In addition, even if a person is an expert, the molded product will still have scratches caused by buffing (bubble scratches). Furthermore, if a molded product has unevenness or grooves, even if it is buffed, it will not be possible to obtain a molded product that shines uniformly. Forcibly buffing may cause problems such as the corners of the molded product being rounded. Moreover, in any case, there are drawbacks such as the post-processing being time-consuming and the buffing material remaining on the surface. In other words, it has been desired to obtain a high-gloss PPE resin injection-molded product, and furthermore, from the standpoint of industrial productivity, it has been desired to produce a uniform, high-gloss PPE resin injection-molded product without any post-processing. In order to solve this drawback, the present inventors formed a layer with less orientation and a layer with less deformation of rubber near the surface of the molded product in the PPE resin molded product, thereby giving the surface of the molded product the luster inherent to thermoplastic resin. We succeeded in obtaining a PPE resin injection molded product with a good appearance and no appearance defects such as high gloss, gloss gradient, flow marks, and silver streaks. PPE resin injection molded products with this good appearance can be used not only for simple shaped molded products, but also for injection molded products with complex lattice shapes. , it is preferable to form a skin layer with little orientation. That is, the present invention provides an injection molded article of a polyphenylene ether resin or a polyphenylene ether resin composition containing a reinforcing rubber component, in which a layer of rubber with a thickness of at least 1 to 100 μm that is less deformed is provided near the surface of the molded article. , a skin layer with little orientation is formed integrally during injection molding with virtually no bonding interface, and the surface of the molded product has a gloss level Gs (60°)% at an incident angle of 60° as specified in ASTM D523. Provided is a polyphenylene ether resin injection molded article, characterized in that the In addition, the injection molded product of the present invention not only has a good gloss on the surface of the molded product, but also eliminates the appearance of rubber on the surface, which is a drawback of PPE resin molded products, and eliminates silver streaks and flow marks during injection molding. This is a PPE resin injection molded product with a good appearance and no appearance defects caused by flow or uneven flow of the PPE resin. In other words, the surface of the injection molded product is smooth and has the soft luster characteristic of thermoplastic resins, and there are no appearance defects such as silver streaks or flow marks/Weld lines are virtually invisible. It is a PPE resin injection molded product.
In normal injection molding, a weld line is a confluence line that occurs at the confluence of resins, and when a vertical section of this line is observed under a microscope, it forms a recess with a width of 10 microns or more and a depth of 3 to 5 microns or more. In the present invention, "the weld line is substantially invisible" means that the line-like appearance is not visible in a recess with a width of 5 μm or less and a depth of 1 μm or less. There are various possible causes of flow marks. for example,
When there is a variation in the wall thickness of a molded product, the flow of resin is disturbed or the pressure is not transmitted uniformly in that area, and the uneven resin is cooled and solidified on the mold surface, resulting in uneven appearance. Although it is thought that flow marks may occur, the molded product of the present invention does not have such flow marks. Silver streaks are caused by volatile substances in the resin being volatilized during molding, and silver streaks are produced on the surface of the molded product when the resin is cooled and solidified during the volatilization. No streaks. Jetting is a phenomenon that is often seen in the gate area of molded products. During injection molding, the flow rate of resin increases at areas where the resin flow path is narrowed, such as at the gate area, so the resin partially protrudes inside the mold. However, the product of the present invention does not have such jetting. In the product of the present invention, the appearance defects caused by the non-uniformity of the resin flow state in the mold are not cooled and solidified while the resin flow state is non-uniform. This makes it possible to produce molded products with uniform gloss. Also, when there is substantially no gloss gradient, there is almost no difference between the gloss at the gate part and the gloss at the dead end part of the molded product, and where the resin flow distance is L and the average wall thickness of the molded product is t, L/t=10 to 20. In the above molded products, the difference in glossiness is 0 to 0.5%/cm, preferably 0 to 0.2
%/cm. Incidentally, in ordinary molded products, the gloss gradient is often 1 to 5%/cm. The method for obtaining the injection molded article of the present invention is as follows. In order to improve the adhesion between the resin and the mold, the surface of the mold is maintained at a temperature higher than the heating deformation temperature of the PPE resin, thereby maintaining its plasticity.
On the other hand, it is impossible to release the mold from the mold while keeping the surface of the mold above the heating deformation temperature of the PPE resin.In order to obtain the desired molded product without deformation, the mold must be cooled. The thermoplastic resin is cooled to a temperature lower than the heat deformation temperature of the thermoplastic resin and released from the mold in a solidified state. For this heating and cooling, the principle of high-frequency induction heating is utilized, and by selectively heating the surface layer of the mold, the injection molded product of the present invention can be obtained by rapidly heating and rapidly cooling the mold surface. Next, the molded product according to the present invention and its molding method will be explained with reference to the drawings. In injection molding of PPE resin, a high-frequency induction heating inductor is installed between the stationary mold and the movable mold as shown in Figure 1. When an inductor was sandwiched between the movable mold and the stationary mold and a high frequency was oscillated while the inductor was sandwiched, the temperature of only the mold surface (points A and B) suddenly increased as shown in Figure 2. It can be confirmed that the temperature inside the mold (point C and point D) increases by using high-frequency induction heating. In the case of the example shown in FIG. 2, the mold is not cooled with cooling water, but simply shows an example of the change over time in the temperature distribution of the mold due to high-frequency induction heating. After that, the mold was opened once, the inductor was extracted from between the stationary side and movable side molds, the mold was closed again, and PPE resin was injected in the same manner as normal injection molding, resulting in PPE resin injection with the desired beautiful appearance. A molded product was obtained. In order to quantify the appearance and gloss of the above-mentioned PPE resin molded product of the present invention, the glossiness Gs (60°) of the molded product was measured according to ASTM D523.102
It was %. On the other hand, the gloss of molded products made at a mold temperature of 70℃
50%, the smoothness of the appearance of the molded product according to the present invention,
It shows good gloss. Also, perhaps because the molded product of the present invention has low flow resistance during injection molding and is less likely to cause orientation distortion, when the heat distortion temperature specified in JIS K6871 was measured, the heat distortion temperature was 22% higher than that of a normal molded product. It was confirmed that the so-called practical heat resistance temperature was improved by ~3°C, and as a result of comparing the drop strength of molded products, the practical toughness was also improved. In addition, in the present invention, Gs (60°)% in ASTM D523 is used to evaluate the gloss of molded products, but this is conventionally used to evaluate the appearance and gloss of plastic molded products at an angle of incidence of 60 degrees. Glossiness Gs
(60°)%, and if you follow the exact ASTM D523 standard, Gs(60°)%
is 70% or more, the gloss Gs (20
゜)% is to be applied. Therefore, the Gs (60°)% and Gs (20°)% of the molded products of the present invention and the molded products of the comparative example are measured and the correlation between the two is determined, as shown in FIG. 3. Therefore, if you follow ASTM D523 exactly, Gs (60
For molded products with a gloss level of 70% or higher, the corresponding Gs(20°)% value should be displayed as shown in Figure 3, but the relationship between conventional industry practice and comparative examples In the sense that the difference becomes clearer,
Please note that I purposely used Gs (60°)%. The PPE resin referred to in the present invention has the general formula: (Here, R 1 and R 2 are alkyl groups with 1 to 4 carbon atoms, and n indicates the degree of polymerization.) A resin composition containing 20-80% by weight of phenylene ether and 20-80% by weight of a styrene polymer is the main component (80% by weight or more), and other additives (e.g. flame retardant, lubricant, etc.) are added as necessary. It is said to be a mixture of. Examples of the polyphenylene ether of the present invention represented by the above general formula include poly(2,6-dimethylphenylene-1,4-ether), poly(2,6-dimethylphenylene-1,4-ether), poly(2,6-dimethylphenylene-1,4-ether),
-diethylphenylene-1,4-ether), poly(2-methyl-6-ethylphenylene-1,4)
-ether), poly(2-methyl-6-propylphenylene-1,4-ether), poly(2,6
-dipropylphenylene-1,4-ether),
Poly(2-ethyl-6-propylphenylene-
1,4-ether), poly(2-methyl-6-butylphenylene-1,4-ether), poly(2
-ethyl-6-butylphenylene-1,4-ether). In the polyphenylene ether graft copolymerized with a styrene compound used in the present invention,
Styrenic compounds include styrene and derivatives such as alkylated products and halides of styrene, and specific examples thereof include styrene, α-methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, dichlorostyrene, p -Methylstyrene, ethylstyrene, etc. These can be copolymerized with copolymerizable vinyl compounds such as methyl methacrylate, acrylonitrile, methacrylonitrile, butyl acrylate, etc. during polymerization, or copolymerized with two or more styrene compounds coexisting. But that's fine. The constituent components of the styrenic polymer referred to herein are the same as the compounds that can be used in the graft copolymerization described above, and the styrenic polymer also includes commonly known rubber-reinforced resins. . For example, rubber-reinforced polystyrene resins, acrylonitrile-butadiene-styrene copolymer resins, polystyrene resins using EPDM rubber, and the like are also included within the scope of the present invention. Furthermore, in addition to the rubber reinforcing material, various fillers may be added to the PPE resin depending on various purposes. When the above-mentioned PPE resin is used, the gloss of the injection molded article obtained by the method of the present invention is generally 70% or more, preferably 90% or more. The frequency of the high frequency used for high frequency induction heating in the present invention is 50Hz to 10MHz, preferably 1KHz to 1000KHz.
is appropriate. Example 1 A conventional commercially available PPE resin was molded using a conventional in-line injection molding machine. The mold is a normal S-
The mold is made of 45C steel and can form plate-shaped products with a diameter of 10 cm, depth of 2 cm, and average wall thickness of 3.5 mm, and the gate is a center direct gate. The inductor is made by spirally forming a 6mm diameter copper tube into a dish shape at 5mm intervals, then casting it with epoxy resin to a thickness of 3cm and solidifying it into a flat plate. As for the injection molding conditions, the cylinder temperature was set so that the temperature of the PPE resin was 270°C. Before injecting the PPE resin into the mold, the above-mentioned inductor was inserted between the molds and oscillated for 15 seconds using a 400KC, 6KW high frequency oscillator.Then, the mold was opened, the inductor was extracted from between the molds, and the mold was inserted again. Closed. During this time, the mold cooling water is not allowed to flow inside the mold.Then, the PPE resin is injected into the mold at an injection pressure of 60 kg/ cm2 for 10 seconds as in normal injection molding, and then the mold is molded. After cooling for 20 seconds through cooling water, the molded product was taken out. The total cycle time was 60 seconds. The surface of the molded product was unimaginably glossy for conventional PPE molded products, and the Gs (60°)% was 102%. Moreover, there was no flow mark at the gate part, and the gloss of the gate part and the edge of the plate (the flow end part of the molded product) was exactly the same, with Gs (60°)% of 102%, and a molded product without so-called gloss gradient was obtained. We have created a molded product that is so sharp that it overturns the concept of conventional PPE molded products. Example 2 Normal PPE was molded using a normal injection molding machine to reduce the resin temperature.
Molded at 280℃. The mold is a mold that can obtain dumbbells and strips of shape specified in JIS K6871, and the material is S-
Made with 55C. The inductor used was one in which 3 mm diameter copper tubes were spirally arranged at 5 mm intervals, which were cast into a 2 cm thick flat plate with epoxy resin and solidified. The molding method was the same as in Example 1, but
4KHz, 6KW, high frequency oscillation time 10 seconds, injection 10 seconds,
Cooling 15 seconds, whole molding cycle 50 seconds, injection pressure 50Kg/cm 2
It is. In this way, a beautiful, glossy molded product made of PPE resin was obtained. The physical properties of the molded product were evaluated according to JIS K6871, and the results are shown in Table 1. As is clear from the results in Table 1, a molded article with excellent appearance, gloss, and physical properties could be obtained. Example 3 Using a mold capable of molding a pair of audio cassette housings (referred to as cassette halves in the industry), PPE resin was molded using an ordinary injection molding machine. The inductor used was one in which copper tubes with a diameter of 5 mm were arranged in a flat spiral shape at 5 mm intervals, which was then cast into a 3 cm thick flat plate with epoxy resin, and the copper tubes were fixed and solidified. The inductor was inserted between the molds and a high frequency of 7KHz, 20KW was oscillated for 15 seconds, and then the inductor was pulled out from between the molds.
Injection molding was carried out in the same manner as in Example 1. The molded product has a complex shape such as ribs, bosses, perforations, and embossed parts, and in normal molding, flow marks and weld lines are noticeable, but the molded product in this example has a complicated shape. The appearance of the product is beautiful, there are no flow marks, and no weld lines are visible.
In addition, the glossiness of the grained areas was improved, resulting in a so-called tight grained texture, which significantly increased the product value. The dimensional accuracy is also the same as the conventional product,
There are no sleds, etc. When the glossiness of the flat part of the molded product was measured, the Gs (60°) of the molded product of this example was 98%, but the Gs (60°) of the molded product made by the conventional method was 98%.
was 45%. Example 4 A pocket radio housing having external dimensions of 12 cm in length, 8 cm in width, and 2 cm in depth was molded from PPE resin. The inductor was created and molded in substantially the same manner as in Example 3. However, the molding temperature
Molding was performed at a PPE temperature of 280°C. This molded product is commercialized by covering the appearance defects by applying acrylic paint to prevent weld lines and flow marks from appearing on the speaker grille of pocket radios and parts with holes for various knobs. However, the molded product of this example has no flow marks or weld lines, and the gloss of each part is Gs (60°) so that there is no need to paint it at all.
was 98 to 100%, and a uniform and high-gloss molded product was obtained. Comparative Example 1 The same molding machine and mold as in Example 2 were used, the same molding material was used, and the resin temperature was 280°C and the mold temperature was 80°C.
℃, injection 10 seconds, cooling 15 seconds, total molding cycle 40 seconds,
The results of measuring the physical properties of the molded product molded at an injection pressure of 50 kg/cm 2 are shown in Table 1, Comparative Example 1.

【表】 上述のように本発明になるPPE樹脂成形品は従
来のPPE樹脂射出成形品の概念をくつがえすほ
ど、成形品外観が良く、換言すると成形品の光沢
のレベルが非常に高くなりツヤ勾配、フローマー
クもなくウエルドラインも見えない。しかも従来
のPPE樹脂の長所である成形しやすさ、剛性、タ
フネス、寸法安定性等は何ら変らず、かつ生産性
も従来の射出成形の場合より若干伸びる程度であ
り全成形サイクルも2〜5割程度長くなる程度で
ある。 成形品外観が良くなつたため、従来プラスチツ
クに対し抱だかれた安物のイメージもなく商品価
値を著しく高めたばかりでなく、外観不良対策上
塗装等を行なつていた部品は塗装も不用となる等
本発明の有用性は、計かりしれないものがある。
[Table] As mentioned above, the appearance of the PPE resin molded product of the present invention is so good that it overturns the concept of conventional PPE resin injection molded products.In other words, the gloss level of the molded product is extremely high, and the gloss gradient , there are no flow marks and no weld lines visible. Moreover, the advantages of conventional PPE resin, such as ease of molding, rigidity, toughness, and dimensional stability, remain unchanged, and the productivity is only slightly higher than that of conventional injection molding, with a total molding cycle of 2 to 5. This is only a relatively long time. Because the appearance of molded products has improved, not only has the product value been significantly increased, eliminating the cheap image traditionally associated with plastics, but parts that previously had to be painted to prevent appearance defects no longer require painting. The usefulness of inventions is immeasurable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる成形品を製造するための
装置の一概念図である。第2図は、第1図に示す
装置での金型の温度分布の1例を示す。第3図は
Gs(20゜)とGs(60゜)%との相関関係曲線、
第4図はウエルドライン説明図である。 1:金型における固定側金型、2:移動側金
型、3:高周波発振装置におけるインダクター、
A点、B点:金型の表面、C点、D点:金型の内
部、a:ウエルドライン巾、b:ウエルドライン
深さ。
FIG. 1 is a conceptual diagram of an apparatus for manufacturing a molded article according to the present invention. FIG. 2 shows an example of the temperature distribution of the mold in the apparatus shown in FIG. Figure 3 is
Correlation curve between Gs (20°) and Gs (60°)%,
FIG. 4 is an explanatory diagram of weld lines. 1: Fixed side mold in the mold, 2: Moving side mold, 3: Inductor in high frequency oscillator,
Point A, point B: surface of the mold, point C, point D: inside of the mold, a: weld line width, b: weld line depth.

Claims (1)

【特許請求の範囲】 1 ポリフエニレンエーテル樹脂又は補強ゴム成
分を含有するポリフエニレンエーテル樹脂組成物
の射出成形品において、 該成形品の表面付近には少なくとも1〜100μ
のゴムの変形の少ない層、配向の少ない表皮層が
実質的に接合界面を有さず射出成形時に一体的に
形成されてなり、該成形品表面がASTMD523に
規定される入射角60゜における光沢度Gs(60
゜)%が少なくとも70%であることを特徴とする
ポリフエニレンエーテル樹脂射出成形品。 2 光沢度が90%以上である特許請求の範囲第1
項記載の射出成形品。 3 ポリフエニレンエーテル樹脂組成物が、ポリ
フエニレンエーテルとスチレン系重合体とよりな
る特許請求の範囲第1項又は第2項記載の射出成
形品。 4 ポリフエニレンエーテルがスチレン系化合物
がグラフト共重合せしめたポリフエニレンエーテ
ルである特許請求の範囲第1項又は第2項に記載
の射出成形品。 5 更に添加剤を含有する特許請求の範囲第1項
〜第5項のいずれかに記載の射出成形品。 6 射出成形品の表面にフローマーク、ジエツテ
イング、シルバーストリーク等の欠陥がなく、か
つウエルドラインが実質的に目立たない特許請求
の範囲第1項〜第5項のいずれかに記載の射出成
形品。 7 光沢勾配が実質的にない特許請求の範囲第1
項〜第6項のいずれかに記載の射出成形品。
[Scope of Claims] 1. In an injection molded article of a polyphenylene ether resin or a polyphenylene ether resin composition containing a reinforcing rubber component, there is at least 1 to 100 μm in the vicinity of the surface of the molded article.
The layer of rubber with little deformation and the skin layer with little orientation are formed integrally during injection molding with virtually no bonding interface, and the surface of the molded product has a gloss level at an incident angle of 60° as specified in ASTM D523. degree Gs (60
Polyphenylene ether resin injection molded article, characterized in that ゜)% is at least 70%. 2 Claim 1 in which the gloss level is 90% or more
Injection molded products as described in section. 3. The injection molded article according to claim 1 or 2, wherein the polyphenylene ether resin composition comprises polyphenylene ether and a styrene polymer. 4. The injection molded article according to claim 1 or 2, wherein the polyphenylene ether is a polyphenylene ether graft-copolymerized with a styrene compound. 5. The injection molded product according to any one of claims 1 to 5, further comprising an additive. 6. The injection molded product according to any one of claims 1 to 5, wherein the surface of the injection molded product has no defects such as flow marks, jetting, silver streaks, etc., and has substantially no noticeable weld lines. 7 Claim 1 with substantially no gloss gradient
The injection molded product according to any one of items 6 to 6.
JP7543480A 1980-06-06 1980-06-06 Injection-molded form of polyphenylene ether resin having good appearance Granted JPS571733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7543480A JPS571733A (en) 1980-06-06 1980-06-06 Injection-molded form of polyphenylene ether resin having good appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7543480A JPS571733A (en) 1980-06-06 1980-06-06 Injection-molded form of polyphenylene ether resin having good appearance

Publications (2)

Publication Number Publication Date
JPS571733A JPS571733A (en) 1982-01-06
JPS6258286B2 true JPS6258286B2 (en) 1987-12-04

Family

ID=13576111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7543480A Granted JPS571733A (en) 1980-06-06 1980-06-06 Injection-molded form of polyphenylene ether resin having good appearance

Country Status (1)

Country Link
JP (1) JPS571733A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128659A (en) * 1974-09-04 1976-03-11 Matsushita Electric Works Ltd DATSUSHUHOTSUTO
JPS5373248A (en) * 1976-12-13 1978-06-29 Gen Electric Flame retardant shockkresistant polyphenylene ether compound
JPS5394540A (en) * 1976-12-20 1978-08-18 Gen Electric Composition of shock resistant polyphenylene resin containing hydrogenated radial teleblock copolymer
JPS56115351A (en) * 1980-02-14 1981-09-10 Mitsui Toatsu Chem Inc Polyphenylene ether resin composition having excellent appearance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128659A (en) * 1974-09-04 1976-03-11 Matsushita Electric Works Ltd DATSUSHUHOTSUTO
JPS5373248A (en) * 1976-12-13 1978-06-29 Gen Electric Flame retardant shockkresistant polyphenylene ether compound
JPS5394540A (en) * 1976-12-20 1978-08-18 Gen Electric Composition of shock resistant polyphenylene resin containing hydrogenated radial teleblock copolymer
JPS56115351A (en) * 1980-02-14 1981-09-10 Mitsui Toatsu Chem Inc Polyphenylene ether resin composition having excellent appearance

Also Published As

Publication number Publication date
JPS571733A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
US4439492A (en) Injection molded articles with improved surface characteristics
CN104870123A (en) Metal alloy injection molding protrusions
JPH01146711A (en) Manufacture of plastic molded form having scratch-resistant coating
JP2826553B2 (en) Decorative molding method and apparatus
JPS5840504B2 (en) Injection molding method
CN104903025A (en) Metal alloy injection molding
JPS6258286B2 (en)
JPS6258287B2 (en)
JPS6258288B2 (en)
JP2000000865A (en) Method for injection molding plastic
WO1996007527A1 (en) Low-pressure injection molding method
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP3396254B2 (en) Mold and its manufacturing method
JPH0872086A (en) Low-pressure injection molding method
JPH01271218A (en) Method of forming board or tube composed of plastic under thermoelastic state
JPS6056604B2 (en) Filled thermoplastic resin injection molded product
JPH10100184A (en) Method for molding synthetic resin
JPH0866927A (en) Matte synthetic resin injection-molded article and manufacture thereof
JP3797512B2 (en) Injection mold
JP3535939B2 (en) Molding method to obtain plastic molded products with high quality appearance
JPH07232338A (en) Method for improving surface quality of foam thermoplastic molded article
JP2016043661A (en) Foam molding method for thermoplastic resin and foam molded part
JPS6258290B2 (en)
JPH079461A (en) Production of thermoplastic resin foamed molded object
JP3137674B2 (en) Composite injection molding method