JPS6258290B2 - - Google Patents

Info

Publication number
JPS6258290B2
JPS6258290B2 JP11177880A JP11177880A JPS6258290B2 JP S6258290 B2 JPS6258290 B2 JP S6258290B2 JP 11177880 A JP11177880 A JP 11177880A JP 11177880 A JP11177880 A JP 11177880A JP S6258290 B2 JPS6258290 B2 JP S6258290B2
Authority
JP
Japan
Prior art keywords
filler
mold
audio equipment
component according
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11177880A
Other languages
Japanese (ja)
Other versions
JPS5736653A (en
Inventor
Akihiro Wada
Shinichi Miura
Fumyoshi Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11177880A priority Critical patent/JPS5736653A/en
Publication of JPS5736653A publication Critical patent/JPS5736653A/en
Publication of JPS6258290B2 publication Critical patent/JPS6258290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は射出成形による音響機器部品に関す
る。 熱可塑性樹脂はその成形加工性が良好で、複雑
な形状のものも簡単に成形可能ゆえ、同一形状部
品の大量生産が可能である。この特性を生かし、
スピーカーボツクス、スピーカーフレーム、レコ
ードプレーヤーのボード、ラジオキヤビネツト、
ラジオカセツトテレコキヤビネツト、テープレコ
ーダーキヤビネツト、テレビキヤビネツト等の音
響機器の部品に多用されている。 一方、音響機器部品材料に要求される性能は上
記熱可塑性樹脂に構造材として要求される性能以
外に、次のものが特に要求される。 (イ) 密度が大であること(音の透過における質量
則より密度が大であるほど遮音性がある) (ロ) 内部損失が大であること(材料自身に固有の
振動減衰効果が大) (ハ) 剛性が大であること(音波による変形を小さ
くするため剛性が大きいことが好ましい) しかし通常の熱可塑性樹脂は必ずしもこれらの
要求をすべて満足せしめるものではなく、このた
めたとえばハウリングの発生等のトラブルを生ず
ることがある。 充填材入り熱可塑性樹脂は上記(イ)(ロ)(ハ)の諸点を
各々改良しており、好ましい音響機器用材料であ
るが、充填材が熱可塑性でないため、射出成形し
た場合表面が荒れ外観が悪く実用化されていな
い。スピーカーフレーム等としては塗装を施すこ
とにより実用されている例はないことはないが、
塗装を必要とするためコスト高となつている。 従つて本発明の目的は、充填材入り熱可塑性樹
脂を材料としながらこの充填材を含まない熱可塑
性樹脂の表皮層を形成せしめて上述の外観の欠陥
性を除いた音響機器部品を提供するにある。 以下本発明を添付図面に例示したその好適な実
施例について詳述する。 第1図および第2図に射出成形装置を示す。こ
の例はインダクター挿入方法を示すものであつて
合成樹脂を溶解して射出を行なう射出シリンダー
部分3と固定側金型4と、移動側金型5とにより
構成される射出成形機および高周波発振装置1と
これに接続されて金型表面近傍に配置されるイン
ダクター2とより成る高周波誘導加熱器により構
成される。 射出成形せしめる熱可塑性合成樹脂は、たとえ
ばポリスチレン(HIPSゴム補強されたポリスチ
レンも含む)、アクリロニトリル−スチレン共重
合体(AS樹脂)アクリロニトリル−ブタジエン
−スチレン共重合体、アクリロニトリル−ブタジ
エン−スチレン−α−メチルスチレン、アクリロ
ニトリル−メチルメタクリレート−ブタジエン−
スチレン(ABS樹脂と総称)、ポリプロピレン、
ポリエチレン等のオレフイン系樹脂、ポリカーボ
ネート、またはポリフエニレンエーテルなどとす
る。好ましくは、ABS樹脂とポリスチレンであ
る。 これに混入する充填材は、Fe,Fe2O2,Al,
ZnO等の金属および合金およびそれらの酸化物の
粉粒体、CaCO3、グラスビーズ等の無機物等で
あつて、粉粒の平均粒径は1〜100μ、充填量は
20〜80重量%、好ましくは30〜80重量%とする。
金属粉平均粒径1μ以下は高価になり、100μ以
上は成形機の摩耗等成形上のトラブルが増加す
る。また充填材量20重量%以下は音質改善効果が
充分でなく、80重量%以上は射出成形が困難とな
る。 さらに所望によりこのほか径5〜20μのガラス
繊維を混入する。 このような材料を射出成形するのであるが、こ
の際第2図の拡大図に示すように、固定側金型4
と移動側金型5の中間に高周波誘導加熱のインダ
クター2を設置する。移動側金型5と固定側金型
4との間にインダクター2をはさみこみ、はさみ
こまれた状態で高周波を発振させると、第3図に
示すように金型表面(A点やB点)のみ急激に温
度が上昇し、金型内部(C点やD点)の温度は高
周波誘導加熱によつては温度上昇がほとんどな
い。第3図の例の場合は金型の冷却水による冷却
は行なつておらず、単純に高周波誘導加熱による
金型の温度分布の経時変化の例を示したものであ
る。しかるのちに金型4,5を一度開き、インダ
クター2を固定側及び移動側金型4,5の間より
抜き出し再度金型を閉じ通常の射出成形と同じ要
領で上述の充填材入り熱可塑性樹脂を射出成形を
行なう。このようにして得た射出成形品の厚さ方
向の切断面の光学顕微鏡観察写生図を第4図に示
す。倍率は440倍である。参考のため同一金型で
インダクター2を使用せず金型温度60℃で同材料
を射出成形し、同断面を同様に観察写生したもの
が第5図である。倍率は440倍である。いずれの
図面も島模様部は充填材であり、横一線のライン
は成形品表面である。 第4図と第5図とを比較しても明らかな様に本
発明になる成形品の場合充填材がA′が、成形品
表面に現出することはなく少なくても1〜30μの
熱可塑性樹脂B′層が成形品表層部に形成されてい
る事がわかる。また、第4図に示す様に充填材
A′が成形品表面に比較的近い位置に有る時も熱
可塑性樹脂層が表層を形成すると同時に該充填材
A′の影響で表層に若干の凸凹を形成しても第5
図の場合と比較し、なだらかな凸凹を示すため光
沢のある外観を有する成形品を得る。一方通常の
成形品の場合第5図に示す様に充填材A′が成形
品表面に突き出ていたり、また充填材A′が表層
近くにある場合即ち金型表面での樹脂の流れが疎
外されるためか表面にシルバーストリーク状の凸
凹が出来、いわゆる光沢のないガサガサした表面
の成形品しか得ることはできない。本発明になる
成形品の外観の良さ、光沢度を定量化するため
ASTM D523により成形品の光沢度Gs(60゜)を
測定した結果98%であつた。一方金型温度60℃ろ
成形品は光沢度45%であり本発明になる成形品外
観の平滑性、光沢の良さを示している。また本発
明になる成形品は射出成形時の流動抵抗が少なく
配向歪が発生しずらいためかJIS K6871に規定さ
れた加熱変形温度を測定したところ通常の成形品
に比較し加熱変形温度が3〜5℃向上し、いわゆ
る実用耐熱温度が向上する事、成形品の落下強さ
等比較した結果実用タフネスも向上する。 実施例 1 平均粒径40μのFe2O3の粉末を50重量%添加し
たABS樹脂を利用して第6図の如き高音用ツイ
ーター・スピーカーフレームを射出成形した。 金型はNAK材(超硬合金金型鋼)を利用外寸
法約9cm×9cm、深さ1.5cm、平均肉厚3.5mm、の
スピーカーフレームを成形できる金型を作成し
た。なお金型の成形品形成面は鏡面仕上げにし
た。ゲートはサイドゲート4ケ取りの金型であ
る。インダクターは5mm径の銅管を10mm間隔の渦
巻、円板状に配置し該形状を固定するため非磁性
材である樹脂(エポキシ樹脂)で注型し平板状に
固化作成した。 射出成形条件は該Fe2O3添加ABS樹脂の温度が
240℃になる様にシリンダー温度を設定した。該
Fe2O3添加ABS樹脂を金型内に射出する前に上述
のインダクターを金型の間にはさみこみ7KHz、
20KWの高周波発振器により15秒間発振し、しか
るのち金型を開きインダクターを金型間より抜き
出し、再度金型を閉じた。なお本工程において成
形品を形成させるべき金型表面は該樹脂を射出成
形する直前において該金型表面温度は高周波誘導
加熱により該金型表面付近のみを選択的に加熱す
るため、120〜130℃であるが該金型表面より3〜
5cm内部の金型温度は50〜60℃であつた。しかる
のち通常の射出成形と同様に上記金型表面付近の
みを選択的に加熱した金型内に該樹脂を60Kg/cm2
の射出圧で10秒間射出し、しかるのち金型に冷却
水を通し20秒間冷却後成形品を取り出した。全成
形サイクルは60秒であつた。 該スピーカーフレームの平面部の光沢Gs(60
゜)は98%であり非常に光沢度が高く、フローマ
ーク、シルバーストリーク、ジエツテイング等が
ないスピーカー・フレームを得た。また該スピー
カーフレームを利用高音用ツイーターを組立て作
成し、音質試聴テストを行なつたところ、同一形
状のABS製スピーカーフレームを利用したツイ
ーターより周波数特性がフラツトな歪のない音が
得られるツイーターが出来た。 比較例 1 実施例1において使用樹脂としてガラス繊維20
重量%添加ABS樹脂を使用したこと以外全く同
じ方法で作成した高音用ツイーターを試験したと
ころ、いわゆる充填材を含まないABS樹脂より
は音質は改善されていたが、実施例1の樹脂ほど
音質は改善されていなかつた。 実施例 2 Fe2O3粉末50重量%添加のABS樹脂を用い、実
施例1に記載した高周波誘導加熱により金型表面
を加熱する方式の射出成型により、第7図に示す
40cm×50cmの大きさのレコードプレーヤーボード
を製作した。 その特性を、従来の射出成形法により得た
ABS樹脂形成品と対比して第1表に示す。
The present invention relates to injection molded audio equipment parts. Thermoplastic resins have good moldability and can be easily molded into complex shapes, making it possible to mass produce parts with the same shape. Taking advantage of this characteristic,
Speaker boxes, speaker frames, record player boards, radio cabinets,
It is widely used as parts of audio equipment such as radio cassettes, teleco cabinets, tape recorder cabinets, and television cabinets. On the other hand, in addition to the above-mentioned performance required for the thermoplastic resin as a structural material, the following properties are particularly required for materials for audio equipment parts. (b) The density is large (according to the mass law for sound transmission, the higher the density, the better the sound insulation) (b) The internal loss is large (the vibration damping effect inherent to the material itself is large) (c) High rigidity (high rigidity is preferred in order to reduce deformation caused by sound waves) However, ordinary thermoplastic resins do not necessarily satisfy all of these requirements, and for this reason, for example, howling may occur, etc. This may cause problems. Filled thermoplastic resin has improved each of the points (a), (b), and (c) above and is a preferred material for audio equipment, but since the filler is not thermoplastic, the surface will be rough when injection molded. It has a poor appearance and is not put into practical use. Although there are examples of speaker frames etc. being put into practical use by painting,
The cost is high because it requires painting. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an audio equipment component which is made of a thermoplastic resin containing a filler and has a skin layer made of a thermoplastic resin that does not contain a filler, thereby eliminating the above-mentioned defects in appearance. be. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to preferred embodiments illustrated in the accompanying drawings. An injection molding apparatus is shown in FIGS. 1 and 2. This example shows an inductor insertion method, and includes an injection molding machine and a high-frequency oscillator comprising an injection cylinder part 3 for melting and injecting synthetic resin, a stationary mold 4, and a movable mold 5. 1 and an inductor 2 connected to the inductor 2 and placed near the mold surface. Thermoplastic synthetic resins for injection molding include, for example, polystyrene (including polystyrene reinforced with HIPS rubber), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer, acrylonitrile-butadiene-styrene-α-methyl Styrene, acrylonitrile-methyl methacrylate-butadiene-
Styrene (generally known as ABS resin), polypropylene,
Olefin resin such as polyethylene, polycarbonate, polyphenylene ether, etc. Preferred are ABS resin and polystyrene. The fillers mixed in this are Fe, Fe 2 O 2 , Al,
Powders of metals and alloys such as ZnO and their oxides, inorganic substances such as CaCO 3 and glass beads, etc., with an average particle size of 1 to 100μ and a filling amount of
The amount is 20 to 80% by weight, preferably 30 to 80% by weight.
A metal powder with an average particle size of 1 μm or less becomes expensive, and a metal powder of 100 μm or more increases molding troubles such as wear of the molding machine. Furthermore, if the amount of filler is less than 20% by weight, the sound quality improvement effect will not be sufficient, and if it is more than 80% by weight, injection molding will be difficult. Further, if desired, glass fibers having a diameter of 5 to 20 μm may be mixed. Such materials are injection molded, and at this time, as shown in the enlarged view of Fig. 2, the fixed side mold 4 is
A high-frequency induction heating inductor 2 is installed between the movable mold 5 and the movable mold 5. When the inductor 2 is inserted between the movable mold 5 and the stationary mold 4 and a high frequency is oscillated in the sandwiched state, only the mold surface (point A and point B) is oscillated as shown in Fig. 3. The temperature rises rapidly, and the temperature inside the mold (point C and point D) hardly rises due to high-frequency induction heating. In the case of the example shown in FIG. 3, the mold is not cooled with cooling water, but simply shows an example of the change over time in the temperature distribution of the mold due to high-frequency induction heating. Thereafter, the molds 4 and 5 are opened once, the inductor 2 is extracted from between the fixed and movable molds 4 and 5, the mold is closed again, and the above-mentioned thermoplastic resin with filler is injected in the same manner as in normal injection molding. Perform injection molding. FIG. 4 shows an optical microscope observation sketch of the cut surface in the thickness direction of the injection molded product thus obtained. The magnification is 440x. For reference, the same material was injection molded using the same mold at a mold temperature of 60° C. without using the inductor 2, and the same cross section was observed and sketched in the same manner as shown in FIG. The magnification is 440x. In both drawings, the island pattern is the filler, and the horizontal line is the surface of the molded product. As is clear from comparing Figures 4 and 5, in the case of the molded product according to the present invention, the filler A' does not appear on the surface of the molded product and is heated to a temperature of at least 1 to 30μ. It can be seen that the plastic resin B' layer is formed on the surface layer of the molded product. In addition, as shown in Figure 4, filler material
When A' is located relatively close to the surface of the molded product, the thermoplastic resin layer forms the surface layer and the filler material
Even if the surface layer is slightly uneven due to the influence of A', the fifth
Compared to the case shown in the figure, a molded product with a glossy appearance due to gentle unevenness is obtained. On the other hand, in the case of a normal molded product, as shown in Figure 5, if the filler A' protrudes from the surface of the molded product, or if the filler A' is near the surface layer, the flow of resin on the mold surface will be hindered. Perhaps because of this, silver streak-like irregularities occur on the surface, and only molded products with so-called dull and rough surfaces can be obtained. To quantify the good appearance and gloss of the molded product of the present invention
The glossiness Gs (60°) of the molded product was measured according to ASTM D523 and was 98%. On the other hand, the molded product with a mold temperature of 60°C had a gloss level of 45%, demonstrating the smoothness and good gloss of the molded product appearance of the present invention. Also, perhaps because the molded product of the present invention has low flow resistance during injection molding and is less likely to cause orientation distortion, when the heat distortion temperature specified in JIS K6871 was measured, the heat distortion temperature was 3 to 3. The so-called practical heat resistance temperature is improved by 5°C, and as a result of comparing the drop strength of molded products, the practical toughness is also improved. Example 1 A treble tweeter/speaker frame as shown in FIG. 6 was injection molded using ABS resin to which 50% by weight of Fe 2 O 3 powder with an average particle size of 40 μm was added. The mold was made from NAK material (carbide mold steel) and was able to form a speaker frame with outer dimensions of approximately 9cm x 9cm, depth of 1.5cm, and average wall thickness of 3.5mm. The molded product forming surface of the mold has a mirror finish. The gate is a mold with four side gates. The inductor was made by arranging copper tubes with a diameter of 5 mm in a spiral disk shape at 10 mm intervals, and in order to fix the shape, it was cast with a non-magnetic resin (epoxy resin) and solidified into a flat plate shape. The injection molding conditions are such that the temperature of the Fe 2 O 3 -added ABS resin is
The cylinder temperature was set to 240℃. Applicable
Before injecting the Fe 2 O 3 -added ABS resin into the mold, the above-mentioned inductor was inserted between the molds and the 7KHz,
A 20KW high frequency oscillator oscillated for 15 seconds, then the mold was opened, the inductor was pulled out from between the molds, and the mold was closed again. In this process, the temperature of the surface of the mold on which the molded product is to be formed is 120 to 130°C because only the vicinity of the surface of the mold is selectively heated by high-frequency induction heating immediately before injection molding of the resin. However, from the surface of the mold
The temperature inside the 5 cm mold was 50 to 60°C. Then, as in normal injection molding, 60 kg/cm 2 of the resin was placed in a mold that was selectively heated only near the surface of the mold.
The molded product was injected for 10 seconds at an injection pressure of 100 mL, and then cooled for 20 seconds by passing cooling water through the mold, and then the molded product was taken out. The entire molding cycle was 60 seconds. Gloss Gs (60
) was 98%, resulting in a speaker frame with extremely high gloss and no flow marks, silver streaks, jetting, etc. We also assembled and created a treble tweeter using this speaker frame and conducted a sound quality test.We found that the tweeter produced a sound with a flatter frequency response and no distortion than a tweeter using an ABS speaker frame of the same shape. Ta. Comparative Example 1 Glass fiber 20 was used as the resin used in Example 1.
When we tested a high-pitched tweeter made in exactly the same way except for using ABS resin with weight percent addition, we found that the sound quality was improved compared to ABS resin that does not contain fillers, but the sound quality was not as good as that of the resin of Example 1. It had not been improved. Example 2 Using ABS resin containing 50% by weight of Fe 2 O 3 powder, injection molding was carried out using the method described in Example 1, in which the mold surface was heated by high-frequency induction heating, to produce the mold shown in Figure 7.
I made a record player board measuring 40cm x 50cm. This characteristic was obtained using the conventional injection molding method.
Table 1 shows a comparison with ABS resin molded products.

【表】 実施例 3 Fe2O3粉末50重量%添加のABS樹脂を用い、実
施例1に記載した高周波誘導加熱により金型表面
を加熱する方式の射出成形により、第8図に示す
オーデイオカセツトハーフを製作した。その特性
を、従来の射出成形法より得たMIPS(メデイア
ムインパクトポリスチレン)成形品と対比して第
2表に示す。
[Table] Example 3 Using ABS resin containing 50% by weight of Fe 2 O 3 powder, the audio cassette shown in FIG. I made a half. Its properties are shown in Table 2 in comparison with MIPS (medium impact polystyrene) molded products obtained by conventional injection molding.

【表】 外観の美しい、重量感のある、剛性があり寸法
安定性が良いこともあるためか、理由は明確では
ないが、音の再現性の良いオーデイオカセツトハ
ーフを得た。 一般に本発明による音響機器部品と従来の音響
機器部品との性能を第3表に比較して示す。
[Table] I was able to obtain an audio cassette half with good sound reproducibility, perhaps because it looks beautiful, has a heavy feel, is rigid, and has good dimensional stability, but the reason is not clear. In general, Table 3 shows the performance of the audio equipment component according to the present invention and the conventional audio equipment component in comparison.

【表】 第3表において内部損失Qは次により求めた。
試験片を振動させて振動周波数と振動速度の関係
を測定する。このようにして測定した例を第9図
に示す。共振周波数(O)において振動速度
(又は変化)が3dB低下したところの周波数、H
Lを測定し次式によりQを求める。 Q= 判断基準Aは、試聴により主としてハウリング
の有無に注意し、優秀◎・良好○・普通△・不良
×の等級にわけた。 判断基準Bは、シルバーストリーク、フローマ
ーク、ジエツテイング等の外観上の欠点なく光沢
ムラもほとんどなく、ウエルドラインも実質的に
目立たないものを〇とし、そのほかの等級を普通
△、不良×と分類した。
[Table] In Table 3, the internal loss Q was calculated as follows.
The test piece is vibrated and the relationship between vibration frequency and vibration speed is measured. An example measured in this manner is shown in FIG. The frequency at which the vibration velocity (or change) decreases by 3 dB at the resonant frequency ( O ), H
Measure and L , and find Q using the following formula. Q= O / H - L Judgment Criteria A was graded into excellent ◎, good ○, average △, and poor ×, paying attention mainly to the presence or absence of howling through trial listening. Judgment Criteria B was classified as 0 if there were no external defects such as silver streaks, flow marks, jetting, etc., almost no uneven gloss, and virtually no weld lines, and other grades were classified as fair △ and poor. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明部品の製造に用いるインダクタ
ーはさみ込み方式の射出成形機の概念的な側面
図、第2図はその金型とインダクターとの垂直断
面図、第3図は第1図および第2図に示した射出
成形機での金型の温度分布を示むグラフ、第4図
は本発明部品の切断面の拡大写生図、第5図は従
来部品の同様な図面、第6図ないし第8図は本発
明音響機器部品の斜視図であり、第9図は試験片
の振動例を示す。 1……高周波発振装置、2……インダクター、
3……射出シリンダー部分、4,5……金型、a
=3dB、b……Qが小さい場合、c……Qが大き
い場合。
Fig. 1 is a conceptual side view of an injection molding machine using an inductor sandwiching method used to manufacture parts of the present invention, Fig. 2 is a vertical sectional view of the mold and inductor, and Fig. 3 is a cross-sectional view of the injection molding machine of the inductor sandwiching method used for manufacturing parts of the present invention. Figure 2 is a graph showing the temperature distribution of the mold in the injection molding machine, Figure 4 is an enlarged sketch of the cut surface of the part of the present invention, Figure 5 is a similar drawing of the conventional part, Figures 6 to 6. FIG. 8 is a perspective view of the audio equipment component of the present invention, and FIG. 9 shows an example of vibration of a test piece. 1... High frequency oscillator, 2... Inductor,
3...Injection cylinder part, 4, 5...Mold, a
=3dB, b...when Q is small, c...when Q is large.

Claims (1)

【特許請求の範囲】 1 外観の良好さを必要とする充填材入り熱可塑
性樹脂射出成形音響機器部品において、実質的に
充填材を含まない前記熱可塑性樹脂の表皮層を接
合界面を有さずに射出成形時に一体的に形成せし
め、ASTM D523に規定された光沢度Gs(60゜)
%が80%以上の外観を有し、内部損失Qが50以
上、比重が1.1及び曲げ弾性率が29000Kg/cm2以上
であることを特徴とする音響機器部品。 2 前記充填材が平均粒径1〜100μの無機充填
材で、その含有量が30〜80重量%である特許請求
の範囲第1項記載の音響機器部品。 3 前記無機物充填材が、Fe,Fe2O3,ZnO等の
比重3以上の金属及び合金及びそれらの酸化物で
ある特許請求の範囲第2項記載の音響機器部品。 4 前記充填材の少なくとも一部がガラス繊維で
ある特許請求の範囲第1項記載の音響機器部品。 5 前記熱可塑性樹脂が、アクリロニトリル−ブ
タジエン−スチレン系樹脂またはポリスチレンで
ある特許請求の範囲第1項記載の音響機器部品。
[Scope of Claims] 1. In a thermoplastic resin injection molded audio equipment part containing a filler that requires good appearance, the skin layer of the thermoplastic resin that does not substantially contain a filler has no bonding interface. It is integrally formed during injection molding, and has a gloss level Gs (60°) specified by ASTM D523.
% or more, an internal loss Q of 50 or more, a specific gravity of 1.1, and a flexural modulus of 29000 Kg/cm 2 or more. 2. The audio equipment component according to claim 1, wherein the filler is an inorganic filler with an average particle size of 1 to 100 μm, and the content thereof is 30 to 80% by weight. 3. The audio equipment component according to claim 2, wherein the inorganic filler is a metal or alloy with a specific gravity of 3 or more, such as Fe, Fe 2 O 3 , or ZnO, or an oxide thereof. 4. The audio equipment component according to claim 1, wherein at least a portion of the filler is glass fiber. 5. The audio equipment component according to claim 1, wherein the thermoplastic resin is an acrylonitrile-butadiene-styrene resin or polystyrene.
JP11177880A 1980-08-15 1980-08-15 ONKYOKIKIBUHIN Granted JPS5736653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11177880A JPS5736653A (en) 1980-08-15 1980-08-15 ONKYOKIKIBUHIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11177880A JPS5736653A (en) 1980-08-15 1980-08-15 ONKYOKIKIBUHIN

Publications (2)

Publication Number Publication Date
JPS5736653A JPS5736653A (en) 1982-02-27
JPS6258290B2 true JPS6258290B2 (en) 1987-12-04

Family

ID=14569924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11177880A Granted JPS5736653A (en) 1980-08-15 1980-08-15 ONKYOKIKIBUHIN

Country Status (1)

Country Link
JP (1) JPS5736653A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679189B2 (en) * 1982-04-20 1994-10-05 キヤノン株式会社 Web cleaning equipment
JPS59117768A (en) * 1982-12-24 1984-07-07 Sony Corp Tape cassette
JP2578420Y2 (en) * 1993-01-13 1998-08-13 日本ユプロ株式会社 Pump support base

Also Published As

Publication number Publication date
JPS5736653A (en) 1982-02-27

Similar Documents

Publication Publication Date Title
US5793002A (en) Loudspeaker vibrating diaphragm and methods for its production
JP2003037891A (en) Frame for electroacoustic transducer and method for manufacturing the same
JPS5840504B2 (en) Injection molding method
JPS6258290B2 (en)
US4362772A (en) Vibratory elements for audio equipment
JPH0439278B2 (en)
US4880591A (en) Method for manufacturing speaker vibration member
JPS6258289B2 (en)
WO2006114980A1 (en) Diaphragm for speaker, method for producing same, speaker using such diaphragm and apparatus using such speaker
JPS6047796B2 (en) Structure for audio equipment and its manufacturing method
US5149486A (en) Method for manufacturing speaker vibration member
JPS62149296A (en) Manufacture of speaker diaphragm
JP2001268686A (en) Diaphragm for electroacoustic transducer and its manufacturing method
CN104497464A (en) High-rigidity high-fluidity polystyrene composition and preparation method and application thereof
JPS6056604B2 (en) Filled thermoplastic resin injection molded product
JP2890720B2 (en) Speaker diaphragm
JPH1188974A (en) Speaker cabinet and its manufacture
CN113306168A (en) Production process for improving horn tone quality
JPS6092814A (en) Manufacture of molded item with expanding layer
JP2508285B2 (en) Magnetic recording / reproducing device
JPS6258287B2 (en)
JPH0134440B2 (en)
JP3387956B2 (en) Hollow molded body
JPS6258292B2 (en)
JP2016043661A (en) Foam molding method for thermoplastic resin and foam molded part