JPS6258170B2 - - Google Patents

Info

Publication number
JPS6258170B2
JPS6258170B2 JP1312179A JP1312179A JPS6258170B2 JP S6258170 B2 JPS6258170 B2 JP S6258170B2 JP 1312179 A JP1312179 A JP 1312179A JP 1312179 A JP1312179 A JP 1312179A JP S6258170 B2 JPS6258170 B2 JP S6258170B2
Authority
JP
Japan
Prior art keywords
mask
crystal
electrode
crystal resonator
slit width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1312179A
Other languages
Japanese (ja)
Other versions
JPS55105418A (en
Inventor
Hirohiko Yoshida
Akio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP1312179A priority Critical patent/JPS55105418A/en
Publication of JPS55105418A publication Critical patent/JPS55105418A/en
Publication of JPS6258170B2 publication Critical patent/JPS6258170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 近年、水晶発振式電子腕時計の小型化、薄形化
の傾向に伴つて、これに用いられる水晶振動子の
小型化、薄型化の要求が強くなつて来ている。こ
れらの要求に応ずるものとして、エツチングによ
り一枚の水晶ウエハーから多数個抜き出されて小
型音叉型振動子がある。この種の振動子の中で、
電気的特性の優れたものとして最近製造を試みら
れているものに、第1図に示す如く、Z面(Z
軸、又は光軸)をX軸(又は電気軸)のまわりに
僅かに回転させて出来た面を主面とし、該主面及
びエツチングにより抜き出されて出来た側面に、
夫々電極を有する振動子がある。
DETAILED DESCRIPTION OF THE INVENTION In recent years, as crystal oscillation type electronic wristwatches have become smaller and thinner, there has been a strong demand for smaller and thinner crystal oscillators used therein. In order to meet these demands, there are small tuning fork type vibrators that are extracted in large numbers from a single crystal wafer by etching. Among this type of oscillator,
As shown in Figure 1, one of the products that has been attempted to be manufactured recently as having excellent electrical characteristics is the Z-plane (Z-plane).
The main surface is the surface created by slightly rotating the axis (or optical axis) around the X axis (or the electrical axis), and the main surface and the side surface extracted by etching,
There are vibrators each having an electrode.

第1図に於いて1は主面、2は側面、3は主面
の電極、4は側面の電極である。
In FIG. 1, 1 is the main surface, 2 is the side surface, 3 is the electrode on the main surface, and 4 is the electrode on the side surface.

本発明は、このような振動子の製造を確実容易
とする為の手段に関するものであり、最終的な目
的は、極く小型でしかも電気的特性に於いても優
れた水晶振動子を量産的に無理なく得るところに
ある。
The present invention relates to a means for reliably and easily manufacturing such a resonator, and the ultimate purpose is to mass-produce crystal resonators that are extremely small and have excellent electrical characteristics. It is within easy reach.

一般に、音叉等、屈曲型水晶振動子を小型にし
て行くに従つて、その等価抵抗は増大して行く傾
向にあり、この傾向を押えるには、電極構造に特
に配慮が必要となつて来る。電極構造に関して望
ましいことは、側面の電極が主面にはみ出さない
ことであるが、この理由につき以下に簡単に説明
を加える。第2図aは、音叉等屈曲振動子が撓ん
だ時に、圧電効果により発生する水晶振動子内部
に於ける電荷の分布をモデル化して示した断面図
であり、上の図は撓みによる歪が存在する場合を
示し、分極によるプラス、マイナスの電荷5,6
が存在する。下の図は撓みが零の場合で、分極に
よる電荷は存在しない。これらの図に於ける一点
鎖線は梁の中立軸であり、上の図では、この線を
境に左右反対方向の歪が紙面に垂直な方向に起き
ている。これらの図は電極が取りつけられていな
い状態を示しており、上の図で矢印で示されるの
は電気力線である。第2図bは第2図aに示され
る水晶に電極が取りつけられた状態で、第1象限
を拡大した断面図である。この図の場合、側面の
電極4は水晶7の主面1へはみ出しており、主面
の電極3とリード線8で電気的に接続されてい
る。主面の電極3、側面の電極4及びリード線8
は、説明の都合上、極端に厚く示してあるが、実
際には、水晶7の厚さに比して極めて薄いもので
ある。第2bの上の図は撓による歪が存在する場
合を示し、分極によるプラス、マイナスの電荷、
5,6が水晶7内に存在し、この電荷に静電誘導
されたプラス、マイナスの電荷5′,6′が主面電
極3、及び側面電極4内に存在する。(下の図は
歪が零で水晶内に電荷が存在しない場合を示
す。)次に、第2図cは第2図aに示される水晶
7に電極がとりつけられた状態で、第1象限を拡
大した断面図であるが、この場合は、側面の電極
4は、水晶7の側面2に完全に限定されており、
主面1には、はみ出していない。側面の電極4と
主面の電極3は、リード線8により接続されてい
る。この場合も上の図は水晶7が撓んで、歪によ
る分極で、プラス、マイナスの電荷5,6が水晶
7内に存在し、この電荷に静電誘導されたプラ
ス、マイナスの電荷が主面電極3及び側面電極4
内に存在する。下の図は歪が零で水晶7内に電荷
が存在しない場合を示す。第2図b及び第2図c
に於いて、水晶7内に分極による電荷が存在する
時は、これに対応して電極3,4内のプラス、マ
イナスの電荷5′,6′は夫々分かれて存在する
が、歪が零になり、水晶7内の分極による電荷が
消滅すると、電極3,4内の電荷は中和され、プ
ラス、マイナスの電荷の偏在はなくなる。この
時、リード線8の中で電荷の移動が起り、電流が
流れる。
Generally, as a bent crystal resonator such as a tuning fork is made smaller, its equivalent resistance tends to increase, and in order to suppress this tendency, special consideration must be given to the electrode structure. What is desirable regarding the electrode structure is that the side electrodes do not protrude onto the main surface, and the reason for this will be briefly explained below. Figure 2a is a cross-sectional view modeling the distribution of charges inside the crystal oscillator that is generated due to the piezoelectric effect when a bending oscillator such as a tuning fork is bent. Indicates the presence of positive and negative charges due to polarization 5, 6
exists. The figure below shows the case when the deflection is zero, and there is no charge due to polarization. The dashed-dotted line in these figures is the neutral axis of the beam, and in the above figure, distortion occurs in opposite directions to the left and right across this line in a direction perpendicular to the plane of the paper. These figures show the state in which no electrodes are attached, and the arrows in the figures above are the lines of electric force. FIG. 2b is an enlarged cross-sectional view of the first quadrant with electrodes attached to the crystal shown in FIG. 2a. In this figure, the side electrode 4 protrudes onto the main surface 1 of the crystal 7 and is electrically connected to the electrode 3 on the main surface by a lead wire 8. Main surface electrode 3, side electrode 4 and lead wire 8
is shown extremely thick for convenience of explanation, but is actually extremely thin compared to the thickness of the crystal 7. The upper figure in 2b shows the case where there is distortion due to bending, plus and minus charges due to polarization,
5 and 6 exist in the crystal 7, and positive and negative charges 5' and 6' electrostatically induced by these charges exist in the main surface electrode 3 and the side electrode 4. (The figure below shows the case where the strain is zero and there is no charge in the crystal.) Next, Figure 2c shows the state where the electrode is attached to the crystal 7 shown in Figure 2a, and the crystal 7 is in the first quadrant. This is an enlarged cross-sectional view of , but in this case, the side electrode 4 is completely limited to the side surface 2 of the crystal 7,
It does not protrude onto the main surface 1. The electrode 4 on the side surface and the electrode 3 on the main surface are connected by a lead wire 8. In this case as well, the figure above shows that the crystal 7 is bent and polarized due to the strain, and positive and negative charges 5 and 6 exist in the crystal 7, and the positive and negative charges electrostatically induced by these charges are on the main surface. Electrode 3 and side electrode 4
exists within. The lower figure shows the case where the strain is zero and there is no charge in the crystal 7. Figure 2b and Figure 2c
In this case, when there is an electric charge due to polarization in the crystal 7, correspondingly, the positive and negative electric charges 5' and 6' in the electrodes 3 and 4 exist separately, but when the strain becomes zero, When the electric charge due to polarization in the crystal 7 disappears, the electric charge in the electrodes 3 and 4 is neutralized, and the uneven distribution of positive and negative electric charges disappears. At this time, charge movement occurs in the lead wire 8, and current flows.

第2図bでは、水晶内部で発生する電荷のう
ち、コの字形の側面電極4で囲まれた部分に発生
する電荷は、かかる電流の発生に寄与せず、無効
となる。これに反し、第2図cの場合は、水晶7
の内部で発生する電荷がすべて、リード線8中を
通過する電流の発生に寄与するため、等価抵抗
(あるいはクリスタルインピーダンス)は大巾に
減少する。
In FIG. 2b, among the charges generated inside the crystal, the charges generated in the portion surrounded by the U-shaped side electrodes 4 do not contribute to the generation of the current and are ineffective. On the other hand, in the case of Figure 2c, crystal 7
Since all the charges generated inside the lead wire 8 contribute to the generation of current passing through the lead wire 8, the equivalent resistance (or crystal impedance) is greatly reduced.

以上の説明の如く、等価抵抗増大を防ぐには、
小型になればなる程、完全なる側面の電極が要求
されるが、一方、これを製造する立場に立つ時
は、従来の加工方法を以つてしては、小型になれ
ばなる程、この実現は困難となる。
As explained above, to prevent an increase in equivalent resistance,
The smaller the size, the more perfect side electrodes are required, but when you are in the position of manufacturing them, it is difficult to achieve this using conventional processing methods. becomes difficult.

第3図は、従来の側面電極のとりつけ法を示す
断面図であり、一枚の水晶ウエハーから、エツチ
ングにより多数個整列して抜き出され、主面の電
極3が写真蝕刻法、あるいは、マスク蒸着法等に
より成形された水晶音叉7及びこれにとりつけら
れたマスク9を示す。水晶音叉7のスリツト巾b
が小となるに従つて、これに対応するマスクのス
リツト巾b1も小となることが要求される為、マス
クを加工する上からマスクの厚さtは限定され、
例えば、100μmのスリツト巾に対して、マスク
の厚さは50μm以下が必要となり、ベコベコのう
ねりを生じ、どうしても10μm内外の表面の凹凸
は避けられない。従つて、第3図の如く、水晶の
スリツト巾とマスクのスリツト巾をほぼ等しくし
て、マスク9を水晶音叉7に重ね、これ等を蒸着
源に対し回転させながら蒸着すると、マスク9と
水晶音叉7のすき間から蒸着物質が入り込み、側
面につけるべき蒸着物質が主面にはみ出すのみな
らず、しばしば、主面の電極3に短絡することも
あり、エツチング加工による小型音叉に於いて
は、完全なる側面の取りつけは、マスクを用いて
は、製造的には、不可能、或いは、これに近いも
のとされて来た。
FIG. 3 is a cross-sectional view showing a conventional method of attaching side electrodes, in which a large number of electrodes are extracted from a single crystal wafer by being aligned in a row by etching, and electrodes 3 on the main surface are formed by photolithography or masking. A crystal tuning fork 7 formed by vapor deposition or the like and a mask 9 attached thereto are shown. Crystal tuning fork 7 slit width b
As becomes smaller, the corresponding slit width b1 of the mask is also required to become smaller, so the thickness t of the mask is limited from the perspective of mask processing.
For example, for a slit width of 100 μm, the thickness of the mask must be 50 μm or less, causing unevenness on the surface of around 10 μm. Therefore, as shown in FIG. 3, if the slit width of the crystal and the slit width of the mask are made almost equal, the mask 9 is stacked on the crystal tuning fork 7, and these are evaporated while rotating with respect to the evaporation source, the mask 9 and the quartz crystal are The vapor deposited material enters through the gap in the tuning fork 7, and the vapor deposited material that should be applied to the side surface not only protrudes onto the main surface, but also often short-circuits to the electrode 3 on the main surface. Attachment on the sides has been thought to be impossible in terms of manufacturing using a mask, or something close to this.

本発明の目的は、上記問題点を除去し小型エツ
チング音叉水晶振動子の蒸着による側面電極の製
造方法において、マスクと水晶振動子との間のす
き間を小さくすることにより、水晶振動子の主面
にはみ出さない完全なる側面電極の実現を製造的
に可能とすることである。
An object of the present invention is to eliminate the above-mentioned problems and to reduce the gap between the mask and the crystal oscillator in a method for manufacturing side electrodes by vapor deposition of a small etched tuning fork crystal oscillator. The objective is to make it possible to manufacture complete side electrodes that do not protrude.

第4図は本発明を示す断面図である。同図に於
いて、10は水晶音叉7に直接接触する第1のマ
スクであり、11は第1のマスク10に接触する
第2のマスクである。。第1のマスクは細いスリ
ツトの巾bを得る為に薄さtを小さくし、自然形
状ではベコベコとなつて表面に凹凸があり、その
ままでは水晶音叉7との間に第3図の如きすき間
を生ずるが、第2のマスク11はスリツト巾b1
大きくとれる為、厚さt1も大きくとれ、ベコベコ
は極端に少い。この為、第1のマスク及び第2の
マスクを重ねて用いる時は、第1のマスクのベコ
ベコは矯正され、水晶音叉7に密着するか、或い
は、すき間があつても、その量は極く僅かで実害
のない状態となり、はみ出しのない完全なる側面
電極の蒸着が可能となる。
FIG. 4 is a sectional view showing the present invention. In the figure, 10 is a first mask in direct contact with the crystal tuning fork 7, and 11 is a second mask in contact with the first mask 10. . The thickness t of the first mask is made small in order to obtain the narrow slit width b, and its natural shape is uneven and has an uneven surface, and if left as is, there will be a gap between it and the crystal tuning fork 7 as shown in Figure 3. However, since the second mask 11 can have a large slit width b1 , the thickness t1 can also be large, and the unevenness is extremely small. Therefore, when the first mask and the second mask are used overlappingly, the unevenness of the first mask is corrected and the first mask is either in close contact with the crystal tuning fork 7, or even if there is a gap, the amount of the gap is minimal. This causes only a slight amount of damage and makes it possible to completely deposit side electrodes without any protrusion.

このように、本発明によれば、従来のマスク工
法では不可能とされていた、エツチング水晶音叉
に対する完全なる側面電極の形成が、Cr、Au、
Ag、Al、Ti、Pd、Cu…等、真空蒸着が可能な物
質の内、任意のものを適宜選択して出来るように
なつた為、振動子の電気特性の向上、周波数安定
度、製造歩留りの向上に於いて、その利とすると
ころ大なるものがある。
As described above, according to the present invention, it is possible to form a complete side electrode for an etched crystal tuning fork, which was considered impossible with the conventional mask method.
Since it is now possible to select any material that can be vacuum-deposited, such as Ag, Al, Ti, Pd, Cu, etc., it is possible to improve the electrical characteristics of the resonator, frequency stability, and manufacturing yield. There are great benefits to improving one's abilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Z板タイプのエツチング加工により
成る音叉型水晶振動子の斜視図、第2図a,b,
cは電極構造と外部へとり出される電流の関係を
示す原理図、第3図は、従来のマスク工法による
側面電極蒸着法を示す説明図、第4図は本発明に
よる側面電極蒸着法を示す説明図である。 7……水晶音叉、10……第1のマスク、11
……第2のマスク。
Fig. 1 is a perspective view of a tuning fork type crystal resonator made by etching a Z plate type, Fig. 2 a, b,
c is a principle diagram showing the relationship between the electrode structure and the current taken out to the outside, Figure 3 is an explanatory diagram showing the side electrode deposition method using the conventional mask method, and Figure 4 shows the side electrode deposition method according to the present invention. It is an explanatory diagram. 7...Crystal tuning fork, 10...First mask, 11
...Second mask.

Claims (1)

【特許請求の範囲】[Claims] 1 水晶板からエツチング加工により抜き出され
てなる音叉型の水晶振動子の側面電極を蒸着によ
り形成する水晶振動子の電極の製造方法におい
て、前記水晶振動子のスリツト幅とほぼ同じスリ
ツト幅を持つ前記水晶振動子上に配置する第1の
マスクと、該第1のマスクより厚さが厚くさらに
該第1のマスクのスリツト幅より広いスリツト幅
を持つ前記第1のマスク上に配置する第2のマス
クとにより前記水晶振動子を挾持し、さらに前記
水晶振動子のスリツトと前記第1のマスクのスリ
ツトとを合致させ、かつ前記第2のマスクのスリ
ツトの中に前記第1のマスクのスリツトを位置決
めする工程を有し、前記第2のマスクで前記第1
のマスクの表面凹凸を矯正することを特徴とする
水晶振動子の電極の製造方法。
1. A method for manufacturing a crystal resonator electrode in which side electrodes of a tuning fork-shaped crystal resonator extracted from a crystal plate by etching are formed by vapor deposition, wherein the slit width is approximately the same as the slit width of the crystal resonator. a first mask placed on the crystal resonator; and a second mask placed on the first mask that is thicker than the first mask and has a slit width wider than the slit width of the first mask. The crystal resonator is held between the slits of the crystal resonator and the slits of the first mask, and the slits of the first mask are inserted into the slits of the second mask. positioning the first mask with the second mask.
A method for manufacturing an electrode for a crystal resonator, characterized by correcting surface irregularities of a mask.
JP1312179A 1979-02-07 1979-02-07 Manufacture of electrode for crystal oscillator Granted JPS55105418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1312179A JPS55105418A (en) 1979-02-07 1979-02-07 Manufacture of electrode for crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312179A JPS55105418A (en) 1979-02-07 1979-02-07 Manufacture of electrode for crystal oscillator

Publications (2)

Publication Number Publication Date
JPS55105418A JPS55105418A (en) 1980-08-13
JPS6258170B2 true JPS6258170B2 (en) 1987-12-04

Family

ID=11824316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312179A Granted JPS55105418A (en) 1979-02-07 1979-02-07 Manufacture of electrode for crystal oscillator

Country Status (1)

Country Link
JP (1) JPS55105418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243187U (en) * 1988-09-17 1990-03-26
TWI482974B (en) * 2009-04-27 2015-05-01 Yokowo Seisakusho Kk Contact probe and socket

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243187U (en) * 1988-09-17 1990-03-26
TWI482974B (en) * 2009-04-27 2015-05-01 Yokowo Seisakusho Kk Contact probe and socket

Also Published As

Publication number Publication date
JPS55105418A (en) 1980-08-13

Similar Documents

Publication Publication Date Title
US4456850A (en) Piezoelectric composite thin film resonator
US4196407A (en) Piezoelectric ceramic filter
JP2019201400A (en) Bulk acoustic wave resonator and method of manufacturing the same
US4449107A (en) Surface elastic wave element
US6661162B1 (en) Piezoelectric resonator and method of producing the same
JPS6025926B2 (en) Crystal oscillator
US5307034A (en) Ultrathin multimode quartz crystal filter element
GB1560846A (en) Laminar quartz crystal oscillator
US7888849B2 (en) Piezoelectric resonator and method for producing the same
US4363990A (en) Surface acoustic wave transducer
US20040061573A1 (en) Method and apparatus for adjusting the resonant frequency of a thin film resonator
JPS6258170B2 (en)
US5065066A (en) Piezoelectric resonator
US4252839A (en) Tuning fork-type quartz crystal vibrator and method of forming the same
JP3991304B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JPS6057052B2 (en) light deflection element
JPS6127929B2 (en)
JP3552056B2 (en) Multi-mode piezoelectric filter element
JPS624888B2 (en)
JPS5832524B2 (en) Electrode structure of tuning fork crystal resonator
JPS5844656Y2 (en) Kogata on Sagata Atsuden Shindoushi
JPH0439233B2 (en)
JP2001131744A (en) Thin film deposition
JP2015159470A (en) Surface acoustic wave element
JPH0637567A (en) Electrode forming method for thick system crystal resonator