JPS6258159B2 - - Google Patents

Info

Publication number
JPS6258159B2
JPS6258159B2 JP3269479A JP3269479A JPS6258159B2 JP S6258159 B2 JPS6258159 B2 JP S6258159B2 JP 3269479 A JP3269479 A JP 3269479A JP 3269479 A JP3269479 A JP 3269479A JP S6258159 B2 JPS6258159 B2 JP S6258159B2
Authority
JP
Japan
Prior art keywords
gas
laser
time
pressure
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3269479A
Other languages
Japanese (ja)
Other versions
JPS55124286A (en
Inventor
Norio Karube
Yasuyuki Morita
Naoya Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3269479A priority Critical patent/JPS55124286A/en
Publication of JPS55124286A publication Critical patent/JPS55124286A/en
Publication of JPS6258159B2 publication Critical patent/JPS6258159B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明はガスレーザのガス再生装置に関する。
より詳しくは封入型CO2レーザのガス組成の維持
される時間を延長してレーザガスの補給率を低減
せしめランニングコストの低減をはかることを可
能としたガス再生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas regeneration device for a gas laser.
More specifically, the present invention relates to a gas regeneration device that extends the time during which the gas composition of a sealed CO 2 laser is maintained, thereby reducing the laser gas replenishment rate and reducing running costs.

CO2レーザはCO2,N2,Heガスの混合ガスを
レーザ媒体とし気体放電によりポンピングをはか
るが、電気放電に起因する電気化学現象によりガ
ス劣化が生ずるのでガスの置換かガス再生装置の
使用を必要とする。通常のガス再生装置はガスの
再生能力に限界があるのでガス再生と一部新鮮ガ
スの補給を併用している。これは系の気密性に関
係がある。第1図にガス再生装置を使用した場
合、ガスの流れのダイアグラムを示す。本図はガ
ス再生の機能よりもガス圧及び体積のみに着目し
て書いてある。第1図に於て、1はポンプ、2は
ガス再生系、3は流量制御器でポンプ1より流量
制御器3に至る領域(斜線で示す)はポンプ1の
背圧で決まる圧力P1を有しその容積はV1とす
る。
CO 2 laser uses a mixed gas of CO 2 , N 2 , and He gas as a laser medium and pumps it by gas discharge, but gas deterioration occurs due to electrochemical phenomena caused by electric discharge, so it is necessary to replace the gas or use a gas regeneration device. Requires. Normal gas regeneration equipment has a limited gas regeneration capacity, so gas regeneration and some fresh gas replenishment are used in combination. This is related to the airtightness of the system. FIG. 1 shows a diagram of the flow of gas when a gas regeneration device is used. This diagram focuses only on gas pressure and volume rather than the gas regeneration function. In Fig. 1, 1 is a pump, 2 is a gas regeneration system, and 3 is a flow rate controller.The area from pump 1 to flow rate controller 3 (indicated by diagonal lines) has a pressure P1 determined by the back pressure of pump 1. and its volume is V 1 .

レーザヘツド部4を含むその他の領域は圧力
P2、容積V2である。圧力P2はポンプ1の能力と
流量制御器3のコンダクタンスのバランスにより
決定される。さてレーザガスは矢印で示す方向に
移動している。圧力P1は1気圧に近いやや高圧に
選ばれる。圧力P2はレーザ作用に関係したパラメ
ータであり、レーザの動作点から選ばれ20〜
50torr内の一定圧に保たれるのが普通である。こ
の系でガス再生能力が十分であるとこの閉ループ
で示す閉じた系内のレーザガスは封入ガスとして
無制限に長時間レーザ発振をしつづけることにな
る。しかし、実際の封入時間は閉系全体の真空リ
ークにより限界がある。真空リークは負圧である
ヘツド部4で生じやすくその場合大気成分など外
気の混入がありN2,O2がレーザガスに不純物と
して混入してくる。レーザガスの当初の封入量は
P1V1+P2V2であり、たとえばP1=760torr,P2
40torr,V1=7000c.c.,V2=3000c.c.としたときその
量は256×104torr・ccである。これに対して約
10torr・c.c./secのリークがあるとする。このリ
ークはレーザヘツド部4で発生するが、それが直
接レーザヘツド4内のガスの圧力上昇にはならな
い。ヘツド4のガス圧は流量制御器3のコンダク
タンスとポンプの排気能力のバランスで決定され
る。その代り閉系全体におけるガス量を増大させ
出力低下をもたらすことになる。発明者の実験例
ではガス封入後約8時間で出力低下が開始する。
8時間後のリーク量は10torr・c.c./sec×8時間
=288000Torr・c.c.であるので先に求めた全ガス
量との比は約11.2%に達する。レーザガス中には
当初からN2が約20%含まれるしO2もCO2の解離
により約3%程度入つているから大気成分の微量
の混入は出力に影響しないが、この量が大きくな
るとその影響は無視できない。
Other areas including the laser head 4 are under pressure.
P 2 and volume V 2 . The pressure P 2 is determined by the balance between the capacity of the pump 1 and the conductance of the flow rate controller 3. Now, the laser gas is moving in the direction shown by the arrow. The pressure P 1 is selected to be a slightly high pressure close to 1 atmosphere. The pressure P2 is a parameter related to the laser action and is chosen from the laser operating point and is 20~
It is normally maintained at a constant pressure within 50 torr. If this system has sufficient gas regeneration ability, the laser gas in the closed system shown by this closed loop will continue to oscillate for a long time indefinitely as a sealed gas. However, the actual encapsulation time is limited by vacuum leaks throughout the closed system. Vacuum leaks tend to occur in the head section 4, which is under negative pressure, and in this case, outside air such as atmospheric components is mixed in, and N 2 and O 2 are mixed into the laser gas as impurities. The initial amount of laser gas filled is
P 1 V 1 + P 2 V 2 , for example, P 1 = 760 torr, P 2 =
When 40 torr, V 1 = 7000 c.c., and V 2 = 3000 c.c., the amount is 256×10 4 torr·cc. For this, about
Suppose there is a leak of 10 torr cc/sec. Although this leak occurs in the laser head 4, it does not directly increase the pressure of the gas within the laser head 4. The gas pressure in the head 4 is determined by the balance between the conductance of the flow controller 3 and the exhaust capacity of the pump. Instead, this increases the amount of gas in the entire closed system, resulting in a decrease in output. In the inventor's experimental example, the output starts to decrease approximately 8 hours after gas is filled.
The leak amount after 8 hours is 10 torr.cc/sec x 8 hours = 288000 Torr.cc, so the ratio to the total gas amount determined earlier reaches approximately 11.2%. The laser gas initially contains about 20% N 2 and about 3% O 2 due to the dissociation of CO 2 , so a small amount of atmospheric components will not affect the output, but as this amount increases, it will The impact cannot be ignored.

第2図に新鮮ガス封入後、レーザ出力の変化を
時間の経過の関数として示す。同図からわかる様
にレーザ出力は8時間を境目としてやや減少傾向
を示すようになる。8時間経過後は再度ガスを置
換してレーザ発振をつづけることができるが自動
車工業などの量産工場ではこの8時間ごとのガス
置換操作は望ましくない。本発明はこの封入時間
の延長を可能にせんとするものである。
FIG. 2 shows the change in laser power as a function of time after fresh gas injection. As can be seen from the figure, the laser output begins to show a slight decreasing trend after 8 hours. After 8 hours have elapsed, the gas can be replaced again to continue laser oscillation, but in mass production factories such as the automobile industry, this gas replacement operation every 8 hours is not desirable. The present invention is intended to make it possible to extend this encapsulation time.

リークによる大気成分の混入率は一定であるの
で閉系内の封入ガス量が多ければ多い程不純物濃
度は希薄になる。そのリークの発生率をLtorr―
c.c./secとすると時間t後の不純物量はLtとな
る。これと封入レーザガス量P1V1+P2V2との比
が一定の値になつた時出力低下が開始するとす
るとその時間tは次式で与えられる。
Since the mixing rate of atmospheric components due to leakage is constant, the greater the amount of gas sealed in the closed system, the diluted the impurity concentration. Ltorr the incidence of that leak.
If cc/sec, the amount of impurities after time t will be Lt. Assuming that the output starts to decrease when the ratio between this and the enclosed laser gas amount P 1 V 1 +P 2 V 2 reaches a constant value, the time t is given by the following equation.

Lt/P+P= (1) 系内の封入ガス量を増大させるにはガス圧を増
大させるか容積を増大させるかのいずれかである
が、ガス圧はレーザ作用に関係してくるので勝手
に増大させることはできず従つてできるだけ高い
圧力下での容積を増大させればよい。このため圧
力P1の容積をΔV増大させることにする。これに
よつて封入時間をt′に延長させるとすれば、 Lt′/P(V+ΔV)+P= (2) が成立する。(1),(2)式より封入時間の延長率t′/
tを求めると次の様になる。
Lt/P 1 V 1 + P 2 V 2 = (1) To increase the amount of gas enclosed in the system, either increase the gas pressure or increase the volume, but the gas pressure is related to the laser action. Therefore, it cannot be increased arbitrarily; therefore, it is only necessary to increase the volume under as high a pressure as possible. Therefore, the volume of pressure P 1 is increased by ΔV. If the enclosing time is thereby extended to t', then Lt'/P 1 (V 1 +ΔV)+P 2 V 2 = (2) holds true. From equations (1) and (2), the extension rate of the enclosing time t′/
The calculation of t is as follows.

t′/t=1+P/ΔV/P+P (3) 前述したようにP1=760torr、P2=40torrであ
ればP2はP1に比較して無視することができ、この
時 t′/t=1+ΔV/V (4) となる。ΔVをV1と等しくすれば封入時間は2
倍に延長させることができる。ΔVはガス再生装
置の内容積を増大させて作ればよいが特にガス溜
めを使用すればよい。この時封入時間の延長に役
立つだけではなく循環ポンプの脈流を消去する効
果もありレーザヘツド内の圧力の脈流をなくする
ことになるので出力のゆらぎを防止する働きもあ
る。封入ガス時間が延長されると一度ガス封入を
行えばそれ以後のレーザ操作時間にわたつてガス
圧制御を行う必要がないので操作の容易化にもな
るしその間出力が一定値に保たれるので便利であ
る。この様な効果は系全体のリークを防止するこ
とによつても得られるがその場合は気密性向上の
ために装置価格が上昇する。本発明は装置価格の
増大を招くことなくそれと同等の働きをなすので
装置の操作の簡略化、出力安定化、ランニングコ
ストの低減など種々の点から効果の大きいもので
ある。
t'/t=1+P 1 /ΔV/P 1 V 1 +P 2 V 2 (3) As mentioned above, if P 1 = 760 torr and P 2 = 40 torr, P 2 can be ignored compared to P 1 . In this case, t'/t=1+ΔV/V 1 (4). If ΔV is equal to V 1 , the enclosing time is 2
It can be extended twice. ΔV can be created by increasing the internal volume of the gas regeneration device, and in particular, by using a gas reservoir. At this time, it not only helps to extend the sealing time, but also has the effect of eliminating the pulsating flow of the circulation pump, which eliminates the pulsating flow of pressure within the laser head, thereby preventing fluctuations in the output. If the gas filling time is extended, once the gas is filled, there is no need to control the gas pressure over the subsequent laser operation time, which simplifies operation, and the output is kept at a constant value during that time. It's convenient. Such an effect can also be obtained by preventing leakage in the entire system, but in that case, the cost of the equipment increases due to the improved airtightness. Since the present invention performs the same function without increasing the cost of the device, it is highly effective in various respects such as simplifying the operation of the device, stabilizing the output, and reducing running costs.

第3図に本発明の一実施例を示す。図中第1図
と同一部分には同一符号を示す。5はガス再生系
全体の安全弁である。中空洞のガス溜め6をガス
再生装置2内やその前後などに設置すればよい。
ガス溜め6の内容積ΔVはガス封入時間の延長比
をNとすると、 N=1+ΔV/V (5) よりΔV=(N−1)V1を選べばよい。即ち封入
時間を2倍にするためにはΔV=V1となる様に
選べばよい。設置位置はP1の領域にする方が有効
であるので真空ポンプ1から流量制御器3に至る
迄のいずれかの場所にする。この場合安全弁5以
後流量制御器3迄の領域につけるとガス封入時に
ガス溜め6中のガスをレーザガスで置換すること
ができないので系全体に正しくレーザガスを封入
することができないので、この領域はさける方が
好ましい。真空ポンプ1に近い程オイルベーパに
よる汚染がある。設置の方法はガスの流れに並列
と直列に設置することができるが並列であると、
ガス封入時にガス溜め6中のガスをレーザガスで
置換するのにより長時間かかることになり、ガス
消費を増大させることになる。この意味からは直
列設置が望ましい。第4図にいくつかのガス溜め
の構造を示す。同図aは球状のガス溜めであり丈
夫であるがガス溜め中にガス封入時に対流を生じ
るので置換に時間がかかりガス消費が多い。同図
bは柱状でありガス置換に要する時間がやや短縮
される。同図cに示すものはラセン状中空ガラス
管であり容積が大きいわりにはガス流は対流をと
もなわないので置換時間が最小である。
FIG. 3 shows an embodiment of the present invention. In the figure, the same parts as in FIG. 1 are denoted by the same reference numerals. 5 is a safety valve for the entire gas regeneration system. A hollow gas reservoir 6 may be installed within the gas regeneration device 2 or before or after the gas regeneration device 2.
The internal volume ΔV of the gas reservoir 6 can be selected from ΔV=(N-1)V 1 from N=1+ΔV/V 1 (5), where N is the extension ratio of gas filling time. That is, in order to double the enclosing time, it is only necessary to select ΔV=V 1 . Since it is more effective to set the installation position in the region P1 , it should be installed anywhere from the vacuum pump 1 to the flow rate controller 3. In this case, if it is installed in the area after the safety valve 5 up to the flow rate controller 3, the gas in the gas reservoir 6 cannot be replaced with the laser gas when filling the gas, making it impossible to fill the entire system with laser gas correctly, so avoid this area. is preferable. The closer the pump is to the vacuum pump 1, the more contaminated it is by oil vapor. The installation method can be installed in parallel or in series with the gas flow, but if it is in parallel,
During gas filling, it takes a longer time to replace the gas in the gas reservoir 6 with the laser gas, which increases gas consumption. From this point of view, series installation is desirable. Figure 4 shows the structure of some gas reservoirs. Figure a shows a spherical gas reservoir, which is durable, but convection occurs when gas is filled in the gas reservoir, so replacing the gas takes time and consumes a lot of gas. Figure b shows a columnar shape, and the time required for gas replacement is somewhat shortened. The tube shown in Figure c is a helical hollow glass tube, and although it has a large volume, the gas flow does not involve convection, so the replacement time is minimal.

第5図にはオイルベーパトラツプ機能を有する
ガス溜めの一構造例を示す。オイルベーパーはト
ラツプやフイルターによつて除去することができ
るがこれを完全に除去しない場合はオイルベーパ
ーは次に述べる弊害をもたらす。第一に触媒表面
に付着する時触媒の活性度を弱めることによりガ
ス再生能力を低下させる。第二には光学部品表面
に付着してその性能を低下させたり強度を低下さ
せたりする。第5図に示すガス溜めはこのオイル
ベーパー除去機能をあわせ持たせることができ
る。すなわち、オイルベーパーを含むガスは下方
より上方に移動するがくびれ部を通過すると断熱
膨張により冷却を受けるのでベーパーが液状に凝
縮して気体中から除去することができる。同図に
示す斜線部は凝固した流体状の油であり下方にた
れてポンプの中に帰還する。
FIG. 5 shows an example of the structure of a gas reservoir having an oil vapor trap function. Oil vapor can be removed by traps or filters, but if it is not completely removed, oil vapor will cause the following problems. First, when it adheres to the catalyst surface, it weakens the activity of the catalyst, thereby reducing the gas regeneration ability. Second, it adheres to the surface of optical components, reducing their performance and strength. The gas reservoir shown in FIG. 5 can also have this oil vapor removal function. That is, gas containing oil vapor moves upward from below, and when it passes through the constriction, it is cooled by adiabatic expansion, so that the vapor condenses into liquid form and can be removed from the gas. The shaded area shown in the figure is solidified fluid oil that drips downward and returns into the pump.

上記した如く本発明によればガス封入時間が延
長されるのでレーザ操作性向上、ランニングコス
トの低減,出力安定性の向上などの長所を有す
る。
As described above, according to the present invention, since the gas filling time is extended, it has advantages such as improved laser operability, reduced running costs, and improved output stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザガス再生装置のブロツク
図、第2図は第1図のレーザガス再生装置のレー
ザ出力特性図、第3図は本発明の一実施例におけ
るレーザガス再生装置のブロツク図、第4図a,
b,cおよび第5図は本発明に使用される中空ガ
ス溜めの構造を示す図である。 1……真空ポンプ、2……ガス再生系、3……
流量制御器、4……レーザヘツド、5……安全
弁、6……中空ガス溜め。
FIG. 1 is a block diagram of a conventional laser gas regeneration device, FIG. 2 is a laser output characteristic diagram of the laser gas regeneration device of FIG. 1, FIG. 3 is a block diagram of a laser gas regeneration device according to an embodiment of the present invention, and FIG. Figure a,
Figures b, c and 5 are diagrams showing the structure of a hollow gas reservoir used in the present invention. 1...Vacuum pump, 2...Gas regeneration system, 3...
Flow rate controller, 4...laser head, 5...safety valve, 6...hollow gas reservoir.

Claims (1)

【特許請求の範囲】 1 レーザヘツドから使用済のレーザガスを回収
する真空ポンプ、真空ポンプを経由したレーザガ
スを元のレーザガスに再生するガス再生系および
ガス再生されたレーザガスの流量を制御してレー
ザヘツドに供給する流量制御器が直列に配列さ
れ、前記真空ポンプから流量制御器に至るガス経
路内にこのガス経路の容積以上の容積を有する中
空ガス溜めを配したことを特徴とするレーザガス
再生装置。 2 中空ガス溜めがオイルトラツプ機能を有する
特許請求の範囲第1項記載のレーザガス再生装
置。
[Claims] 1. A vacuum pump that recovers used laser gas from the laser head, a gas regeneration system that regenerates the laser gas that has passed through the vacuum pump into the original laser gas, and a gas regeneration system that controls the flow rate of the regenerated laser gas and supplies it to the laser head. A laser gas regeneration device characterized in that flow rate controllers are arranged in series, and a hollow gas reservoir having a volume larger than the volume of the gas path is disposed in a gas path leading from the vacuum pump to the flow rate controller. 2. The laser gas regeneration device according to claim 1, wherein the hollow gas reservoir has an oil trap function.
JP3269479A 1979-03-20 1979-03-20 Laser gas regenerator Granted JPS55124286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3269479A JPS55124286A (en) 1979-03-20 1979-03-20 Laser gas regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269479A JPS55124286A (en) 1979-03-20 1979-03-20 Laser gas regenerator

Publications (2)

Publication Number Publication Date
JPS55124286A JPS55124286A (en) 1980-09-25
JPS6258159B2 true JPS6258159B2 (en) 1987-12-04

Family

ID=12365957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269479A Granted JPS55124286A (en) 1979-03-20 1979-03-20 Laser gas regenerator

Country Status (1)

Country Link
JP (1) JPS55124286A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3212928C2 (en) * 1982-04-07 1984-01-26 Lambda Physik GmbH, 3400 Göttingen Discharge pumped laser
JPH0714089B2 (en) * 1987-05-18 1995-02-15 ファナック株式会社 Laser oscillator and method for enclosing laser gas in laser oscillator

Also Published As

Publication number Publication date
JPS55124286A (en) 1980-09-25

Similar Documents

Publication Publication Date Title
US4696684A (en) Method and apparatus for eliminating cavitation in hydraulic systems
JPH02112292A (en) Gas controller of halogen gas laser
JPS6258159B2 (en)
JPS5642776A (en) Electric expansion valve
CN114510133A (en) Cooling system of server
US5199267A (en) Gas circulation type gas laser apparatus and method of operating the same
JPH0414804A (en) Breathing apparatus of diaphragm-system conservator
US3775282A (en) Electro-chemical ion exchange membrane purge pump
US3886744A (en) Power-control system for stirling engines
US4689796A (en) Method and apparatus for regulating pressure in laser tubes
JP3492730B2 (en) Pure water storage method
JPH06283781A (en) Excimer laser apparatus and operating method therefor
JP3044060B2 (en) Laser gas supply control device in gas laser oscillator
JPH0842342A (en) Pressurizing-type reserve tank
US6310903B1 (en) Gas laser device and integrated gas purifying means
JPH04137574A (en) Discharge-pumped laser oscillator
RU19099U1 (en) GAS SOURCE FOR PNEUMATIC DRIVE
JPS58127509A (en) Gas insulated electric device
JPS629069A (en) Seal device
JPS6028158B2 (en) Carbon dioxide laser device
JPH0547483Y2 (en)
JPH09272210A (en) Liquid storage container for ink-jet
JPH03230588A (en) Excimer gas laser apparatus
JPH04127592A (en) Gas laser device
De Rijke Factors affecting cryopump base pressure