JPS6257707B2 - - Google Patents
Info
- Publication number
- JPS6257707B2 JPS6257707B2 JP60298123A JP29812385A JPS6257707B2 JP S6257707 B2 JPS6257707 B2 JP S6257707B2 JP 60298123 A JP60298123 A JP 60298123A JP 29812385 A JP29812385 A JP 29812385A JP S6257707 B2 JPS6257707 B2 JP S6257707B2
- Authority
- JP
- Japan
- Prior art keywords
- iridium
- film
- iridium oxide
- oxide film
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 35
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 35
- 239000002131 composite material Substances 0.000 claims description 19
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910052741 iridium Inorganic materials 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 description 68
- 230000003647 oxidation Effects 0.000 description 24
- 238000007254 oxidation reaction Methods 0.000 description 24
- 238000002834 transmittance Methods 0.000 description 16
- DZQBLSOLVRLASG-UHFFFAOYSA-N iridium;methane Chemical compound C.[Ir] DZQBLSOLVRLASG-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000004042 decolorization Methods 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000002932 luster Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- -1 glass Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、酸化状態において発色する“電解酸
化発色性”を有する酸化イリジウム膜の製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an iridium oxide film having "electrolytic oxidation color development" that develops color in an oxidized state.
(従来技術とその問題点)
正または負の電荷をもつイオンの注入により薄
膜状物体が変色もしくは発、消色する現象は、エ
レクトロクロミズムと呼ばれ、この現象は、例え
ばエレクトロクロミツク素子に利用されている。
電解酸化発色性を示す無機材料としては、酸化イ
リジウム、酸化ロジウム、酸化ニツケル、酸化コ
バルト等の金属酸化物が知られている。この中で
も、酸化イリジウムは応答速度が早い、化学的安
定性に優れている等の利点を備えているので、最
も活発にその研究が行われている。従来、酸化イ
リジウム膜を作製する方法としては、陽極酸化法
と反応性スパツタリング法とが知られているが、
両者には共に解決すべき問題点がある。陽極酸化
法においては、スパツタリング法または真空蒸着
法を用いて基板上に形成したイリジウム膜を、硫
酸溶液中で陽極酸化することによつて酸化イリジ
ウム膜とするものであり、表示面積が大きい場合
には、表示面全面にわたつて均質な酸化イリジウ
ム膜が得られない欠点があつた。更に固体電解質
等の電子的に絶縁性を示す基板材料上に積層する
ことができないという重大な欠点も存在する。(Prior art and its problems) The phenomenon in which a thin film-like object changes color, develops, or disappears due to the injection of positively or negatively charged ions is called electrochromism, and this phenomenon can be used, for example, in electrochromic devices. has been done.
Metal oxides such as iridium oxide, rhodium oxide, nickel oxide, and cobalt oxide are known as inorganic materials that exhibit electrolytic oxidation color development. Among these, iridium oxide is the most actively researched because it has advantages such as fast response speed and excellent chemical stability. Conventionally, the anodic oxidation method and the reactive sputtering method are known as methods for producing iridium oxide films.
Both have issues that need to be resolved. In the anodic oxidation method, an iridium film formed on a substrate using a sputtering method or a vacuum evaporation method is anodized in a sulfuric acid solution to form an iridium oxide film. had the disadvantage that a homogeneous iridium oxide film could not be obtained over the entire display surface. A further serious drawback is that they cannot be laminated onto electronically insulating substrate materials such as solid electrolytes.
また、反応性スパツタリング法には、酸化イリ
ジウム膜を得る最適成膜速度が10Å/分と非常に
遅いため、表示素子として必要な厚さの薄膜、例
えば900Å程度の膜厚の酸化イリジウム膜を得る
ためには1時間以上を要する欠点があつた。 In addition, in the reactive sputtering method, the optimum deposition rate for obtaining an iridium oxide film is very slow at 10 Å/min, so it is necessary to obtain an iridium oxide film with a thickness of about 900 Å, for example, a thin film required for a display element. The drawback was that it took more than an hour to complete.
更に、かかる方法の他に、イリジウム膜を加熱
することによつて酸化イリジウム膜を得ることは
原理的に可能である。しかしながら、酸化イリジ
ウム膜は、300℃以上で加熱すると結晶化し、エ
レクトロクロミツク特性が失われることが、1981
年発行の固体イオニクス論文誌(Solid State
Ionics)2号に掲載されているヘイクウツド
(Hackwood)、ベニ(Beni)及びギヤラルー
(Gallagher)の論文に報告されている。したがつ
て加熱酸化による場合、エレクトロクロミズムを
示す酸化イリジウム膜を得るためには、少なくと
もその加熱処理温度は300℃以下でなければなら
ないが、通常、イリジウム単体を300℃に加熱し
ても酸化イリジウム膜は得られない。例えば、ス
パツタリング法で得たイリジウム単体膜を300
℃、1時間加熱処理したが、表面は金属光沢のま
まであり、酸化イリジウム膜を得ることはできな
かつた。 Furthermore, in addition to this method, it is theoretically possible to obtain an iridium oxide film by heating an iridium film. However, it was discovered in 1981 that iridium oxide films crystallize when heated above 300°C and lose their electrochromic properties.
Solid State Ionics Journal published in 2015
This is reported in the paper by Hackwood, Beni, and Gallagher published in Ionics, issue 2. Therefore, in the case of thermal oxidation, in order to obtain an iridium oxide film exhibiting electrochromism, the heat treatment temperature must be at least 300°C or lower, but normally even if iridium alone is heated to 300°C, iridium oxide will not be produced. No membrane is obtained. For example, an iridium single film obtained by sputtering method is
C. for 1 hour, but the surface remained metallic luster and no iridium oxide film could be obtained.
(問題点を解決するための手段)
本発明者等は、上記の如き技術の現状に鑑みて
種々研究を重ねた結果、基板上に予め形成した、
イリジウムと炭素とからなる複合膜を大気中で加
熱酸化したところ、熱酸化温度250℃熱酸化時間
10〜20分間という低温、短時間の処理によつて酸
化イリジウム膜が得られるという新規な事実を見
出すに至つた。すなわち、本発明はイリジウムと
炭素とからなる複合膜を加熱酸化することによ
り、膜作製に要する時間を大幅に短縮するととも
に、大面積にわたつて均質な酸化イリジウム膜が
得られることを特徴としたものである。(Means for Solving the Problems) The present inventors have conducted various studies in view of the current state of the technology as described above, and have found that
When a composite film consisting of iridium and carbon was heated and oxidized in the air, the thermal oxidation temperature was 250℃, and the thermal oxidation time was
We have discovered the novel fact that an iridium oxide film can be obtained by processing at a low temperature and for a short time of 10 to 20 minutes. That is, the present invention is characterized in that by thermally oxidizing a composite film made of iridium and carbon, the time required for film production is significantly shortened, and a homogeneous iridium oxide film can be obtained over a large area. It is something.
(発明の構成)
本発明においては、まず、基板上にイリジウム
―単素複合膜を形成させる。基板としては、導電
性を有する材料、例えば金属のみならず、ガラ
ス、磁器、合成樹脂等の非電性材料も使用可能で
ある。(Structure of the Invention) In the present invention, first, an iridium-monocomposite film is formed on a substrate. As the substrate, not only conductive materials such as metals, but also non-conductive materials such as glass, porcelain, and synthetic resins can be used.
イリジウム―炭素複合膜の形成は、公知の薄膜
製造において一般に採用されている真空下での蒸
着法、例えば電子ビーム蒸着法、またはスパツタ
リング法等により行うことができる。より具体的
には、(i)イリジウムと炭素とを別々の蒸発源から
電子ビームを用いて蒸発させ、同一基板上に複合
膜を形成させる電子ビーム二元蒸着法、(ii)黒鉛る
つぼにイリジウムを収容し、電子ビームを用いて
イリジウムとともに炭素を蒸発させ、基板上に複
合膜を形成させる方法、(iii)炭素上にイリジウムを
配置したものをターゲツトとして、アルゴンガス
中でスパツタリングを行うことにより複合膜を形
成させる方法等が挙げられる。但し、イリジウム
―炭素複合膜はこれ等の例示した方法だけではな
く、他の方法によつても形成され得ることはいう
までもない。 The iridium-carbon composite film can be formed by a vacuum evaporation method generally employed in known thin film production, such as electron beam evaporation or sputtering. More specifically, (i) an electron beam binary evaporation method in which iridium and carbon are evaporated using an electron beam from separate evaporation sources to form a composite film on the same substrate; (ii) iridium is evaporated in a graphite crucible using an electron beam; (iii) By sputtering in argon gas using iridium on carbon as a target by evaporating carbon together with iridium using an electron beam to form a composite film on the substrate. Examples include a method of forming a composite film. However, it goes without saying that the iridium-carbon composite film can be formed not only by these exemplified methods but also by other methods.
蒸発源を制御することによつて、任意の組成比
をもつイリジウム―炭素複合膜が得られるが、加
熱酸化を行つたとき、複合膜におけるイリジウム
の炭素に対する組成比が0.05〜0.30の範囲におい
て、酸化膜の形成が良好であつた。すなわち、複
合膜中のイリジウムの炭素に対する組成比が0.05
未満の場合及び0.30を超えた場合、加熱酸化にお
いてイリジウム―炭素複合膜からの炭素の脱離が
不十分となり、透過率の低い膜しか得られなかつ
た。 By controlling the evaporation source, an iridium-carbon composite film having an arbitrary composition ratio can be obtained, but when thermal oxidation is performed, when the composition ratio of iridium to carbon in the composite film is in the range of 0.05 to 0.30, The oxide film was well formed. In other words, the composition ratio of iridium to carbon in the composite film is 0.05.
When it was less than 0.30 and when it exceeded 0.30, desorption of carbon from the iridium-carbon composite film during thermal oxidation was insufficient, and only a film with low transmittance was obtained.
なお、非導電性のガラス、磁器、合成樹脂等を
基板とする場合には、エレクトロクロミツク素子
としての応答性を高めるために、基板上に予め透
明導電膜または導電性金属膜を設け、その上にイ
リジウム―炭素複合膜を形成することが好まし
い。 When using non-conductive glass, porcelain, synthetic resin, etc. as a substrate, a transparent conductive film or a conductive metal film is provided on the substrate in advance in order to improve the responsiveness of the electrochromic element. Preferably, an iridium-carbon composite film is formed thereon.
本発明においては、次いで、上記の如くして基
板上に形成されたイリジウム―炭素複合膜を大気
中で加熱酸化することによつて、所望の酸化イリ
ジウム膜を得る。加熱酸化雰囲気は酸化イリジウ
ム膜が形成される限り特に限定されるものではな
く、例えば酸素富化雰囲気、酸素及び水蒸気富化
雰囲気としても良い。 In the present invention, the desired iridium oxide film is then obtained by heating and oxidizing the iridium-carbon composite film formed on the substrate as described above in the atmosphere. The heating oxidation atmosphere is not particularly limited as long as an iridium oxide film is formed, and may be, for example, an oxygen-enriched atmosphere or an oxygen- and water vapor-enriched atmosphere.
本発明方法によつて得られる酸化イリジウム膜
は、顕著な電解酸化発色性を示すので、エレクト
ロクロミツク素子、薄膜電池等として極めて有用
である。 Since the iridium oxide film obtained by the method of the present invention exhibits remarkable electrolytic oxidation color development, it is extremely useful as electrochromic devices, thin film batteries, and the like.
(発明の効果) 本発明によれば、以下の如き効果が奏される。(Effect of the invention) According to the present invention, the following effects are achieved.
(1) 広い面積にわたつて均質な酸化イリジウム膜
を形成させることができる。(1) A homogeneous iridium oxide film can be formed over a wide area.
(2) 絶縁性基板上に酸化イリジウム膜を形成させ
ることも可能である。(2) It is also possible to form an iridium oxide film on an insulating substrate.
(3) 顕著なエレクトロクロミズムを示す酸化イリ
ジウム膜を短時間で形成することができる。(3) An iridium oxide film exhibiting remarkable electrochromism can be formed in a short time.
(実施例)
以下実施例を示し、本発明の特徴とするところ
をより一層明らかにする。(Example) Examples will be shown below to further clarify the features of the present invention.
イリジウム粉末を黒鉛るつぼに入れ、加速電圧
6KV、エミツシヨン電流180−200mA、真空度1
〜2×10-5Torrの条件下に電子ビーム蒸着を行
うことにより、金属光沢を有するイリジウム―炭
素複合膜を基板上に形成させた。電子ビーム蒸着
に要する時間は60〜180秒であつた。基板として
ガラス板上に予め酸化イリジウム透明導電膜を形
成したものを使用した。次いで、イリジウム―炭
素複合膜を大気中で225〜350℃の温度範囲で10〜
20分間加熱酸化することによつて、酸化イリジウ
ム膜を得た。 Put iridium powder into a graphite crucible and apply an accelerating voltage
6KV, emission current 180-200mA, degree of vacuum 1
An iridium-carbon composite film with metallic luster was formed on a substrate by electron beam evaporation under conditions of ~2×10 −5 Torr. The time required for electron beam evaporation was 60-180 seconds. A glass plate on which an iridium oxide transparent conductive film was previously formed was used as a substrate. Next, the iridium-carbon composite film was heated in the air at a temperature range of 225 to 350°C for 10 to 30 minutes.
An iridium oxide film was obtained by heating and oxidizing for 20 minutes.
実施例により得た酸化イリジウム膜の波長6328
Åにおける透過率を第1図の曲線aで示した。〇
及びロはそれぞれ熱酸化時間を10分間及び20分間
としたものである。 Wavelength 6328 of iridium oxide film obtained in Example
The transmittance in Å is shown by curve a in FIG. ○ and B indicate thermal oxidation times of 10 minutes and 20 minutes, respectively.
例示したイリジウム―炭素複合膜の膜厚は1350
Åであり、膜中の、イリジウムの炭素に対する割
合は、光電子分光分析、密度測定の結果0.10〜
0.20の範囲にあつた。曲線aに示す如く、225℃
の熱酸化温度では、十分透過率の高い酸化イリジ
ウム膜は得られていない。しかしながら、熱酸化
時間を1時間に延長することによつて、250℃以
上で加熱酸化を行つた試料と同等の透過率を示
す。250℃以上で加熱酸化を行つた場合、熱酸化
時間20分程度で、透過率は飽和値を示し、更に加
熱を続けても透過率はほとんど変化しなかつた。 The film thickness of the illustrated iridium-carbon composite film is 1350
Å, and the ratio of iridium to carbon in the film is 0.10 to 0.10 as a result of photoelectron spectroscopy and density measurement.
It was in the range of 0.20. As shown in curve a, 225℃
At a thermal oxidation temperature of , an iridium oxide film with sufficiently high transmittance cannot be obtained. However, by extending the thermal oxidation time to 1 hour, the transmittance is equivalent to that of the sample subjected to thermal oxidation at 250°C or higher. When thermal oxidation was performed at 250°C or higher, the transmittance reached a saturated value after about 20 minutes of thermal oxidation, and the transmittance hardly changed even if heating was continued.
第1図において曲線bは炭素単体膜をそれぞれ
所定の温度で30分間加熱酸化した後の透過率を示
す。曲線bに示す如く、炭素単体膜においては、
200〜300℃の熱処理温度の範囲にわたつて、ほと
んど透過率の変化は認められなかつた。また、ス
パツタリング法で作製したイリジウム単体膜にお
いても、300℃1時間の熱処理条件下では、膜の
表面は金属光沢を呈したままであり酸化膜を得る
ことはできなかつた。したがつてイリジウム―炭
素複合膜において、はじめて、酸化イリジウム膜
が低温、短時間の熱処理で得られることが分か
る。 In FIG. 1, curve b shows the transmittance after heating and oxidizing each single carbon film at a predetermined temperature for 30 minutes. As shown in curve b, in the carbon single film,
Almost no change in transmittance was observed over the heat treatment temperature range of 200 to 300°C. Furthermore, even in the case of a single iridium film produced by the sputtering method, under heat treatment conditions of 300° C. for 1 hour, the surface of the film still had a metallic luster and an oxide film could not be obtained. Therefore, it can be seen that an iridium oxide film can be obtained for the first time in an iridium-carbon composite film by heat treatment at a low temperature for a short time.
第1図に示すように加熱酸化したままの酸化イ
リジウム膜の透過率は40%程度で低いが、これ
は、熱酸化したままの酸化イリジウム膜が発色状
態にあるためで、電解還元することによつて更に
透過率の高い状態となる。例えば、本発明によつ
て作製した700Åの膜厚の酸化イリジウム膜は消
色状態において80%以上の透過率を示す。 As shown in Figure 1, the transmittance of the iridium oxide film that has been thermally oxidized is low at about 40%, but this is because the iridium oxide film that has been thermally oxidized is in a colored state, and cannot be electrolytically reduced. As a result, the transmittance becomes even higher. For example, an iridium oxide film with a thickness of 700 Å produced according to the present invention exhibits a transmittance of 80% or more in a decolored state.
本発明で得られた酸化イリジウム膜を硫酸水溶
液に浸し、飽和甘コウ電極を基準電極として1〜
−0.2Vの範囲で電位を走査させたところ、薄膜
の発消色が認められた。第2図A及びBは電位走
査を行つた時の電流密度及び透過率変化を示す。
電位走査速度は10mV/秒であつた。c,d,e
曲線はそれぞれ、熱処理時間を20分間一定とし、
大気中での熱酸化温度250,300,350℃の条件下
で得た酸化イリジウム膜における電流密度変化を
示す。また、f,g,h曲線はそれぞれ、c,
d,e曲線に対応する透過率変化を示す。熱酸化
温度を250℃とした場合、もつとも顕著な発、消
色変化が認められたが、350℃までの熱酸化温度
においても発、消色変化が認められた。熱酸化温
度が250℃よりも低い場合、例えば225℃の熱酸化
温度においては、処理時間が1時間程度必要であ
るという欠点を有しているが、エレクトロクロミ
ズムを示す膜が得られた。すなわち本発明におい
て225〜350℃という広い加熱温度範囲でエレクト
ロミズムを示す酸化イリジウム膜が得られた。 The iridium oxide film obtained according to the present invention was immersed in a sulfuric acid aqueous solution, and a saturated acidic electrode was used as a reference electrode.
When the potential was scanned in the range of -0.2V, coloring and fading of the thin film was observed. FIGS. 2A and 2B show changes in current density and transmittance during potential scanning.
The potential scanning rate was 10 mV/sec. c, d, e
Each curve has a constant heat treatment time of 20 minutes;
This figure shows the changes in current density in iridium oxide films obtained under thermal oxidation temperatures of 250, 300, and 350°C in the air. Also, the f, g, and h curves are c,
The transmittance changes corresponding to the d and e curves are shown. When the thermal oxidation temperature was set to 250°C, noticeable changes in color development and decolorization were observed, but changes in color development and decolorization were also observed at thermal oxidation temperatures up to 350°C. When the thermal oxidation temperature is lower than 250.degree. C., for example, 225.degree. C., a film exhibiting electrochromism can be obtained, although the treatment time is required to be about 1 hour. That is, in the present invention, an iridium oxide film exhibiting electromism in a wide heating temperature range of 225 to 350°C was obtained.
本発明で得た酸化イリジウム膜は極めて安定で
あり、0.5M Na2SO4溶液中において、飽和甘コ
ウ電極を基準電極として−0.5〜0.5Vの印加電位
条件下での4×105回以上の発、消色の繰り返し
で劣化や膜のはく離は認められなかつた。 The iridium oxide film obtained according to the present invention is extremely stable, and can be used for at least 4 × 10 5 times in a 0.5M Na 2 SO 4 solution under an applied potential of -0.5 to 0.5 V using a saturated amber electrode as a reference electrode. No deterioration or peeling of the film was observed after repeated exposure and decolorization.
第1図は本発明実施例によるイリジウム―炭素
複合膜の加熱酸化後の透過率及び、比較として、
炭素単体膜の加熱酸化後の透過率を示す。第2図
A及びBは本発明実施例によるそれぞれ所定の熱
酸化条件で得た酸化イリジウム膜の電流密度及び
透過率変化を示す。
Figure 1 shows the transmittance after thermal oxidation of the iridium-carbon composite film according to the example of the present invention, and for comparison,
The transmittance of a single carbon film after thermal oxidation is shown. FIGS. 2A and 2B show changes in current density and transmittance of iridium oxide films obtained under predetermined thermal oxidation conditions according to examples of the present invention, respectively.
Claims (1)
熱酸化することを特徴とする酸化イリジウム膜の
製造方法。1. A method for producing an iridium oxide film, which comprises heating and oxidizing a composite film made of metallic iridium and carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60298123A JPS62156261A (en) | 1985-12-27 | 1985-12-27 | Production of iridium oxide film by thermal oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60298123A JPS62156261A (en) | 1985-12-27 | 1985-12-27 | Production of iridium oxide film by thermal oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62156261A JPS62156261A (en) | 1987-07-11 |
JPS6257707B2 true JPS6257707B2 (en) | 1987-12-02 |
Family
ID=17855470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60298123A Granted JPS62156261A (en) | 1985-12-27 | 1985-12-27 | Production of iridium oxide film by thermal oxidation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62156261A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0552203U (en) * | 1991-12-20 | 1993-07-13 | 株式会社クボタ | Engine intake / exhaust valve device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5798134A (en) * | 1994-10-11 | 1998-08-25 | Agency Of Industrial Science & Technology | Process for producing nickel oxide film |
JP5232647B2 (en) * | 2006-08-02 | 2013-07-10 | 株式会社アルバック | Film forming method and film forming apparatus |
-
1985
- 1985-12-27 JP JP60298123A patent/JPS62156261A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0552203U (en) * | 1991-12-20 | 1993-07-13 | 株式会社クボタ | Engine intake / exhaust valve device |
Also Published As
Publication number | Publication date |
---|---|
JPS62156261A (en) | 1987-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5030331A (en) | Process for preparing iridium oxide film | |
KR100649838B1 (en) | Transparent conductive laminate and process of producing the same | |
US20180014359A1 (en) | Heating device, in particular a semi-transparent heating device | |
Soliman et al. | Preparation and characterizations of tungsten oxide electrochromic nanomaterials | |
Maruyama et al. | Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition | |
Sato et al. | Electrochromism in Iridium Oxide Films Prepared by Thermal Oxidation of Iridium‐Carbon Composite Films | |
CA1124379A (en) | Iridium oxide based electrochromic devices | |
GB2056501A (en) | Porous metal films | |
Ryabova et al. | Preparation and properties of pyrolysis of vanadium oxide films | |
JPS6257707B2 (en) | ||
GB2032641A (en) | Electrochromic films having improved etch resistance and method for making same | |
JPH0127158B2 (en) | ||
JPH0146855B2 (en) | ||
US5798134A (en) | Process for producing nickel oxide film | |
JP2642884B2 (en) | Method for producing nickel oxide film by thermal oxidation | |
JPH0892766A (en) | Production of nickel oxide film by plasma oxidation | |
JP3536210B2 (en) | Electrosynthesis of ceramic thin films | |
JPS5945429A (en) | Electrochromic element | |
SU950798A1 (en) | Method for producing conductive transparent coatings from indium oxides | |
Habib et al. | Limiting concentration of hydrogen in an electrochromic tungsten trioxide film | |
JPH0444812B2 (en) | ||
EP0884405A3 (en) | Process for obtaining hard oxide layers on the surface of a light metal based substrate | |
EP0997555B1 (en) | Process for producing a thin ceramic coating on a metallic substrate | |
SU1266366A1 (en) | Method of producing active part of radionuclide source | |
Risler et al. | Production of carbon coated selenium-76 targets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |