JPS62156261A - Production of iridium oxide film by thermal oxidation - Google Patents

Production of iridium oxide film by thermal oxidation

Info

Publication number
JPS62156261A
JPS62156261A JP60298123A JP29812385A JPS62156261A JP S62156261 A JPS62156261 A JP S62156261A JP 60298123 A JP60298123 A JP 60298123A JP 29812385 A JP29812385 A JP 29812385A JP S62156261 A JPS62156261 A JP S62156261A
Authority
JP
Japan
Prior art keywords
film
iridium
oxide film
iridium oxide
thermal oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60298123A
Other languages
Japanese (ja)
Other versions
JPS6257707B2 (en
Inventor
Yoshiyuki Sato
義幸 佐藤
Koichi Ono
小野 耕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sakura Color Products Corp
Original Assignee
Agency of Industrial Science and Technology
Sakura Color Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sakura Color Products Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60298123A priority Critical patent/JPS62156261A/en
Publication of JPS62156261A publication Critical patent/JPS62156261A/en
Publication of JPS6257707B2 publication Critical patent/JPS6257707B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain an Ir oxide film having homogeneity over a large area and showing electrochromism by forming a composite Ir-C film on a substrate and oxidizing the film under heating in the air. CONSTITUTION:A composite Ir-C film is formed by an electron-beam binary vapor deposition method by which Ir and C are evaporated from separate evaporating sources to form a composite film on the same substrate or by other method. The composite Ir-C film is oxidized under heating in the air to obtain an Ir oxide film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化状態において発色する“電解酸化発色性
”を有する酸化イリジウム膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an iridium oxide film having "electrolytic oxidation color development" that develops color in an oxidized state.

(従来技術とその問題点) 正または負の電荷をもつイオンの注入によりg膜状物体
が変色もしくは発、消色する現象は、エレクトロクロミ
ズムと呼ばれ、この現象は、例えばエレクトロクロミッ
ク素子に利用されている。
(Prior art and its problems) The phenomenon in which a film-like substance changes color, develops, or disappears due to the implantation of positively or negatively charged ions is called electrochromism, and this phenomenon can be used, for example, in electrochromic devices. has been done.

in電解酸化発色性示す無機材料としては、酸化イリジ
ウム、酸化ロジウム、酸化ニッケル、酸化コバルト等の
金属酸化物が知られている。仁の中でも、酸化イリジウ
ムは応答速度が早い、化学的安定性に優れている等の利
点を備えているので、最も活発にその研究が行われてい
る。従来、酸化イリジウム膜を作製する方法としては、
5aii+2化法と反応性スパッタリング法とが知られ
ているが、両者には共に解決すべき問題点がある。陽極
酸化法においては、スパッタリング法または真空蒸着法
を用いて基板上に形成したイリジウム膜を、硫酸溶液中
で陽極酸化することによって酸化イリジウム膜とするも
のであり、表示#B槓が大きい場合には、表示面全面に
わたって均質な酸化イリジウム膜が得られない欠点があ
った。更に固体電解質等の電子的1ζ絶縁性を示す基板
材料上に積層することができないという重大な欠点も存
在する。
Metal oxides such as iridium oxide, rhodium oxide, nickel oxide, and cobalt oxide are known as inorganic materials that exhibit in-electrolytic oxidation coloring properties. Among the nitrous oxides, iridium oxide is the most actively researched because it has advantages such as fast response speed and excellent chemical stability. Conventionally, the method for producing iridium oxide film is as follows:
The 5aii+2 method and the reactive sputtering method are known, but both have problems that need to be solved. In the anodic oxidation method, an iridium film formed on a substrate using a sputtering method or a vacuum evaporation method is anodized in a sulfuric acid solution to form an iridium oxide film. had the disadvantage that a homogeneous iridium oxide film could not be obtained over the entire display surface. A further serious drawback is that it cannot be laminated onto substrate materials exhibiting electronic 1ζ insulating properties, such as solid electrolytes.

また、反応性スパッタリング法には、酸化イリジウム膜
を得る最適成膜速度が10人/分と非常に遅いため、表
示素子として必要な厚さの薄膜、例えば900人程度の
膜厚の酸化イリジウム膜を得るためには1時間以上を要
する欠点があった。
In addition, since the optimum deposition rate for reactive sputtering to obtain an iridium oxide film is very slow at 10 people/minute, it is necessary to produce a thin film with a thickness necessary for a display element, for example, an iridium oxide film with a thickness of about 900 people/minute. The disadvantage was that it took more than one hour to obtain the desired results.

更に、かかる方法の他に、イリジウム膜を加熱すること
によって酸化イリジウム膜を得ることは原理的に可能で
ある。しかしながら、酸化イリジウム膜は、800℃以
上で加熱すると結晶化し、エレクトロクロミック特性が
失われることが、19′81年発行の固体イオニクス論
文誌(SolidState Ionics) 2号に
掲載されているヘイクラッド(Hackwood ) 
、ベニ(Beni)及びギャラk −(Gal lag
her)の論文に報告されている。したがって加熱散化
による場合、エレクトロクロミズムを示す酸化イリジウ
ム膜を得るためには、少なくともその加熱処理温度は8
00’C以下でなければならないが、通常、イリジウム
単体を8o。
Furthermore, in addition to this method, it is theoretically possible to obtain an iridium oxide film by heating an iridium film. However, when an iridium oxide film is heated above 800°C, it crystallizes and loses its electrochromic properties, as reported by Hackwood in Solid State Ionics, No. 2, published in 1981.
, Beni and Gal lag
Her). Therefore, in the case of thermal dispersion, in order to obtain an iridium oxide film exhibiting electrochromism, the heat treatment temperature must be at least 8.
The temperature must be 00'C or less, but normally, the temperature of iridium alone is 8o.

℃に加熱しても酸化イリジウム膜は得られない。Even if heated to ℃, an iridium oxide film cannot be obtained.

例えば、スパッタリング法で得たイリジウム単体膜を8
00℃、1時間加熱処理したが、表面は金属光沢のまま
であシ、酸化イリジウム膜を得ることはできなかった。
For example, if an iridium film obtained by sputtering is
Although heat treatment was performed at 00° C. for 1 hour, the surface remained metallically shiny and an iridium oxide film could not be obtained.

(問題点を解決するための手段) 本発明者等は、上記の如き技術の現状に鑑みて種々研究
を重ねた結果、基板上に予め形成した、イリジウムと炭
素とからなる複合yt大気中で加熱酸化したところ、熱
酸化温度250℃熱酸化時間10〜20分簡という低温
、短時間の処理によって酸化イリジウム膜が得られると
いう新規な事実を見出すに至った。すなわち、本発明は
イリジウムと炭素とからなる複合膜を加熱酸化すること
によプ、膜作製に要する時間を大幅に短縮するとともに
、大IMI慎にわたって均質な酸化イリジウム膜が得ら
れることを待機としたものである。
(Means for Solving the Problems) As a result of various studies in view of the current state of the technology as described above, the present inventors have discovered that a composite yt made of iridium and carbon formed on a substrate in advance is As a result of thermal oxidation, we have discovered the novel fact that an iridium oxide film can be obtained by a short-time treatment at a low temperature of 250° C. and a short thermal oxidation time of 10 to 20 minutes. That is, the present invention significantly shortens the time required for film production by thermally oxidizing a composite film made of iridium and carbon, and also enables the production of a homogeneous iridium oxide film over a large IMI time. This is what I did.

(発明の構成) 本発明においては、まず、基板上にイリジウム−炭素複
合膜を形成させる。基板としては、導電性を有する材料
、例えば金属のみならず、ガラス。
(Structure of the Invention) In the present invention, first, an iridium-carbon composite film is formed on a substrate. The substrate can be made of a conductive material such as metal or glass.

磁器1合成樹脂等の非電性材料も使用可Ω超である。Non-electrical materials such as porcelain 1 and synthetic resin can also be used with resistances exceeding Ω.

イリジウム−炭素複合膜の形成は、公知の薄膜製造にお
いて一般に採用されている共訳下での蒸着法、例えば成
子ビーム蒸着法、またはスパッタリング法等によシ行う
ことができる。より具体的には、(1)イリジウムと炭
素とを別々の蒸発源から電子ビームを用いて蒸発させ、
同一基板上に複合膜を形成させる電子ビーム二元蒸着法
、(il)黒鉛るつぼにイリジウムを収容し、電子ビー
ムを用いてイリジウムとともに炭素を蒸発させ、基板上
に複合膜を形成させる方法、個)炭紫上にイリジウムを
配置したものをターゲットとして、アルゴンガス中でス
パッタリングを行う仁とによル複合膜を形成させる方法
等が挙げられる。但し、イリジウム−炭素複合膜はこれ
等の例示した方法だけではなく、他の方法によっても形
成され得ることはいうまでもない。
The iridium-carbon composite film can be formed by a co-deposition method generally employed in known thin film production, such as a particle beam evaporation method or a sputtering method. More specifically, (1) evaporating iridium and carbon from separate evaporation sources using an electron beam,
An electron beam binary evaporation method for forming a composite film on the same substrate, (il) a method for placing iridium in a graphite crucible and using an electron beam to evaporate carbon together with the iridium to form a composite film on the substrate. ) A method of forming a composite film of nickel and oxide by sputtering in argon gas using iridium arranged on charcoal as a target. However, it goes without saying that the iridium-carbon composite film can be formed not only by these exemplified methods but also by other methods.

蒸発源を制御することによって、任意の組成比をもつイ
リジウム−炭素複合膜が得られるが、加熱酸化を行った
とき、複合膜におけるイリジウムの炭素に対する組成比
が0.05〜0.80の範囲において、酸化膜の形成が
良好であった。すなわち、複合膜中のイリジウムの炭素
に対する組成比が0.05未満の場合及び0.80t−
超えた場合、加熱酸化に初いてイリジウム−炭素複合膜
からの炭素の脱離が不十分となシ、透過率の低い膜しか
得られなかった。
By controlling the evaporation source, an iridium-carbon composite film having an arbitrary composition ratio can be obtained, but when thermal oxidation is performed, the composition ratio of iridium to carbon in the composite film is in the range of 0.05 to 0.80. In this case, the oxide film was well formed. That is, when the composition ratio of iridium to carbon in the composite film is less than 0.05 and when the composition ratio of iridium to carbon is less than 0.80t-
When it exceeds the range, carbon is not sufficiently desorbed from the iridium-carbon composite film for the first time in thermal oxidation, and only a film with low transmittance can be obtained.

なお、非導電性のガラス、磁器9合成樹脂等を基板とす
る場合には、エレクトロクロミック素子としての応答性
を高める丸めに、基板上に予め透明導電膜または導電性
金属膜を設け、その上にイリジウム−炭素複合膜を形成
することが好ましい。
In addition, when using non-conductive glass, porcelain 9 synthetic resin, etc. as a substrate, a transparent conductive film or a conductive metal film is provided on the substrate in advance in order to improve the response as an electrochromic element, and then It is preferable to form an iridium-carbon composite film.

本発明においては、次いで、上記の如(して基板上に形
成されたイリジウム−炭素複合膜を大気中で加熱酸化す
ることによって、所望の酸化イリジウム膜を得る。加熱
酸化雰囲気は叡化イリジウム膜が形成される限シ特に限
定されるものではなく、例えば酸素富化亦囲気、酸素及
び水魚気富化雰囲気としても良い。
In the present invention, the desired iridium oxide film is then obtained by heating and oxidizing the iridium-carbon composite film formed on the substrate as described above in the atmosphere. There is no particular limitation as long as the atmosphere is formed; for example, an atmosphere enriched with oxygen or an atmosphere enriched with oxygen and aquatic gas may be used.

本発明方法によって得られる酸化イリジウム膜は、顕著
な′F1を解除化発色性を示すので、エレクトロクロミ
ック素子、薄膜電池等として極めて有用である。
The iridium oxide film obtained by the method of the present invention exhibits remarkable 'F1-deactivated color development, and is therefore extremely useful as electrochromic devices, thin film batteries, and the like.

(発明の効果) 本発明によれば、以下の如き効果が奏される。(Effect of the invention) According to the present invention, the following effects are achieved.

11>  広い面積にわたって均質な酸化イリジウム膜
を形成させることができる。
11> A homogeneous iridium oxide film can be formed over a wide area.

(2)絶縁性基板上に酸化イリジウム膜を形成させるこ
とも可能である。
(2) It is also possible to form an iridium oxide film on an insulating substrate.

f31  a−1fなエレクトロクロミズムを示す酸化
イリジウム膜を短時間で形成することができる。
An iridium oxide film exhibiting f31 a-1f electrochromism can be formed in a short time.

(実施例) 以下実施例を示し、本発明の特徴とするところをよ)一
層明らかにする。
(Example) Examples will be shown below to further clarify the characteristics of the present invention.

イリジウム粉末を黒鉛るつぼに入れ、加速電圧6KV、
エミッション電流18l80−2O0,真空度1〜2X
10 ’Torr  の条件下に電子ビーム蒸着を行う
ことによシ、金属光沢を有するイリジウム−炭素複合膜
を基板上に形成させた。電子ビーム蒸着に要する時間は
60〜180秒であった。基板としてはガラス板上に予
め酸化インジウム透明導電膜を形成したものを使用した
。次いで、イリジウム−炭素複合膜を大気中で225〜
850℃の温度範囲で10〜20分間加熱酸化すること
によって、酸化イリジウム膜を得た。
Put iridium powder into a graphite crucible, accelerate voltage 6KV,
Emission current 18l80-2O0, degree of vacuum 1~2X
An iridium-carbon composite film with metallic luster was formed on the substrate by electron beam evaporation under conditions of 10' Torr. The time required for electron beam evaporation was 60-180 seconds. The substrate used was a glass plate on which an indium oxide transparent conductive film was previously formed. Next, the iridium-carbon composite film was heated to 225 ~
An iridium oxide film was obtained by heating and oxidizing in a temperature range of 850° C. for 10 to 20 minutes.

実施例により得た酸化イリジウム膜の波長6828λに
詔ける透過率を第1図の曲線aで示した。0及び口はそ
れぞれ熱酸化時間を10分間及び20分間としたもので
ある。
The transmittance of the iridium oxide film obtained in the example at a wavelength of 6828λ is shown by curve a in FIG. No. 0 and No. 0 indicate thermal oxidation times of 10 minutes and 20 minutes, respectively.

例示したイリジウム−炭素複合膜の膜厚は1850人で
あシ、膜中の、イリジウムの炭素に対する割合は、光電
子分光分析、密度測定の結果0.10〜0.20の範囲
にあった。曲線aに示す如く、225℃の熱酸化温度で
は、十分透過率の高い酸化イリジウム膜は得られていな
い。しかしながら、熱油化時間を1時間に延長すること
によって、250℃以上で加熱酸化を行った試料と同等
の透過率を示す。250℃以上で加熱醸化を行った場合
、熱酸化時間20分程度で、透過率は飽和値を示し、更
に加熱を続けても透過率はほとんど変化しなかった。
The thickness of the exemplified iridium-carbon composite film was 1,850 mm, and the ratio of iridium to carbon in the film was in the range of 0.10 to 0.20 as a result of photoelectron spectroscopy and density measurement. As shown by curve a, an iridium oxide film with sufficiently high transmittance cannot be obtained at a thermal oxidation temperature of 225°C. However, by extending the hot oiling time to 1 hour, the transmittance is equivalent to that of the sample heated and oxidized at 250° C. or higher. When heating and fermentation was carried out at 250°C or higher, the transmittance showed a saturated value after about 20 minutes of thermal oxidation time, and the transmittance hardly changed even if heating was continued.

第1図において曲線すは炭素単体膜をそれぞれ所定の温
度で30分間加熱酸化した後の透過率を示す。曲線すに
示す如く、炭素単体膜においては、200〜800℃の
熱処理温度の範囲にわたって、はとんど透過率の変化は
認められなかった。また、スパッタリング法で作製した
イリジウム単体膜においても、300℃1時間の熱処理
条件下では、膜の表面は金属光沢を呈したままであり酸
化膜を得ることはできなかった。したがってイリジウム
−炭素複合膜において、はじめて、酸化イリジウム膜が
低温、短時間の熱処理で得られることが分かる。
In FIG. 1, the curves indicate the transmittance after each carbon film was heated and oxidized at a predetermined temperature for 30 minutes. As shown in the curve, in the single carbon film, almost no change in transmittance was observed over the heat treatment temperature range of 200 to 800°C. Further, even in the case of the iridium single film produced by the sputtering method, under the heat treatment conditions of 300° C. for 1 hour, the surface of the film still exhibited metallic luster, and an oxide film could not be obtained. Therefore, it can be seen that in the iridium-carbon composite film, an iridium oxide film can be obtained for the first time by heat treatment at low temperature and for a short time.

第1図に示すように加熱Q化したままの酸化イリジウム
膜の透過率は40%程度で低いが、これは、熱酸化した
ままの酸化イリジウム膜が発色状態にあるためで、電解
還元することによって更に透過率の高い状態となる。例
えば、本発明によりて作製したroo人の膜厚の酸化イ
リジウム膜は潤色状態において80%以上の透過率を示
す。
As shown in Figure 1, the transmittance of the iridium oxide film that has been thermally oxidized is low at about 40%, but this is because the iridium oxide film that has been thermally oxidized is in a colored state, and cannot be electrolytically reduced. This results in an even higher transmittance state. For example, an iridium oxide film with a thickness of about 100 yen (300 yen) produced according to the present invention exhibits a transmittance of 80% or more in an embellished state.

本発明で得られた酸化イリジウム膜を破戒水溶液に浸し
、飽和せコウ電極を基準電極として1〜−〇、 2 V
の範囲で電位を走査させたところ、薄膜の発消色が認め
られた。第2図A及びBは電位走査を行った時の電流密
度及び透過率変化を示す。
The iridium oxide film obtained in the present invention was immersed in an aqueous solution, and a voltage of 1 to -0, 2 V was applied using a saturated electrode as a reference electrode.
When the potential was scanned in the range of , color development and fading of the thin film was observed. FIGS. 2A and 2B show changes in current density and transmittance when potential scanning is performed.

電位走査速度は10 mV/秒であった。c 、 d。The potential scanning rate was 10 mV/sec. c, d.

0曲線はそれぞれ、熱処理時間を20分間一定とし、大
気中での熱酸化温度250,800,850℃の条件下
で得た酸化イリジウム膜にあける電流密度変化を示す。
0 curves respectively show changes in current density applied to iridium oxide films obtained under conditions of thermal oxidation temperatures of 250, 800, and 850° C. in the air with a constant heat treatment time of 20 minutes.

また、f、g、h曲線はそれぞれ、c、d、0曲線に対
応する透過率変化を示す。
Further, the f, g, and h curves show transmittance changes corresponding to the c, d, and 0 curves, respectively.

熱酸化温度を250℃とした場合、もつとも顕著な発、
消色変化が認められたが、850℃までの熱酸化温度に
#いても発、消色変化が認められた。
When the thermal oxidation temperature was set to 250°C, there was a noticeable occurrence of
A discoloration change was observed, but even at a thermal oxidation temperature of up to 850°C, a discoloration change was observed.

熱酸化温度が250℃よシも低い場合、例えば225℃
の熱酸化温度においては、処理時間が1時間程度必要で
あるという欠点を有しているが、エレクトロクロミズム
を示す膜が得られた。すなわち本発明において225〜
850℃という広い加熱温度範囲でエレクトロクロミズ
ムを示す酸化イリジウム膜が得られた。
If the thermal oxidation temperature is lower than 250℃, for example 225℃
At the thermal oxidation temperature of , a film exhibiting electrochromism was obtained, although it had the disadvantage that a treatment time of about 1 hour was required. That is, in the present invention, 225 to
An iridium oxide film exhibiting electrochromism over a wide heating temperature range of 850°C was obtained.

本発明で得た酸化イリジウム膜は極めて安定であシ、0
.5M Na2SO4溶液中に詔いて、飽和せコウ電極
を基準電極として−0,5〜0.5vの印加電位条件下
での4X105回以上の発、消色の繰シ返しで劣化や膜
のはぐ離は認められなかった。
The iridium oxide film obtained in the present invention is extremely stable and has a
.. Deterioration and peeling of the film can be prevented by placing it in a 5M Na2SO4 solution and repeating 4x105 times or more of coloring and decoloring under an applied potential of -0.5 to 0.5V using a saturated plaster electrode as a reference electrode. was not recognized.

【図面の簡単な説明】[Brief explanation of drawings]

第1因は本発明実施例によるイリジウム−炭素複合膜の
加熱酸化後の透過率及び、比較として、炭素単体膜の加
熱酸化後の透過率を示す。 第2図A及びBは本発明実施例によるそれぞれ所定め熱
酸化条件で得た麹化イリジウム膜の℃流密度及び透過率
変化を示す。 第1因 冬畝イし逼慶
The first factor shows the transmittance after thermal oxidation of the iridium-carbon composite film according to the example of the present invention, and for comparison, the transmittance after thermal oxidation of the single carbon film. FIGS. 2A and 2B show changes in °C flow density and transmittance of the malted iridium membranes obtained under predetermined thermal oxidation conditions according to examples of the present invention. The first cause is winter

Claims (1)

【特許請求の範囲】[Claims] (1)金属イリジウムと炭素とからなる複合膜を加熱酸
化することを特徴とする酸化イリジウム膜の製造方法
(1) A method for producing an iridium oxide film, characterized by heating and oxidizing a composite film made of metallic iridium and carbon.
JP60298123A 1985-12-27 1985-12-27 Production of iridium oxide film by thermal oxidation Granted JPS62156261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298123A JPS62156261A (en) 1985-12-27 1985-12-27 Production of iridium oxide film by thermal oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298123A JPS62156261A (en) 1985-12-27 1985-12-27 Production of iridium oxide film by thermal oxidation

Publications (2)

Publication Number Publication Date
JPS62156261A true JPS62156261A (en) 1987-07-11
JPS6257707B2 JPS6257707B2 (en) 1987-12-02

Family

ID=17855470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298123A Granted JPS62156261A (en) 1985-12-27 1985-12-27 Production of iridium oxide film by thermal oxidation

Country Status (1)

Country Link
JP (1) JPS62156261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798134A (en) * 1994-10-11 1998-08-25 Agency Of Industrial Science & Technology Process for producing nickel oxide film
US20100000673A1 (en) * 2006-08-02 2010-01-07 Ulvac, Inc. Film forming method and film forming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552203U (en) * 1991-12-20 1993-07-13 株式会社クボタ Engine intake / exhaust valve device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798134A (en) * 1994-10-11 1998-08-25 Agency Of Industrial Science & Technology Process for producing nickel oxide film
US20100000673A1 (en) * 2006-08-02 2010-01-07 Ulvac, Inc. Film forming method and film forming apparatus

Also Published As

Publication number Publication date
JPS6257707B2 (en) 1987-12-02

Similar Documents

Publication Publication Date Title
KR100649838B1 (en) Transparent conductive laminate and process of producing the same
JPH02133599A (en) Production of iridium oxide film
Lippkow et al. Structural investigations of thin films of copper–selenide electrodeposited at elevated temperatures
US20180014359A1 (en) Heating device, in particular a semi-transparent heating device
KR20080071973A (en) A method to deposit a coating by sputtering
CA1124379A (en) Iridium oxide based electrochromic devices
Sato et al. Electrochromism in Iridium Oxide Films Prepared by Thermal Oxidation of Iridium‐Carbon Composite Films
Kaplan et al. Annealing and Sb-doping of Sn—O films produced by filtered vacuum arc deposition: Structure and electro-optical properties
Kumar et al. On ion transport during the electrochemical reaction on plane and GLAD deposited WO3 thin films
Uen et al. Preparation and characterization of some tin oxide films
Ryabova et al. Preparation and properties of pyrolysis of vanadium oxide films
JPH0350148A (en) Zinc oxide sintered compact, production and its application
JPS62156261A (en) Production of iridium oxide film by thermal oxidation
Girtan et al. The influence of preparation conditions on the electrical and optical properties of oxidized indium thin films
JPH0146855B2 (en)
JPH02163363A (en) Production of transparent conductive film
JPH0254755A (en) Manufacture of transparent conductive film
JPS647445B2 (en)
JPH04219301A (en) Production of oxide superconductor thin film
US5798134A (en) Process for producing nickel oxide film
JP2003027216A (en) Method and apparatus for producing transparent electrically conductive film
JP2642884B2 (en) Method for producing nickel oxide film by thermal oxidation
Lavanya et al. Ti Doped Cu2O Thin Films: DC Magnetron Sputtering and Structural and Optical Studies
Parent et al. Plasma‐Sprayed Semiconductor Electrodes: Characterization and Photoelectrochemical Properties of Coatings Obtained by the Projection of Doped and Undoped
JPH0892766A (en) Production of nickel oxide film by plasma oxidation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term