JPS6257640A - Vacuum device - Google Patents

Vacuum device

Info

Publication number
JPS6257640A
JPS6257640A JP19575285A JP19575285A JPS6257640A JP S6257640 A JPS6257640 A JP S6257640A JP 19575285 A JP19575285 A JP 19575285A JP 19575285 A JP19575285 A JP 19575285A JP S6257640 A JPS6257640 A JP S6257640A
Authority
JP
Japan
Prior art keywords
vacuum
inside surface
vacuum device
degree
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19575285A
Other languages
Japanese (ja)
Other versions
JPH0661446B2 (en
Inventor
Michihiko Inaba
道彦 稲葉
Isao Suzuki
功 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60195752A priority Critical patent/JPH0661446B2/en
Publication of JPS6257640A publication Critical patent/JPS6257640A/en
Publication of JPH0661446B2 publication Critical patent/JPH0661446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a lightweight vacuum device having a high vacuum degree by forming the inside surface of the vacuum device of a material composed of <=3wt.% Ba, Be, Li, Ca, Sr, etc., <=10wt.% Si, Cu, Zn, etc. and the balance Al. CONSTITUTION:The inside surface of the vacuum device is formed of a material consisting of <=3 pts.wt. at least one kind among Ba, Be, Li, Ca, Sr, Mg, Sm, Tm and Yb, <=10wt.% at least one kind among Si, Cu, Zn, Fe, Ni, Mn and Cr and the balance substantially Al. The vacuum devices which are light in weight, have excellent workability and are formed in various shapes can be manufactured in this case; in addition, heat release is improved. The vacuum degree improving component concd. on the surface acts as a getter when the inside surface is further baked. The vacuum degree is then improved by 10<2> mmHg as compared to the case in which the inside surface is not baked.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は基体の成分をかえる事によp、真空装置の真空
度全回上させる技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a technique for increasing the vacuum degree of a vacuum apparatus by changing the components of a substrate.

が使用されてきたが、これは硬く、耐酸化性があり、非
磁性であるという特徴をもっているからである。しかし
、近年荷電粒子加速器、薄膜作成真空装置2表面分析機
器等の欝要の増大によシ超高真空の要求が高くなってき
た。さらに加速器に至りては粒子の衝突による熱の発生
が問題となり、放熱性をよくする方法も各種考案されな
ければならなくなってきfP:、。
has been used because it is hard, oxidation resistant, and nonmagnetic. However, in recent years, the demand for ultra-high vacuum has increased due to the increasing requirements for charged particle accelerators, thin film production vacuum equipment, surface analysis equipment, and the like. Furthermore, when it comes to accelerators, the generation of heat due to particle collisions becomes a problem, and various methods to improve heat dissipation have to be devised.

この2つの問題点を解決する念めにAt合金の利用が一
部行なわれはじめているが、アルミニウム合金の特徴は
以下の通りである。
In order to solve these two problems, some At alloys have begun to be used, and the characteristics of aluminum alloys are as follows.

■軽量で加工性にすぐれている恵め、多方面にわたる真
空装置の複雑な構造を実現できる。
■Blessed with its light weight and excellent workability, it can be used to create complex structures for vacuum equipment in a wide range of applications.

■加速器の粒子線の直撃金うけても熱放散性が早い。■Fast heat dissipation even when exposed to direct impact from accelerator particle beams.

■低原子番号材料である之めに放射化しに〈〈。■Because it is a low atomic number material, it is radioactive.

かつ放射減衰が速やかである。Moreover, the radiation attenuation is rapid.

しかし、10〜10  mHtの超高真空を実現する複
雑な真空装置f:達成するには充分とはいえない。そこ
で合金中に添加元素を加えその添加元ケ“1 素<Vツタ−材として利用する事により超高真空を実現
しようと試み念。
However, the complicated vacuum equipment f to realize an ultra-high vacuum of 10 to 10 mHt is not sufficient to achieve it. Therefore, an attempt was made to realize an ultra-high vacuum by adding additive elements to the alloy and using the additive element as a material.

〔発明の目的〕[Purpose of the invention]

本発明はこの様な実状全考慮しなされ念もので。 The present invention has been designed with all these circumstances in mind.

その目的は真空度の高い軽食真空装置を得ることにある
The purpose is to obtain a snack vacuum device with a high degree of vacuum.

〔発明の概要〕[Summary of the invention]

うち少なくとも一種を3重量%−まで含み強度改善成分
としてSi、Cu、Zn、Fe、Ni、Mg、Crのう
ち少なくとも一種を10重量%含む事を特徴とする真空
装置である。
The vacuum device is characterized in that it contains up to 3% by weight of at least one of these and 10% by weight of at least one of Si, Cu, Zn, Fe, Ni, Mg, and Cr as a strength improving component.

真空度向上成分はAt合金中にあって装置のべている。The vacuum level improving component is present in the At alloy and is included in the equipment.

つiりAt合金の表面に濃縮するためにはAtより酸化
されやすい元素すなわちAtよシ酸化物の標準生成自由
エネルギーΔG0が低く酸化物が安定な事が必要となる
。AtのΔG@(AzzOs)は温度Tに対し ΔG’ (ALzOa) = −1121,94+0.
2163T (kJ)である、ここでTは絶対温度にで
示しである。すなわち真空度向上成分のΔG’ (V)
はへG@(V)<ΔG0(At20s)となる必要があ
る。
In order to concentrate on the surface of the At alloy, it is necessary that the standard free energy of formation ΔG0 of an element that is more easily oxidized than At, that is, the At oxide, is low and the oxide is stable. ΔG@(AzzOs) of At is ΔG'(ALzOa)=-1121,94+0.
2163T (kJ), where T is in absolute temperature. In other words, the vacuum degree improving component ΔG' (V)
It is necessary that G@(V)<ΔG0(At20s).

次に該成分の蒸気圧力がAtに比べ高く装置内で蒸気と
ならなければ酸化物として全てAt合金表面に固定して
しまうため意味がなくなってしまう。AAの蒸気圧P 
(AzzOa)は同様に温度に対してtofP(At2
0s)=−16380T  −toFT+23.27(
wIIy) となる、つまル真空度向上成分の蒸気圧p (v)はP
 (V)>P (AzzOa )でなければならない。
Next, if the vapor pressure of this component is higher than that of At and it does not become vapor within the device, it will all be fixed as an oxide on the At alloy surface, making it meaningless. Vapor pressure P of AA
(AzzOa) similarly changes tofP(At2
0s)=-16380T -toFT+23.27(
wIIy), the vapor pressure p (v) of the vacuum degree improving component is P
(V)>P (AzzOa).

本発明装置はOK〜873にで使用される。   −〇
に以下はあpえない温度であり、873に以上にすると
At合金が軟かくなり基体としての役目をはたさないた
めである。
The device of the present invention is used in OK~873. This is because the temperature below -〇 cannot be reached, and when the temperature exceeds 873, the At alloy becomes soft and does not function as a base.

いままで示した条件においてΔG’(V)<ΔG’ (
At203)を添足する元素は以下の24種である。
Under the conditions shown so far, ΔG'(V)<ΔG' (
The following 24 elements add At203).

Ce、Ba、Be、Lu、Ho、Dy、Er、Yb、C
a、Li 、Δ41.Pr。
Ce, Ba, Be, Lu, Ho, Dy, Er, Yb, C
a, Li, Δ41. Pr.

Gd 、Nd 、La 、Sc 、Y、Ho 、Zr 
、Sr 、 Sm、Th 、Tb 、TmさらにP(V
))P(ALzOa )の関係を満足する元素は以下の
通りである。
Gd, Nd, La, Sc, Y, Ho, Zr
, Sr, Sm, Th, Tb, Tm and P(V
)) The elements that satisfy the relationship P(ALzOa) are as follows.

AP、As、Ba、Bi 、Ca、Cd、Cs、Eu、
Fr、Ga、Gd、I−IP。
AP, As, Ba, Bi, Ca, Cd, Cs, Eu,
Fr, Ga, Gd, I-IP.

In、に、Li、Mf、Mn、Na、P、Pb、Po、
Ra、Rb、S、Sb。
In, Li, Mf, Mn, Na, P, Pb, Po,
Ra, Rb, S, Sb.

Se、Sm、Sr、Te、Tt、Tm、Yb、Inテあ
る。
There are Se, Sm, Sr, Te, Tt, Tm, Yb, and Inte.

これよシ本発明の対象となる金属は Ba、Be、Ca、Li 、Mf、Sr、Sm、Tm、
Ybの9種類である。又最もこの中で望しい元素は。
The metals to which the present invention is applied include Ba, Be, Ca, Li, Mf, Sr, Sm, Tm,
There are nine types of Yb. What is the most desirable element among these?

Ba 、BeCa 、Li 、Mfである。添加量を最
大3重量%としたのは、これ以上の添加量では加工性が
悪くなったり、Sm、Sr等の一部の金属はのちにのべ
る強度改善成分と化合し磁性体をつくる可能性があるた
めである。これら成分の添加量は望ましくは0.01〜
0.7!量チがよい。
They are Ba, BeCa, Li, and Mf. The reason why the amount added is set to a maximum of 3% by weight is that if the amount added is more than this, the workability may deteriorate, and some metals such as Sm and Sr may combine with the strength-improving components that will be added later to create a magnetic material. This is because there is. The amount of these components added is preferably 0.01~
0.7! Good quantity.

W、1図は、押出し成形により作製した直蕾の真空装置
表面からの添加元素の床さ方向分布をイオンマイクロア
ナライザで分析したものである。材料は*  0.3 
Ca−5Cu  I S t −A L ’c使用して
おり。
Figure W, 1 shows the horizontal distribution of added elements from the vacuum device surface of a straight bud produced by extrusion molding, analyzed using an ion microanalyzer. The material is *0.3
I am using Ca-5Cu I S t -A L'c.

図中の1がCa、2がAt、3がCu、4がSt。In the figure, 1 is Ca, 2 is At, 3 is Cu, and 4 is St.

5がOである。図より明らめ為な様に表面にCaが濃ア 縮している事がわかり0とプロフVイルが一致している
ため一部は酸化物となっている事が推定される。
5 is O. As is clear from the figure, it can be seen that Ca is concentrated on the surface, and since the 0 and profile V coincide, it is presumed that some of it is in the form of oxides.

この材料で直径300喝の円筒をつくジロータリーポン
プを接続したターボ分子ポンプで排気速度300 t/
Sで真空びきをし10時間後のイオンゲージで真空度と
測定すると10 ■Hfに達した。そ九、この容易を切
りだし内壁を先程と同様な方法でイオンマイクロアナラ
イザをもちい測定したところ第2図の様なプロフQイル
を示した。この図Caが表面層より蒸発して酸化換金つ
くクマッター効果をおこし事がわかる 強度改善成分として10重量%までのCu、Fe。
A cylinder with a diameter of 300 m is made of this material. A pumping speed of 300 t/m is achieved using a turbo molecular pump connected to a di-rotary pump.
After 10 hours of evacuation with S, the degree of vacuum was measured with an ion gauge and reached 10 µHf. Ninth, when we cut out this problem and measured the inner wall using an ion microanalyzer in the same manner as before, we found a profile as shown in Figure 2. This figure shows that Ca evaporates from the surface layer and causes a coumatter effect where it is oxidized and converted into metal.Up to 10% by weight of Cu and Fe are used as strength-improving components.

Ni、Mn 、 S i 、 Zn f:含むのはAt
を硬くするためであり、10重量%より多く添加すると
加工性がわるくなpよくない、これら成分の添加量は元
素にもよるが望ましくは0.5〜6重量%がよい。
Ni, Mn, S i , Zn f: Contains At
The purpose is to harden the material, and if more than 10% by weight is added, the processability will be poor, which is not good.The amount of these components added depends on the element, but is preferably 0.5 to 6% by weight.

本発明に使用される合金は5表面あらさを小さくする必
要があまりない、つま多表面積が大きけある0表面粗さ
は望ましくはJI8BO601で示されるところの中心
線、平均表面粗さRaが2μm〜40μmがよい。
The alloy used in the present invention does not require much reduction in surface roughness because it has a large surface area.0 The surface roughness is preferably the center line as shown in JI8BO601, and the average surface roughness Ra is 2 μm to 2 μm. 40 μm is good.

〔発明の効果〕〔Effect of the invention〕

本発明によシ@量で加工性にすぐれ色々な形をした真空
装置をつくる事ができるばかシでなく熱ツター作用金し
て真空度がベーキングなしの時に比べ102+mI(f
よくなる。また室温で本発明真空装置を放置していると
再び真空度向上成分は表面に#縮し、次のベーキング時
にまな効果を発揮する。
According to the present invention, vacuum devices with excellent workability and various shapes can be manufactured in small quantities.
get well. Furthermore, if the vacuum apparatus of the present invention is left at room temperature, the vacuum degree-enhancing component will shrink on the surface again, and it will be more effective during the next baking.

本発明は超高真空金得るための装置には、全て適応でき
1粒子線加速時5表面分析機器、蒸着・スパッタ・イオ
ンブレーティング装置、イオン注入装置、気相化学反応
装置に利用できるばかりでなく、X空ポンプ、真空ゲー
ジ用部材、真空系の配管、つぎ手にも利用できる。
The present invention can be applied to all equipment for obtaining ultra-high vacuum gold, and can be used for single-particle beam acceleration five-surface analysis equipment, vapor deposition, sputtering, and ion-blating equipment, ion implantation equipment, and gas-phase chemical reaction equipment. It can also be used for X-empty pumps, vacuum gauge parts, vacuum system piping, and as a replacement.

また真空を利用したカラー受像管、白黒受像管の内部に
利用される金搗材料にも応用できる。
It can also be applied to the metal material used inside color picture tubes and monochrome picture tubes that use vacuum.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) 通常のパイヤ法によりアルミナtnIll!L、これを
氷晶石と混合して溶融塩電解を行ない、アルミニウムに
還元する。この際電解炉にたまった溶融アルミニウムを
随時くみだして真空炉にうつし、4 %ノCu、1 %
 st、o、 2 %のBal添加しガス酸化物をとシ
のぞいてインゴットを作製する。このインゴットを34
0■φの円柱として切シ出し、中空材前方押出し成形に
より肉厚20■の円筒材を作製した。その後円筒の両端
部にTiNコーティングを行ったCuガスケットの接続
用ミゾをつけたフランクラアルゴンガスのもとてTIG
溶接しな、ヌードイオンゲージが接続され、Cuガスク
ット用のミゾの切られたふ九をボルトじめして一端を密
べいした。ミゾを切られ九部分は前と同様TiNのコー
ティングを行なっである。もう一方は、ベローズのつけ
たふたで同様に密べいして、ベローズの先はロータリー
ポンプを直接接続したターボ分子ポンプに接続した0以
上の様な構造は第3図に示しである。
(Example 1) Alumina tnIll! by the usual Payer method! L. This is mixed with cryolite and subjected to molten salt electrolysis to reduce it to aluminum. At this time, the molten aluminum accumulated in the electrolytic furnace was pumped out at any time and transferred to a vacuum furnace, and 4% Cu, 1%
St, o, 2% of Bal is added and gas oxides are removed to prepare an ingot. This ingot is 34
A cylindrical material with a wall thickness of 20 mm was produced by cutting out a cylinder with a diameter of 0 mm and extruding the hollow material forward. After that, I attached a groove for connecting a TiN-coated Cu gasket to both ends of the cylinder, and connected it to the Frankler argon gas source.
A nude ion gauge was connected without welding, and one end was tightly sealed using a screw with a groove cut out for the Cu gas cut. The nine grooves were coated with TiN as before. The other side is similarly sealed with a lid with a bellows attached, and the end of the bellows is connected to a turbo molecular pump which is directly connected to a rotary pump.The structure shown in Figure 3 is as shown in Figure 3.

200 L/この速度で真空排気を行い5時間後イオン
ゲージで装置内の真空度を測定したところ5X10−9
mHtになり念が、それ以上は上昇しなかった。
After 5 hours of evacuation at this rate of 200 L, the degree of vacuum inside the device was measured with an ion gauge and it was 5X10-9.
I thought it was mHt, but it did not rise any further.

その後巻線ヒーターを装置の外側にまき150℃で10
時間加熱した後、室温にもどし、あらためて真空度測定
し次ところ7 X 10−” ”MJlfになり真空度
は向上した。
After that, a wire-wound heater was placed on the outside of the device and heated to 150℃ for 10 minutes.
After heating for a period of time, the temperature was returned to room temperature, and the degree of vacuum was measured again.The degree of vacuum was improved to 7.times.10-""MJlf.

(実施例2〜10) 基材金工に示した成分にとり実施例1と同様な実験を行
った。
(Examples 2 to 10) Experiments similar to those in Example 1 were conducted using the components shown in the base metal work.

Z4Ba−0,7Mu−3,5Cu−At、 1.2B
e−ass i−3,3Cu −AtO,3L i−9
,28i−3,2Cu−At、 0.3MP−ZOMn
−0,5Fe−AtO,8Sr−3,5Ni −3,0
Cu−At、 1.08m−6,2Cu−0,4Ni 
−At1.3Tm−1,8Mn−Z2Cu−AL 、 
0.5Yb−2,、lMn−0,6S i −AtO,
lBe−0,I Ca−3,5Cu−0,5c r −
Az同様な方法で真空度を測定したところ1σ11−打
合で良好な真空度が得られた。
Z4Ba-0,7Mu-3,5Cu-At, 1.2B
e-ass i-3,3Cu-AtO,3L i-9
,28i-3,2Cu-At, 0.3MP-ZOMn
-0,5Fe-AtO,8Sr-3,5Ni -3,0
Cu-At, 1.08m-6,2Cu-0,4Ni
-At1.3Tm-1,8Mn-Z2Cu-AL,
0.5Yb-2, IMn-0,6S i -AtO,
lBe-0,I Ca-3,5Cu-0,5cr-
When the degree of vacuum was measured in the same manner as Az, a good degree of vacuum was obtained with a 1σ11-match.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、イオンマイクロアナライザによる本6□□ケ
ー、5oオ。7ψイ、9.3□、8発明により作製した
真空装置の概略断面図。 1−Ca 、2・ At、3−Cu 、4−8 i 、
5−0.6・・・ヌードイオンゲージ、7・・・ベロー
ズ、8・・・ターボ分子ポンプ、9・・・ロータリーポ
ンプ。 代理人ブPJ!I!士 則近憲佑 同   竹花白、久男 第 2 図 第  3  図
Figure 1 shows the results obtained using an ion microanalyzer. 7 ψ A, 9.3 □, 8 A schematic cross-sectional view of a vacuum device manufactured according to the invention. 1-Ca, 2.At, 3-Cu, 4-8i,
5-0.6... Nude ion gauge, 7... Bellows, 8... Turbo molecular pump, 9... Rotary pump. Agent Bu PJ! I! Kensuke Norichika, Takehana Shiro, Hisao Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)Ba、Be、Li、Ca、Sr、Mg、Sm、T
m及びYbのうち少なくとも一種を3重量%以下、Si
、Cu、Zn、Fe、Ni、Mn及びCrのうち少なく
とも一種を10重量%以下、残部実質的にAlからなる
内表面を有することを特徴とする真空装置。
(1) Ba, Be, Li, Ca, Sr, Mg, Sm, T
At least 3% by weight of at least one of m and Yb, Si
, Cu, Zn, Fe, Ni, Mn, and Cr in an amount of 10% by weight or less, with the remainder being substantially Al.
JP60195752A 1985-09-06 1985-09-06 Vacuum device Expired - Fee Related JPH0661446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60195752A JPH0661446B2 (en) 1985-09-06 1985-09-06 Vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60195752A JPH0661446B2 (en) 1985-09-06 1985-09-06 Vacuum device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21025195A Division JP2619231B2 (en) 1995-07-27 1995-07-27 Vacuum equipment

Publications (2)

Publication Number Publication Date
JPS6257640A true JPS6257640A (en) 1987-03-13
JPH0661446B2 JPH0661446B2 (en) 1994-08-17

Family

ID=16346373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60195752A Expired - Fee Related JPH0661446B2 (en) 1985-09-06 1985-09-06 Vacuum device

Country Status (1)

Country Link
JP (1) JPH0661446B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312606A (en) * 1991-04-16 1994-05-17 Saes Getters Spa Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
JP2002025910A (en) * 2000-07-03 2002-01-25 Tokyo Electron Ltd Heat treatment device and surface treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210945A (en) * 1981-06-23 1982-12-24 Furukawa Alum Co Ltd Aluminum alloy for heat exchanger
JPS59129749A (en) * 1983-01-13 1984-07-26 Furukawa Alum Co Ltd Vacuum brazing sheet for aluminum
JPS59166659A (en) * 1983-03-08 1984-09-20 Furukawa Alum Co Ltd Preparation of high tensile aluminum alloy plate for forming
JPS602642A (en) * 1983-06-16 1985-01-08 Furukawa Alum Co Ltd Al alloy for core material for fin of heat exchanger
JPS6013045A (en) * 1983-07-01 1985-01-23 Furukawa Electric Co Ltd:The Heat-resistant aluminum alloy for conduction and its production
JPS60131956A (en) * 1983-12-19 1985-07-13 Furukawa Electric Co Ltd:The Production of heat resistant aluminum alloy conductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210945A (en) * 1981-06-23 1982-12-24 Furukawa Alum Co Ltd Aluminum alloy for heat exchanger
JPS59129749A (en) * 1983-01-13 1984-07-26 Furukawa Alum Co Ltd Vacuum brazing sheet for aluminum
JPS59166659A (en) * 1983-03-08 1984-09-20 Furukawa Alum Co Ltd Preparation of high tensile aluminum alloy plate for forming
JPS602642A (en) * 1983-06-16 1985-01-08 Furukawa Alum Co Ltd Al alloy for core material for fin of heat exchanger
JPS6013045A (en) * 1983-07-01 1985-01-23 Furukawa Electric Co Ltd:The Heat-resistant aluminum alloy for conduction and its production
JPS60131956A (en) * 1983-12-19 1985-07-13 Furukawa Electric Co Ltd:The Production of heat resistant aluminum alloy conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312606A (en) * 1991-04-16 1994-05-17 Saes Getters Spa Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
JP2002025910A (en) * 2000-07-03 2002-01-25 Tokyo Electron Ltd Heat treatment device and surface treatment method

Also Published As

Publication number Publication date
JPH0661446B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JP4896032B2 (en) Tubular target
US6517645B2 (en) Valve metal compositions and method
US20030056619A1 (en) Low oxygen refractory metal powder for powder metallurgy
US4121750A (en) Processes for soldering aluminum-containing workpieces
JP2022513645A (en) Magnesium alloy material and its manufacturing method
KR100305974B1 (en) Method of using a permanent magnet usable for ultra-high vacuum
JP6109615B2 (en) Aluminum alloy fin clad material for brazing
JPS6257640A (en) Vacuum device
US3326648A (en) Method of providing a black layer on a metal object
US4787228A (en) Making molds with rectangular or square-shaped cross section
US4401489A (en) Aluminum alloy foils for cathodes of electrolytic capacitors
JP2619231B2 (en) Vacuum equipment
US3256118A (en) Process for the manufacture of a supraconductive wire
JPH0568812B2 (en)
JPH0237081B2 (en) EIKYUJISHAKUNOSEIZOHOHO
EP0452079A1 (en) High chromium-nickel material and process for producing the same
JPS5814017B2 (en) Directly heated cathode for electron tubes
JPH01218795A (en) Al alloy brazing filler metal having high fillet strength
CN108300908A (en) Copper-clad aluminum conductor contains Ba and Re aluminium alloys and its processing technology with highly conductive
JPS6345339A (en) Copper alloy for high electrical conduction having low softening temperature
JP2679268B2 (en) Manufacturing method of brazing material
JPH01248504A (en) Manufacture of r-fe-b family anisotropy magnet
JPS6328447A (en) Accelerating tube
JPH0354182A (en) Process for metallizing graphite and parts produced thereby
AT151639B (en) Process for the application of dense and solderable metal layers on completely fired ceramic bodies.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees