JPS6257260B2 - - Google Patents

Info

Publication number
JPS6257260B2
JPS6257260B2 JP56141893A JP14189381A JPS6257260B2 JP S6257260 B2 JPS6257260 B2 JP S6257260B2 JP 56141893 A JP56141893 A JP 56141893A JP 14189381 A JP14189381 A JP 14189381A JP S6257260 B2 JPS6257260 B2 JP S6257260B2
Authority
JP
Japan
Prior art keywords
wiring
type
power supply
iccs
type well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56141893A
Other languages
Japanese (ja)
Other versions
JPS5843558A (en
Inventor
Koji Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56141893A priority Critical patent/JPS5843558A/en
Publication of JPS5843558A publication Critical patent/JPS5843558A/en
Publication of JPS6257260B2 publication Critical patent/JPS6257260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は相補型絶縁ゲート電界効果半導体集
積回路装置に係り、特に相補型絶縁ゲート電界効
果半導体集積回路装置がスタンバイ時の電源電流
増大で不良となつた時に、その不良解析を容易に
行なうことが可能な構造を有する相補型絶縁ゲー
ト電界効果半導体集積回路装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a complementary insulated gate field effect semiconductor integrated circuit device, and in particular, when a complementary insulated gate field effect semiconductor integrated circuit device becomes defective due to an increase in power supply current during standby, The present invention relates to a complementary insulated gate field effect semiconductor integrated circuit device having a structure that allows easy analysis.

一般に相補型絶縁ゲート電界効果半導体集積回
路装置(以下、CMOSICと称す)の長所は、低
消費電力にあると言われている。その理由は回路
動作を停止させた時の電源電流(以下Iccsと呼
ぶ)が理論的にゼロになるからである。
It is generally said that the advantage of complementary insulated gate field-effect semiconductor integrated circuit devices (hereinafter referred to as CMOSICs) is low power consumption. The reason for this is that the power supply current (hereinafter referred to as Iccs) when the circuit operation is stopped is theoretically zero.

実際の製品ではIccs規格の最大値として30μA
〜100μAに設定されてい。これに対してP型も
しくはN型MOS集積回路装置等では回路動作を
停止させた状態においても負荷のMOSトランジ
スタには常にD.C電流が流れている為に、電源電
流はゼロにはならない。数mA程度の電流が流れ
ているのである。ところで、上述したように
CMOSICの長所は低消費電力にあるが、しか
し、近年の高集積密度化及びそれに伴うウエハ製
造プロセスの複雑化が進むにつれて上記のIccsの
問題が出てきて、その原因究明と解決はかなり重
要となつている。即ち、Iccsの値が規格値以上に
なりやすくなるのである。ウエハテストでみた場
合、機能動作をするペレツトを仮に100ケあつた
とすれば、この内の30ケほどのIccsが規格値オー
バになり、不良ペレツトとなつているのが現状で
ある。すなわち、30%ものペレツトをIccs値オー
バで不良としているのである。
In actual products, the maximum value of Iccs standard is 30μA.
It is set to ~100μA. On the other hand, in a P-type or N-type MOS integrated circuit device, a DC current always flows through the load MOS transistor even when the circuit operation is stopped, so the power supply current does not become zero. A current of about several milliamps is flowing. By the way, as mentioned above
The advantage of CMOSIC is low power consumption, but as the integration density has increased in recent years and the wafer manufacturing process has become more complex, the above-mentioned Iccs problem has emerged, and it is extremely important to investigate the cause and solve it. It's summery. In other words, the value of Iccs tends to exceed the standard value. In wafer testing, if 100 functioning pellets were collected, about 30 of them would have Iccs exceeding the standard value and become defective pellets. In other words, as many as 30% of the pellets exceed the Iccs value and are considered defective.

その為に、Iccs規格オーバの原因を究明するこ
とは、良品率の大巾な向上が期待でき急務となつ
ている。しかし、上記原因を明確且つ早急に知る
ことは困難であつた。なぜならば、このIccs値の
不良が、従来から考えられている拡散層やウエル
の耐圧不良、各種配線の断線やシヨート等による
パターン異常、スレツシホールド電圧VTの変動
やサブスレツシホールド電流増大等によるMOS
トランジスタの特性異常など、多くの要因といろ
いろな組み合わせで出てくる為であつた。従来か
ら行われている原因究明の手段としては、チツプ
の一部に、各種のチエツクパターンを挿入してお
く方法が採用されているが、いずれにしても明確
な原因を知ることは出来なかつた。
Therefore, it is urgent to investigate the cause of the Iccs standard deviation, as it can be expected to significantly improve the non-defective product rate. However, it has been difficult to clearly and quickly determine the cause. This is because the defective Iccs value is caused by the conventionally thought problems such as defective withstand voltage of diffusion layers and wells, pattern abnormalities due to disconnections and shorts in various wirings, fluctuations in threshold voltage V T , and increases in subthreshold current. by MOS
This was due to many factors and various combinations, such as abnormal characteristics of the transistor. Conventional methods for investigating the cause have been to insert various check patterns into a part of the chip, but in any case it has not been possible to determine the exact cause. .

本発明の目的は、上述したIccs値オーバの原因
を特別なパターンや配線層を設けることなしに、
しかも高集積密度化をさほど損うことなくして明
確に知ることの出来る手段を備えたCMOSICを
提供することである。
The purpose of the present invention is to solve the above-mentioned cause of Iccs value overflow without providing any special patterns or wiring layers.
Furthermore, it is an object of the present invention to provide a CMOSIC with a means for clearly determining the high integration density without significantly impairing the integration density.

本発明の特徴は、ウエル領域及び基体の電源線
への接続方法として、ウエル及び基体と同一導電
型で高濃度の拡散層を複数のウエル内及び基体内
に形成し、且つ複数の前記同一導電型拡散層同志
をそれぞれ金属配線層で接続した後、更に電源配
線との接続を前記金属配線の一端において低抵抗
の多結晶シリコン又は金属配線層を介してのみ行
つたCMOSICにある。
The present invention is characterized in that, as a method for connecting the well region and the substrate to the power supply line, highly concentrated diffusion layers of the same conductivity type as the wells and the substrate are formed in a plurality of wells and in the substrate, and This CMOSIC has type diffusion layers connected to each other through a metal wiring layer, and then connected to a power supply wiring only through a low-resistance polycrystalline silicon or metal wiring layer at one end of the metal wiring.

以下、本発明実施例について、シリコンゲート
構造でP型ウエルを採用し、ウエル領域及び基体
の電源配線への接続を低抵抗の多結晶シリコンを
使つた場合を例にとつて図面を用いて説明してい
く。尚、パターンの回路は二段のインバータ回路
である。
Hereinafter, embodiments of the present invention will be explained using drawings, taking as an example a case where a P-type well is adopted with a silicon gate structure, and low-resistance polycrystalline silicon is used for connection to the well region and the power supply wiring of the substrate. I will do it. Note that the circuit of the pattern is a two-stage inverter circuit.

第1図は、従来から用いられているP型ウエル
領域及びN型基体の電源配線への接続を示すレイ
アウトパターンで、第2図は第1図の等価回路を
示している。第1図及び第2図において、101
及び102は初段インバータ回路のNchトランジ
スタ及びPchトランジスタである。103及び1
04は2段目インバータ回路のNchトランジスタ
及びPchトランジスタであ。105及び106は
初段及び2段目トランジスタのゲートポリシリコ
ンである。107は出力端子である。108及び
109はそれぞれP型ウエル内のP型高不純物の
拡散層及びN型基体内のN型高不純物の拡散層で
ある。Nchトランジスタ101,103のソース
電極は、P型拡散層108と共にVss電源である
アルミニウム配線110によつて共通接続されて
いる。又、Pchトランジスタ102,104のソ
ース電極はN型拡散層109と共にVcc電源であ
るアルミニウム配線111によつて共通接続され
ている。尚、112はP型ウエルを示す。このよ
うな従来の構造によれば、Vcc配線110及び
Vcc配線111が回路電源とP型ウエル及びN型
基体の電源を兼ねている為に、例えばP型ウエル
やP型ウエル内のN型拡散層及びN型基体内のP
型拡散層の耐圧又はリーク電流は回路的な電流と
合成される関係で正確に知ることは困難であつ
た。
FIG. 1 is a layout pattern showing the connection of a conventionally used P-type well region and an N-type substrate to power supply wiring, and FIG. 2 shows an equivalent circuit of FIG. 1. In Figures 1 and 2, 101
and 102 are an Nch transistor and a Pch transistor of the first stage inverter circuit. 103 and 1
04 is an Nch transistor and a Pch transistor of the second stage inverter circuit. 105 and 106 are gate polysilicon gates of the first and second stage transistors. 107 is an output terminal. 108 and 109 are a P-type high impurity diffusion layer in the P-type well and an N-type high impurity diffusion layer in the N-type substrate, respectively. The source electrodes of the Nch transistors 101 and 103 are commonly connected together with the P-type diffusion layer 108 by an aluminum wiring 110 that is a Vss power source. Further, the source electrodes of the Pch transistors 102 and 104 are commonly connected together with the N type diffusion layer 109 by an aluminum wiring 111 which is a Vcc power source. Note that 112 indicates a P-type well. According to such a conventional structure, the Vcc wiring 110 and
Since the Vcc wiring 111 serves as the circuit power supply and the power supply for the P-type well and the N-type substrate, for example, the P-type well, the N-type diffusion layer in the P-type well, and the P-type
It has been difficult to accurately know the breakdown voltage or leakage current of the type diffusion layer because it is combined with the circuit current.

そこで本実施例では、P型ウエル及びN型基体
の電位の採り方を回路のVss配線及びVcc配線か
ら分離して、P型ウエル同志及びN型基体同志を
それぞれアルミニウム配線で接続し、最後にその
アルミニウム配線の一端を低抵抗のポリシリコン
を介して回路のVss配線及びVcc配線に接続して
やることにより、不良解析の際にわずかな作業を
施すことによりIccs規格値オーバの原因究明が容
易となるものである。第3図aは本発明の実施
例、又第3図bは第3図aのa―a′での断面図を
示し、更に第4図は第3図aの等価回路を示す。
これらの図において、従来例である第1図、第2
図と違う所は、Nchトランジスタのソース電極に
接続されるVssアルミニウム配線210と、P型
ウエルの電位を採る為のアルミニウム配線213
及びPchトランジスタのソース電極に接続される
Vccアルミニウム配線211と、N型基体の電位
を採る為のアルミニウム配線214とがそれぞれ
分離して形成され、更に低抵抗、例えば50Ωのポ
リシリコン215及び216を介してVss配線2
10及びVcc配線211に接続されていることで
ある。尚、217及び218は、Iccs規格オーバ
の原因究明の際に使用する小パツトであり、アル
ミニウム配線213及び214とそれぞれ同電位
である。このようなパターンレイアウトの構成を
とつておけば、Iccs規格値オーバで不良ペレツト
となつても、前記ポリシリコン215又は216
に電流を流し溶断することにより、P型ウエルや
N型及びP型拡散層の耐圧、リーク電流をそれぞ
れ区別して知ることができる。いわゆるポリシリ
コン215,216は、P型ウエル及び基体電位
のコンタクトの他にヒユーズ用としての役割をも
つている。更に、P型ウエルとN型基体が回路上
のVss配線及びVcc配線と分離している為、逆に
Iccs不良の原因が回路的な場合でも知ることがで
きる。
Therefore, in this embodiment, the potential of the P-type well and N-type substrate is separated from the Vss wiring and Vcc wiring of the circuit, the P-type wells and the N-type substrates are connected with aluminum wiring, and finally, By connecting one end of the aluminum wiring to the circuit's Vss wiring and Vcc wiring via low-resistance polysilicon, it becomes easy to investigate the cause of the Iccs standard value exceedance by performing a small amount of work during failure analysis. It is something. FIG. 3a shows an embodiment of the present invention, FIG. 3b shows a sectional view taken along line a-a' in FIG. 3a, and FIG. 4 shows an equivalent circuit of FIG. 3a.
In these figures, FIGS. 1 and 2, which are conventional examples,
The difference from the diagram is the Vss aluminum wiring 210 connected to the source electrode of the Nch transistor and the aluminum wiring 213 for taking the potential of the P-type well.
and connected to the source electrode of the Pch transistor
A Vcc aluminum wiring 211 and an aluminum wiring 214 for taking the potential of the N-type substrate are formed separately, and a Vss wiring 214 is further formed via low resistance, for example, 50Ω polysilicon 215 and 216.
10 and Vcc wiring 211. Note that 217 and 218 are small parts used when investigating the cause of exceeding the Iccs standard, and are at the same potential as the aluminum wirings 213 and 214, respectively. With such a pattern layout configuration, even if the pellet exceeds the Iccs standard value and becomes a defective pellet, the polysilicon 215 or 216
By passing a current through and blowing it out, the withstand voltage and leakage current of the P-type well, N-type and P-type diffusion layers can be determined separately. The so-called polysilicon 215 and 216 have a role as a fuse in addition to the P-type well and the base potential contact. Furthermore, since the P-type well and N-type substrate are separated from the Vss wiring and Vcc wiring on the circuit,
Even if the cause of Iccs failure is circuit-related, it can be known.

以上述べたように、本発明によればIccs規格オ
ーバの原因を特別なパターンや配線層を設けるこ
となしに明確に且つ早急に知ることができる。
As described above, according to the present invention, the cause of exceeding the Iccs standard can be clearly and quickly determined without providing any special patterns or wiring layers.

尚、本実施例ではヒユーズ用としてのポリシリ
コンをP型ウエル及びN型基体へと同時に使用し
たが、どちらか一方だけを採用しても本発明の目
的は損われない。又、ヒユーズ用ポリシリコン以
外にも、スポツト露光やレーザー光線が使用可能
ならばアルミニウム配線でそのまま電源線に接続
しても良い。更に本発明を特に相補型絶縁ゲート
電界効果半導体記憶回路装置の、記憶素子群内に
のみ採用するのも有効である。
In this embodiment, polysilicon for the fuse is used for the P-type well and the N-type substrate at the same time, but the purpose of the present invention will not be impaired even if only one of them is used. In addition to polysilicon for fuses, if spot exposure or laser beams can be used, aluminum wiring may be used to directly connect to the power supply line. Furthermore, it is also effective to apply the present invention only to a memory element group of a complementary insulated gate field effect semiconductor memory circuit device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から用いられているP型ウエル領
域及びN型基体の電源配線への接続を示す平面
図、第2図は第1図の等価回路、第3図aは本発
明の実施例を示す平面図、第3図bは第3図aの
a―a′での断面図、第4図は第3図aの等価回
路、である。 なお図において、101〜104……Nch及び
Pchトランジスタ、105〜106……ゲートポ
リシリコン、107……出力端子、108……P
型拡散層、109……N型拡散層、110……
Vss電源アルミニウム配線、111……Vcc電源
アルミニウム配線、112……P型ウエル、21
0……Vss電源アルミニウム配線、211……
Vcc電源アルミニウム配線、213……P型ウエ
ル接続用アルミニウム配線、214……N型基体
接続用アルミニウム配線、215〜216……ヒ
ユーズ用ポリシリコン、217〜218……解析
用小パツド、である。
FIG. 1 is a plan view showing the connection of a conventionally used P-type well region and N-type substrate to power supply wiring, FIG. 2 is an equivalent circuit of FIG. 1, and FIG. 3a is an embodiment of the present invention. FIG. 3b is a sectional view taken along line a-a' in FIG. 3a, and FIG. 4 is an equivalent circuit of FIG. 3a. In the figure, 101 to 104...Nch and
Pch transistor, 105-106...gate polysilicon, 107...output terminal, 108...P
Type diffusion layer, 109...N type diffusion layer, 110...
Vss power supply aluminum wiring, 111...Vcc power supply aluminum wiring, 112...P-type well, 21
0...Vss power supply aluminum wiring, 211...
Vcc power supply aluminum wiring, 213...aluminum wiring for P-type well connection, 214...aluminum wiring for N-type substrate connection, 215-216...polysilicon for fuse, 217-218...small pads for analysis.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基体または前記半導体基体
に形成された逆導電型のウエル領域に電位を与え
るために、前記半導体基体または前記ウエル領域
へコンタクトを介して接続された金属配線と、他
の電源配線との接続が前記金属配線の一端におい
てのみ行なわれていることを特徴とする相補型絶
縁ゲート電界効果半導体集積回路装置。
1. A metal wiring connected to the semiconductor substrate or the well region via a contact in order to apply a potential to the semiconductor substrate of one conductivity type or the well region of the opposite conductivity type formed in the semiconductor substrate, and another power source. A complementary insulated gate field effect semiconductor integrated circuit device, characterized in that connection with wiring is made only at one end of the metal wiring.
JP56141893A 1981-09-09 1981-09-09 Complementary insulated gate field effect semiconductor integrated circuit device Granted JPS5843558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141893A JPS5843558A (en) 1981-09-09 1981-09-09 Complementary insulated gate field effect semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141893A JPS5843558A (en) 1981-09-09 1981-09-09 Complementary insulated gate field effect semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5843558A JPS5843558A (en) 1983-03-14
JPS6257260B2 true JPS6257260B2 (en) 1987-11-30

Family

ID=15302611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141893A Granted JPS5843558A (en) 1981-09-09 1981-09-09 Complementary insulated gate field effect semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5843558A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225698A (en) * 1985-07-26 1987-02-03 鉄建建設株式会社 Shield excavator
JPH0340392U (en) * 1989-08-28 1991-04-18

Also Published As

Publication number Publication date
JPS5843558A (en) 1983-03-14

Similar Documents

Publication Publication Date Title
KR100731270B1 (en) Testable electrostatic discharge protection circuits
US4517583A (en) Semiconductor integrated circuit including a fuse element
US6504186B2 (en) Semiconductor device having a library of standard cells and method of designing the same
US4903111A (en) Integrated circuit device
JPH07169807A (en) Semiconductor wafer
US6410936B1 (en) Semiconductor device
US7616417B2 (en) Semiconductor device including protection circuit and switch circuit and its testing method
JP4727796B2 (en) Semiconductor integrated circuit
JPH03290900A (en) Semiconductor memory device
JPS6257260B2 (en)
JP4109161B2 (en) Semiconductor device
JP3495835B2 (en) Semiconductor integrated circuit device and inspection method thereof
US6653688B2 (en) Semiconductor device
JPH06310713A (en) Semiconductor device and fabrication thereof
JP3501880B2 (en) Method of manufacturing semiconductor integrated circuit device and semiconductor wafer
JPH0329344A (en) Semiconductor device
JP2002118232A (en) Semiconductor device
JPS60128655A (en) Semiconductor device
JP2000315400A (en) Semiconductor integrated circuit
JPS5848449A (en) Mos type integrated circuit device
JPS58166771A (en) Manufacture of semiconductor device
JPH07326648A (en) Test method of semiconductor device
JPH11330170A (en) Semiconductor device, manufacture thereof, and inspection of the semiconductor device
JPH0824177B2 (en) Semiconductor device
JPH04217341A (en) Semiconductor integrated circuit device