JPS6257172B2 - - Google Patents

Info

Publication number
JPS6257172B2
JPS6257172B2 JP54158817A JP15881779A JPS6257172B2 JP S6257172 B2 JPS6257172 B2 JP S6257172B2 JP 54158817 A JP54158817 A JP 54158817A JP 15881779 A JP15881779 A JP 15881779A JP S6257172 B2 JPS6257172 B2 JP S6257172B2
Authority
JP
Japan
Prior art keywords
ether
general formula
group
methyl
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54158817A
Other languages
Japanese (ja)
Other versions
JPS5681530A (en
Inventor
Kenji Saito
Hiroshi Yamachika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15881779A priority Critical patent/JPS5681530A/en
Priority to HU287680A priority patent/HU186372B/en
Priority to DE8080107671T priority patent/DE3063547D1/en
Priority to EP19800107671 priority patent/EP0031909B1/en
Priority to DK522280A priority patent/DK160294C/en
Priority to US06/213,632 priority patent/US4356326A/en
Publication of JPS5681530A publication Critical patent/JPS5681530A/en
Publication of JPS6257172B2 publication Critical patent/JPS6257172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は3−オキソシクロペンテン化合物の製
造方法に関し、さらに詳しくは一般式() [式中、R1は炭素数6までのアルキル基、そ
の結合末端に不飽和結合を持たない炭素数6まで
のアルケニル基、アルキニル基または一般式
The present invention relates to a method for producing a 3-oxocyclopentene compound, and more particularly, to a method for producing a 3-oxocyclopentene compound, more specifically, a method for producing a 3-oxocyclopentene compound, and more specifically, [In the formula, R 1 is an alkyl group with up to 6 carbon atoms, an alkenyl group with up to 6 carbon atoms that does not have an unsaturated bond at the bond end, an alkynyl group, or a general formula

【式】で示される基を表わす。こ こにR2は水素原子、メチル基またはハロゲン原
子を表わす。] で示される3−オキソシクロペンテン化合物の新
しい製造方法に関する。 上記一般式()で示される化合物は農薬の有
用な中間体であると同時にプロスタグランジン等
の医薬品の中間体ともなり得るものであり、その
中間体としての重要性は極めて大きい。 従来一般式()で示される化合物の製造法と
しては (R:アリル、n−ブチル、シクロヘキシル、
フエニル、2−チエニル、p−トリル) の径路による方法が知られている(G.Piancatelli
ら、テトラヘドロン(Tetrahedron),34巻,
2775〜2778(1978)。 しかしながら、この方法では同文献2776頁表1
に記載されているようにRがフエニル基、2−チ
エニル基またはp−トリル基を表わす場合、すな
わち芳香族系または複素環系化合物については、
目的の化合物(2)が短時間でかつ比較的高収率で得
られるものの、本発明の対象化合物のようにRが
その結合末端に不飽和結合を持たない置換基であ
るフランカルビノール化合物では、反応が進行し
にくく、その収率も極めて低くかつ長時間を要す
るものであつて、実用には供し難い。 このような状況の下に本発明者らは種々検討し
た結果、短時間でしかも高収率で一般式() [式中、R1は前述と同じ意味を有する。] で示されるフランカルビノール化合物から、一般
式()で示される3−オキソシクロペンテン化
合物を得る方法を見出し本発明を完成した。 すなわち本発明は一般式()で示されるフラ
ンカルビノール化合物を水溶媒中、マグネシウム
の無機塩の存在下に処理することを特徴とする前
記一般式()で示される3−オキソシクロペン
テン化合物の製造方法を提供するものである。 以下、本発明を具体的に説明する。 本発明の特徴は、反応を水溶媒中で行なうこと
および、マグネシウムの無機塩の存在下に行なう
ことにある。ここで言う水溶媒とは水単独または
少量であればトルエン、キシレン、ジイソプロピ
ルエーテル、ベンゼン、アセトン、テトラヒドロ
フラン、ジオキサンなどの有機溶媒を含んでいて
もよく、このような水溶媒中でかつマグネシウム
の無機塩の存在下に反応を行なうことによつては
じめて好都合に一般式()で示される本発明の
目的化合物が得られることを見出したものであ
る。すなわち前記公知文献によれば、本発明の対
象化合物のようにRがその結合末端に不飽和結合
を持たない置換基であるフランカルビノール化合
物を用い、少量の水を含むアセトン溶媒中、塩化
亜鉛の存在下に反応させた場合には、目的の3−
オキソシクロペンテン化合物の収率は極めて低く
かつ反応に長時間を要するものである。しかも本
発明によれば前記公知文献の発明者が触媒能力を
有しないとしている臭化マグネシウムを用いた場
合でも短時間でかつ高収率に反応が進行すること
は真に注目すべきことである。 本発明において一般式()で示される化合物
のR1の具体例としてはメチル基、プロピル基、
ヘキシル基、シクロヘキシル基、アリル基、4−
ペンテニル基、プロパルギル基、ベンジル基、p
−メチルベンジル基、p−クロルベンジル基など
が挙げられる。また本発明に用いられるマグネシ
ウムの無機塩としては例えば塩化マグネシウム、
臭化マグネシウム、硝酸マグネシウム、硫酸マグ
ネシウム等を挙げることができ、その使用量は一
般式()で示される化合物に対して0.01〜100
倍モル、好ましくは0.1〜10倍モル、さらに好ま
しくは0.5〜2倍モルの範囲である。 本発明において反応時のPHは重要でありPH3〜
7の範囲、好ましくは3〜6、さらに好ましくは
3.5〜5.8の範囲である。またこの時、より酸性側
により過ぎると副成物が多くなり、アルカリ側に
より過ぎると反応速度は著しく遅くなる。 尚、反応を長く続けると一般式()で示され
る化合物は一般式() [式中、R1は前述と同じ意味を有する。] で示されるシクロペンテノロン類に変化する為、
最終的に該シクロペンテノロン類を製造すること
を目的とする場合以外においては、特にガスクロ
マトグラフイーによる分析などで反応を追跡し、
一般式()で示される化合物の生成が最大とな
る時間で反応を終了することが望ましい。 本発明においてPH制御に使用する酸と塩基は公
知のものを広く使用でき、具体的には酸としては
硫酸、塩酸、硝酸等の無機酸、酢酸、p−トルエ
ンスルホン酸等の有機酸、リン酸二水素ナトリウ
ム、亜硫酸水素ナトリウム等の酸性金属塩、酸性
イオン交換樹脂等が例示できる。又、塩基として
は具体的にはナトリウム、カリウム等のアルカリ
金属類、カルシウム、バリウム等のアルカリ土類
金属類の水酸化物、炭酸塩、重炭酸塩、酢酸塩等
の塩基性塩、トリエチルアミン、ピリジン等のア
ミン類、塩基性イオン交換樹脂等を例示できる。 又これらを使用した酸、塩基のバツフアー液を
使用することも出来る。 さらに本発明に使用する水溶媒の量は一般式
()で示される化合物に対して0.5倍〜100倍、
好ましくは5倍〜40倍重量使用するのがよい。反
応温度は通常20℃〜200℃であり好ましくは80℃
〜150℃である。 本発明は具体的には金属塩を溶解した水溶媒に
一般式()で示される化合物を溶解または懸濁
させ昇温した後PHを3〜7の間に調製しながら反
応させ、一般式()で示される化合物の生成が
最大となる時間で反応を終了することにより行な
われる。 又、本発明の出発原料である一般式()で示
される化合物は一般式() R1X () [式中、R1は前述と同じ意味を表わし、Xは
塩素原子、臭素原子、またはヨウ素原子を表わ
す。] で示される化合物にMg,ZnまたはAl金属を作用
させて得られる一般式() R1MX () [式中、R1およびXは前述と同じ意味を有し
MはMg,ZnまたはAl2/3原子を表わす。] で示される化合物を5−メチルフルフラールと反
応させることにより得ることが出来る。 以下実施例により本発明を具体的に説明する。 実施例 1 水750mlを仕込み、100℃に昇温し還流させる。 次に5−メチル−2−フリル−アリル−カルビ
ノール24gとMgCl2・6H2O31.5gを水160mlに溶
解した液を各々2.5時間と3.5時間を要し滴下し
た。その時反応液のPHが10%リン酸1カリ水溶液
と1N−水酸化ナトリウム水でPH5.7〜5.3の間にあ
るように制御した。 反応開始後1.5時間付近からPHは変化しなくな
つた。 MgCl2水溶液の滴下終了後PH5.5の状態で4.5時
間100℃で還流撹拌した。 これを40℃まで冷却後、1N水酸化ナトリウム
水で中和し、食塩320gを加えた後トルエン250ml
で4回抽出した。抽出液を無水硫酸マグネシウム
で乾燥後60℃減圧下にトルエンを留去したところ
21.6gの油状物を得た。 次にこれを0.5mmHg、88〜90℃で蒸留して20.4
gの4−ハイドロオキシ−4−メチル−5−アリ
ル−2−シクロペンテノンを得た。 収率 85
% 実施例 2 水200mlを仕込みこれにMgCl2・6H2O17gを溶
解し次に5−メチル−2−フリル−アリル−カル
ビノール13.0gを加える。 これを100℃に昇温し還流させ2N−塩酸水と1N
−NaOH水でPH5.0〜5.2に保つて8時間還流撹拌
した。 次に40℃まで冷却後1N−NaOH水で中和して食
塩を70g加え、トルエン70mlで4回抽出する。抽
出液を無水硫酸マグネシウムで乾燥後、60℃減圧
下にトルエンを留去したところ、11.9gの油状物
を得た。 次にこれを0.5mmHg88〜90℃で蒸留して9.5gの
4−ハイドロオキシ−4−メチル−5−アリル−
2−シクロペンテノンを得た。 収率 73% 実施例 3 水100mlを仕込みこれにMgCl2・6H2O6.8gを
溶解し次に5−メチル−2−フリル−プロパルギ
ル−カルビノール5gを加える。 100℃に昇温し還流させ1N−塩酸水と1N−
NaOH水でPH3.8〜4.1に保つて8時間還流撹拌し
た。 これを40℃まで冷却後1N−NaOH水で中和して
食塩35gを加えた後トルエン50mlで4回抽出す
る。抽出液を無水硫酸マグネシウムで乾燥後、60
℃減圧下にトルエンを留去したところ4.7gの油
状物を得た。次にこれをシリカゲル60gを使用し
て酢酸エチル−n−ヘキサン(1容対2容)で展
開した。まず高沸点物が流出して次に少量の未反
応5−メチル−2−フリル−プロパルギル−カル
ビノールが流出し、さらにかなりのちに目的の4
−ハイドロオキシ−4−メチル−5−プロパルギ
ル−2−シクロペンテノンが流出し、この分画を
濃縮して4−ハイドロオキシ−4−メチル−5−
プロパルギル−2−シクロペンテノン3.6gを得
た。 収率 72% 実施例 4〜11 下記のフランカルビノール化合物5gを用い、
下記の条件で実施例3と同様の操作を行ない夫々
の3−オキソシクロペンテン化合物を得た。
Represents a group represented by [Formula]. R 2 here represents a hydrogen atom, a methyl group or a halogen atom. ] It is related with the new manufacturing method of the 3-oxocyclopentene compound shown by these. The compound represented by the above general formula () is a useful intermediate for agricultural chemicals and can also be an intermediate for pharmaceuticals such as prostaglandins, and is extremely important as an intermediate. The conventional method for producing the compound represented by the general formula () is (R: allyl, n-butyl, cyclohexyl,
A method using the phenyl, 2-thienyl, p-tolyl) route is known (G. Piancatelli
et al., Tetrahedron, 34 volumes,
2775-2778 (1978). However, with this method, Table 1 on page 2776 of the same document
When R represents a phenyl group, 2-thienyl group or p-tolyl group, that is, for an aromatic or heterocyclic compound as described in
Although the target compound (2) can be obtained in a short time and in a relatively high yield, in the case of a furan carbinol compound in which R is a substituent that does not have an unsaturated bond at its bond end like the target compound of the present invention, However, the reaction is difficult to proceed, the yield is extremely low, and it takes a long time, making it difficult to put it to practical use. Under these circumstances, the present inventors conducted various studies and found that the general formula () [In the formula, R 1 has the same meaning as above. ] The present invention was completed by discovering a method for obtaining a 3-oxocyclopentene compound represented by the general formula () from a furancarbinol compound represented by the following. That is, the present invention relates to the production of a 3-oxocyclopentene compound represented by the general formula (), which is characterized by treating a furancarbinol compound represented by the general formula () in an aqueous solvent in the presence of an inorganic salt of magnesium. The present invention provides a method. The present invention will be explained in detail below. A feature of the present invention is that the reaction is carried out in an aqueous solvent and in the presence of an inorganic salt of magnesium. The aqueous solvent referred to here may include water alone or a small amount of organic solvents such as toluene, xylene, diisopropyl ether, benzene, acetone, tetrahydrofuran, and dioxane. It has been discovered that the object compound of the present invention represented by the general formula () can be conveniently obtained only by carrying out the reaction in the presence of a salt. That is, according to the above-mentioned known literature, using a furan carbinol compound in which R is a substituent having no unsaturated bond at the bond end, as in the target compound of the present invention, zinc chloride is added in an acetone solvent containing a small amount of water. When reacted in the presence of , the desired 3-
The yield of the oxocyclopentene compound is extremely low and the reaction requires a long time. Furthermore, it is truly remarkable that according to the present invention, the reaction proceeds in a short time and in high yield even when using magnesium bromide, which the inventor of the above-mentioned known document claims has no catalytic ability. . In the present invention, specific examples of R 1 in the compound represented by the general formula () include a methyl group, a propyl group,
hexyl group, cyclohexyl group, allyl group, 4-
pentenyl group, propargyl group, benzyl group, p
-methylbenzyl group, p-chlorobenzyl group, etc. Examples of inorganic salts of magnesium used in the present invention include magnesium chloride,
Examples include magnesium bromide, magnesium nitrate, magnesium sulfate, etc., and the amount used is 0.01 to 100% of the compound represented by the general formula ().
The amount is in the range of twice the mole, preferably 0.1 to 10 times the mole, and more preferably 0.5 to 2 times the mole. In the present invention, the pH during the reaction is important, and the pH is 3~
7, preferably 3 to 6, more preferably
It ranges from 3.5 to 5.8. Further, at this time, if the reaction is carried out on a more acidic side, the amount of by-products increases, and if the reaction is carried out on an alkaline side, the reaction rate becomes extremely slow. In addition, if the reaction is continued for a long time, the compound represented by the general formula () will become the general formula () [In the formula, R 1 has the same meaning as above. ] Because it changes to cyclopentenolones shown by
Unless the purpose is to ultimately produce the cyclopentenolone, the reaction should be followed by analysis by gas chromatography, etc.
It is desirable to complete the reaction at a time when the production of the compound represented by the general formula () is maximized. In the present invention, a wide variety of known acids and bases can be used for pH control.Specifically, acids include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, organic acids such as acetic acid and p-toluenesulfonic acid, and phosphoric acids. Examples include acidic metal salts such as sodium dihydrogen acid and sodium hydrogensulfite, and acidic ion exchange resins. Specific examples of the base include hydroxides of alkali metals such as sodium and potassium, alkaline earth metals such as calcium and barium, basic salts such as carbonates, bicarbonates, and acetates, triethylamine, Examples include amines such as pyridine, basic ion exchange resins, and the like. It is also possible to use buffer solutions of acids and bases using these. Furthermore, the amount of water solvent used in the present invention is 0.5 times to 100 times the amount of the compound represented by the general formula (),
It is preferable to use 5 to 40 times the weight. The reaction temperature is usually 20℃ to 200℃, preferably 80℃
~150℃. Specifically, the present invention involves dissolving or suspending a compound represented by the general formula () in an aqueous solvent in which a metal salt is dissolved, raising the temperature, and then reacting while adjusting the pH between 3 and 7. ) is carried out by terminating the reaction at a time when the production of the compound represented by is at its maximum. In addition, the compound represented by the general formula () which is the starting material of the present invention has the general formula () R 1 Represents an iodine atom. ] The general formula () R 1 MX () obtained by reacting Mg, Zn or Al metal with the compound represented by [where R 1 and X have the same meanings as above and M is Mg, Zn or Al2 /3 represents an atom. ] It can be obtained by reacting the compound represented by 5-methylfurfural with 5-methylfurfural. The present invention will be specifically explained below using Examples. Example 1 Pour 750 ml of water, raise the temperature to 100°C and reflux. Next, a solution prepared by dissolving 24 g of 5-methyl-2-furyl-allyl-carbinol and 1.5 g of MgCl 2 .6H 2 O in 160 ml of water was added dropwise over 2.5 hours and 3.5 hours, respectively. At that time, the pH of the reaction solution was controlled to be between 5.7 and 5.3 using a 10% monopotassium phosphoric acid aqueous solution and 1N aqueous sodium hydroxide. The pH stopped changing around 1.5 hours after the start of the reaction. After the dropwise addition of the MgCl 2 aqueous solution was completed, the mixture was stirred under reflux at 100° C. for 4.5 hours at pH 5.5. After cooling this to 40℃, neutralize it with 1N sodium hydroxide solution, add 320g of common salt, and then add 250ml of toluene.
Extracted 4 times. After drying the extract over anhydrous magnesium sulfate, toluene was distilled off under reduced pressure at 60°C.
21.6 g of oil was obtained. Next, this was distilled at 0.5 mmHg and 88 to 90℃ to obtain a 20.4
g of 4-hydroxy-4-methyl-5-allyl-2-cyclopentenone was obtained. Yield 85
% Example 2 Charge 200 ml of water, dissolve 17 g of MgCl 2 .6H 2 O therein, and then add 13.0 g of 5-methyl-2-furyl-allyl-carbinol. This was heated to 100℃, refluxed, and mixed with 2N-hydrochloric acid and 1N.
The mixture was stirred under reflux for 8 hours while maintaining the pH at 5.0 to 5.2 with -NaOH water. Next, after cooling to 40°C, neutralize with 1N NaOH water, add 70g of common salt, and extract 4 times with 70ml of toluene. After drying the extract over anhydrous magnesium sulfate, toluene was distilled off under reduced pressure at 60°C to obtain 11.9 g of an oily substance. Next, this was distilled at 0.5 mmHg at 88 to 90°C to obtain 9.5 g of 4-hydroxy-4-methyl-5-allyl-
2-cyclopentenone was obtained. Yield: 73% Example 3 Charge 100 ml of water, dissolve 6.8 g of MgCl 2 .6H 2 O therein, and then add 5 g of 5-methyl-2-furyl-propargyl-carbinol. Raise the temperature to 100℃ and reflux it with 1N-hydrochloric acid water and 1N-
The mixture was stirred under reflux for 8 hours while keeping the pH at 3.8 to 4.1 with NaOH water. This was cooled to 40°C, neutralized with 1N NaOH water, added with 35 g of common salt, and extracted four times with 50 ml of toluene. After drying the extract with anhydrous magnesium sulfate,
Toluene was distilled off under reduced pressure at °C to obtain 4.7 g of oil. This was then developed with ethyl acetate-n-hexane (1 volume to 2 volumes) using 60 g of silica gel. First the high boilers flow out, then a small amount of unreacted 5-methyl-2-furyl-propargyl-carbinol, and much later the desired 4
-Hydroxy-4-methyl-5-propargyl-2-cyclopentenone flows out and this fraction is concentrated and 4-hydroxy-4-methyl-5-
3.6 g of propargyl-2-cyclopentenone was obtained. Yield: 72% Examples 4 to 11 Using 5 g of the following furancarbinol compound,
The same operation as in Example 3 was carried out under the following conditions to obtain each 3-oxocyclopentene compound.

【表】 実施例 12 5−メチル−2−フリル−アリル−カルビノー
ル10gを仕込み、次にMgBr2・6H2O19gを400ml
の水に溶解した液を加え、100℃に昇温し、還流
させ1N NaOH水でPH5.8にした後5.5時間還流撹
拌した。その時のPHは3.6であつた。これを冷却
後食塩120gを加えた後トルエン300mlで4回抽出
した。抽出液を無水硫酸マグネシウムで乾燥後、
60℃減圧下にトルエンを留去し次に0.5mmHg88〜
90℃で蒸留して6.1gの4−ハイドロオキシ−4
−メチル−5−アリル−2シクロペンテノンを得
た。 収率 61% 参考例 1 けずり状マグネシウム7.4gとエーテル40mlを
仕込む。次に少量のヨウ素を加える。20℃付近
で、アリルクロライド21.4gをエーテル40mlに溶
解した液を約10滴加えてヨードの淡黄色の消える
まで撹拌した。 冷却後0〜5℃に保ちながら残りのアリルクロ
ライドのエーテル液を4時間で滴下し、1時間保
温撹拌した。次に5−メチルフルフラール22gを
エーテル100mlに溶解した液を0〜5℃に保ちな
がら2時間で滴下し、1時間保温撹拌した。これ
に氷冷下30gのNH4Clを溶解した水溶液を20分で
加え1時間撹拌した後、セライト過し未反応マ
グネシウムを除去し、液に食塩100gを加えて
エーテル層を分液した。水層は200mlエーテルで
3回抽出し、エーテル層を合せ30mlの飽和
NaHCO3水で洗浄後無水Na2SO450gで乾燥し、
次いで40℃減圧下に濃縮して27.9gの油状物を得
た。これを9mmHg、92℃で精留し、21.9gの5
−メチル−2−フリル−アリルカルビノールを得
た。 収率 72.1% 参考例 2 けずり状マグネシウム39.3gとエーテル400ml
を仕込み、少量のヨウ素を加えて、撹拌する。室
温付近で、アリルブロマイド167.8gの中の約10
滴を加え、ヨウ素の淡黄色が消えるまで撹拌し
た。冷却後、0〜5℃を保持しながら4時間で残
りのアリルブロマイドを滴下し、30分保温撹拌し
た。次に5−メチルフルフラール84.5gをエーテ
ル200mlに溶解した液を、0〜5℃を保持しなが
ら1.5時間で滴下し、さらに1時間保温撹拌し
た。これに20%NH4Cl水500mlを10℃まで氷冷
し、10〜20℃を保ちながら20分で上記金属錯体の
エーテル液を流下した。1時間室温で撹拌後エー
テル層を分液し水層はエーテル200mlで2回抽出
しエーテル層を合せ、飽和NaHCO3水30mlで洗浄
後、無水MgSO4で乾燥し、40℃減圧下に濃縮し
たところ124.3gの油状物を得た。 これを4mmHg60〜61℃で精留し、106.7gの5
−メチル−2−フリル−アリル−カルビノールを
得た。 収率 91% 参考例 3 アルミニウム粉0.77g、HgCl217.8mg及び少量
のヨウ素を仕込み150℃で10分加熱する。冷却後
テトラヒドロフラン10mlを仕込み、30℃でプロパ
ルギルブロマイド4.8gを4時間で滴下し、1時
間保温撹拌した。アセトン−ドライアイスバスで
冷却後−10℃以下を保ちながら5−メチルフルフ
ラール4.6gをテトラヒドロフラン10mlに溶解し
た液を3時間で滴下した。次に30℃に昇温して30
分保温撹拌後、0℃に冷却し、5.3gのNH4Clを
水20mlに溶解した液を20分で加え30分撹拌後30%
NaCl水50mlを加え、エーテル200mlで3回抽出し
た。エーテル層を飽和NaHCO3水30mlで洗浄後、
無水MgSO4で乾燥し、50℃減圧下に濃縮して4.4
gの油状物を得た。 次に60gのシリカゲルを使用して、酢酸エチル
−n−ヘキサン(2容対5容)で展開し、4.1g
の5−メチル−2−フリル−プロパルギル−カル
ビノールを得た。 収率 65% 参考例 4 けずり状マグネシウム7.3gとエーテル30mlを
仕込み少量のヨウ素を加えて室温で撹拌する。こ
れにヨウ化メチル21.3gをエーテル40mlに溶解し
た液を約10滴加えてヨウ素の淡黄色が消えるまで
撹拌した。 次にヨウ化メチル溶液を22℃〜35℃の間で1.5
時間で滴下し室温で1時間撹拌した。次いで5−
メチルフルフラール15.4gをエーテル60mlに溶解
した液を30分で滴下し、1時間室温で撹拌した。
これに飽和NH4Cl水60mlを20分で加え30分撹拌
後、セライト過し未反応マグネシウムを除去し
エーテル層を分液し、水層はエーテル100mlで2
回抽出し、エーテル層を合せ飽和NaHCO3液20ml
で洗浄後無水MgSO4で乾燥し、40℃減圧下に溶
媒を留去して13.5gの油状物を得た。これを10mm
Hg、67〜69℃で精留し11.8gの5−メチル−2
−フリル−メチル−カルビノールを得た。 収率 67% 参考例 5 けずり状マグネシウム2.8gとエーテル12mlを
仕込み少量のヨウ素を加えて室温で撹拌する。塩
化プロピル8.6gをエーテル20mlに溶解した液を
約10滴加えてヨウ素の淡黄色が消えるまで撹拌し
た。 次にこの塩化プロピル溶液を2時間で滴下し、
室温で1時間撹拌した。次いでこれに5−メチル
フルフラール10gをエーテル50mlに溶解した液を
1時間で滴下し、1時間室温で撹拌した。さらに
これに飽和NH4Cl水50mlを20分で加え30分撹拌後
セライト過し未反応マグネシウムを除去後エー
テル層を分液し、水層はエーテル100mlで2回抽
出し、エーテル層を合せ飽和NaHCO3液20mlで洗
浄後無水MgSO4で乾燥し40℃減圧下に溶媒を留
去して12.8gの油状物を得た。これをシリカゲル
150gを使用して酢酸エチル−n−ヘキサン(2
容対5容)で展開し11.3gの5−メチル−2−フ
リル−プロピル−カルビノールを得た。 収率 81% 参考例 6〜8 下記のハロゲン化合物を用いて参考例5と同様
の操作を行ない一般式()で示される夫々のフ
ランカルビノール化合物を得た。 結果を以下に示す。
[Table] Example 12 Prepare 10 g of 5-methyl-2-furyl-allyl-carbinol, then add 400 ml of 19 g of MgBr 2 6H 2 O.
A solution dissolved in water was added thereto, the temperature was raised to 100°C, the mixture was refluxed, the pH was adjusted to 5.8 with 1N NaOH water, and the mixture was stirred under reflux for 5.5 hours. The pH at that time was 3.6. After cooling, 120 g of common salt was added, and the mixture was extracted four times with 300 ml of toluene. After drying the extract with anhydrous magnesium sulfate,
Toluene was distilled off under reduced pressure at 60℃, and then 0.5mmHg88~
Distilled at 90°C to yield 6.1 g of 4-hydroxy-4
-Methyl-5-allyl-2cyclopentenone was obtained. Yield: 61% Reference Example 1 Charge 7.4 g of magnesium scraps and 40 ml of ether. Then add a small amount of iodine. At around 20°C, about 10 drops of a solution of 21.4 g of allyl chloride dissolved in 40 ml of ether were added and stirred until the pale yellow color of iodine disappeared. After cooling, the remaining ether solution of allyl chloride was added dropwise over 4 hours while maintaining the temperature at 0 to 5°C, and the mixture was stirred while keeping it warm for 1 hour. Next, a solution prepared by dissolving 22 g of 5-methylfurfural in 100 ml of ether was added dropwise over 2 hours while keeping the temperature at 0 to 5°C, and the mixture was stirred for 1 hour while keeping it warm. An aqueous solution in which 30 g of NH 4 Cl was dissolved was added over 20 minutes under ice cooling, and the mixture was stirred for 1 hour. Unreacted magnesium was removed through celite, and 100 g of common salt was added to the solution to separate the ether layer. The aqueous layer was extracted three times with 200 ml of ether, and the ether layers were combined to make 30 ml of saturated
After washing with NaHCO3 water and drying with 50g of anhydrous Na2SO4 ,
The mixture was then concentrated at 40° C. under reduced pressure to obtain 27.9 g of oil. This was rectified at 9mmHg and 92℃, and 21.9g of 5
-Methyl-2-furyl-allylcarbinol was obtained. Yield 72.1% Reference example 2 39.3g of magnesium scraps and 400ml of ether
Add a small amount of iodine and stir. Around room temperature, about 10 in 167.8g of allyl bromide
Add dropwise and stir until the pale yellow color of iodine disappears. After cooling, the remaining allyl bromide was added dropwise over 4 hours while maintaining the temperature at 0 to 5°C, and the mixture was stirred for 30 minutes. Next, a solution prepared by dissolving 84.5 g of 5-methylfurfural in 200 ml of ether was added dropwise over 1.5 hours while maintaining the temperature at 0 to 5°C, and the mixture was stirred for an additional 1 hour while keeping it warm. 500 ml of 20% NH 4 Cl water was ice-cooled to 10°C, and the ether solution of the metal complex was poured down over 20 minutes while maintaining the temperature at 10 to 20°C. After stirring at room temperature for 1 hour, the ether layer was separated, the aqueous layer was extracted twice with 200 ml of ether, the ether layers were combined, washed with 30 ml of saturated NaHCO 3 water, dried over anhydrous MgSO 4 and concentrated under reduced pressure at 40°C. As a result, 124.3 g of oil was obtained. This was rectified at 4mmHg60~61℃, and 106.7g of 5
-Methyl-2-furyl-allyl-carbinol was obtained. Yield: 91% Reference Example 3 0.77 g of aluminum powder, 17.8 mg of HgCl 2 and a small amount of iodine are charged and heated at 150°C for 10 minutes. After cooling, 10 ml of tetrahydrofuran was charged, and 4.8 g of propargyl bromide was added dropwise at 30° C. over 4 hours, followed by stirring while keeping it warm for 1 hour. After cooling in an acetone-dry ice bath, a solution prepared by dissolving 4.6 g of 5-methylfurfural in 10 ml of tetrahydrofuran was added dropwise over 3 hours while maintaining the temperature at -10°C or lower. Next, raise the temperature to 30℃ and
After stirring for 30 minutes, cool to 0℃, add a solution of 5.3 g of NH 4 Cl in 20 ml of water over 20 minutes, and stir for 30 minutes, then reduce to 30%.
50 ml of NaCl water was added and extracted three times with 200 ml of ether. After washing the ether layer with 30 ml of saturated NaHCO3 water,
Dry with anhydrous MgSO 4 and concentrate under reduced pressure at 50 °C to 4.4
g of oil was obtained. Next, 60 g of silica gel was developed with ethyl acetate-n-hexane (2 volumes to 5 volumes), and 4.1 g
5-methyl-2-furyl-propargyl-carbinol was obtained. Yield: 65% Reference Example 4 7.3 g of magnesium scraps and 30 ml of ether are charged, a small amount of iodine is added, and the mixture is stirred at room temperature. About 10 drops of a solution of 21.3 g of methyl iodide dissolved in 40 ml of ether were added to this, and the mixture was stirred until the pale yellow color of iodine disappeared. Next, the methyl iodide solution was heated between 22°C and 35°C at 1.5°C.
The mixture was added dropwise over a period of time and stirred at room temperature for 1 hour. Then 5-
A solution of 15.4 g of methylfurfural dissolved in 60 ml of ether was added dropwise over 30 minutes, and the mixture was stirred for 1 hour at room temperature.
60 ml of saturated NH 4 Cl water was added to this over 20 minutes, and after stirring for 30 minutes, unreacted magnesium was removed through celite, the ether layer was separated, and the aqueous layer was diluted with 100 ml of ether.
Extract twice and combine the ether layers with 20 ml of saturated NaHCO 3 solution.
After washing with , it was dried over anhydrous MgSO 4 , and the solvent was distilled off under reduced pressure at 40° C. to obtain 13.5 g of an oily substance. This is 10mm
Hg, rectified at 67-69°C, 11.8 g of 5-methyl-2
-furyl-methyl-carbinol was obtained. Yield: 67% Reference Example 5 2.8 g of magnesium scraps and 12 ml of ether are charged, a small amount of iodine is added, and the mixture is stirred at room temperature. Approximately 10 drops of a solution of 8.6 g of propyl chloride dissolved in 20 ml of ether were added and stirred until the pale yellow color of iodine disappeared. Next, this propyl chloride solution was added dropwise over 2 hours.
Stirred at room temperature for 1 hour. Next, a solution prepared by dissolving 10 g of 5-methylfurfural in 50 ml of ether was added dropwise to the mixture over 1 hour, and the mixture was stirred at room temperature for 1 hour. Further, 50 ml of saturated NH 4 Cl water was added to this over 20 minutes, stirred for 30 minutes, filtered through Celite to remove unreacted magnesium, the ether layer was separated, the aqueous layer was extracted twice with 100 ml of ether, and the ether layers were combined to achieve saturation. After washing with 20 ml of NaHCO 3 solution, it was dried over anhydrous MgSO 4 and the solvent was distilled off under reduced pressure at 40° C. to obtain 12.8 g of oil. Add this to silica gel
Ethyl acetate-n-hexane (2
11.3 g of 5-methyl-2-furyl-propyl-carbinol was obtained. Yield: 81% Reference Examples 6 to 8 The same operations as in Reference Example 5 were performed using the following halogen compounds to obtain furancarbinol compounds represented by the general formula (). The results are shown below.

【表】 の内容
参考例 9 けずり状マグネシウム5.5gと粉末マグネシウ
ム5.5gとエーテル100mlを仕込み少量のヨウ素を
加えて還流下撹拌する。p−クロルベンジルクロ
リド19.3gをエーテル120mlに溶解した液を約10
滴加えてヨウ素の淡黄色が消えるまで撹拌した。 次に残りのp−クロルベンジルクロリド溶液を
5時間で滴下し1時間撹拌後5−メチルフルフラ
ール10gをエーテル50mlに溶解した液を2時間で
滴下し1時間撹拌した。次いでこれに飽和NH4Cl
水50mlを20分で加え30分撹拌後セライト過し未
反応マグネシウムを除去しエーテル層を分液し、
水層はエーテル100mlで2回抽出し、エーテル層
を合せ、飽和NaHCO3液20mlで洗浄後無水
MgSO4で乾燥し40℃減圧下に溶媒を留去して25.1
gの油状物を得た。これをシリカゲル300gを使
用して酢酸エチル−n−ヘキサン(2容対5容)
で展開し21.6gの5−メチル−2−フリル−p−
クロルベンジル−カルビノールを得た。 収率 83% 参考例 10〜11 下記のハロゲン化合物を用いて参考例9と同様
の操作を行ない一般式()で示される夫々のフ
ランカルビノール化合物を得た。 結果を以下に示す。
[Table] Contents Reference Example 9 5.5 g of shavings of magnesium, 5.5 g of powdered magnesium, and 100 ml of ether are charged, a small amount of iodine is added, and the mixture is stirred under reflux. About 10 g of p-chlorobenzyl chloride dissolved in 120 ml of ether
It was added dropwise and stirred until the pale yellow color of iodine disappeared. Next, the remaining p-chlorobenzyl chloride solution was added dropwise over 5 hours, and the mixture was stirred for 1 hour. A solution prepared by dissolving 10 g of 5-methylfurfural in 50 ml of ether was then added dropwise over 2 hours, and the mixture was stirred for 1 hour. This was then added with saturated NH 4 Cl
Add 50ml of water over 20 minutes, stir for 30 minutes, remove unreacted magnesium through Celite, and separate the ether layer.
The aqueous layer was extracted twice with 100 ml of ether, the ether layers were combined, washed with 20 ml of saturated NaHCO 3 , and then anhydrous.
Dry with MgSO 4 and evaporate the solvent under reduced pressure at 40°C.
g of oil was obtained. Using 300g of silica gel, add ethyl acetate-n-hexane (2 volumes to 5 volumes).
and 21.6 g of 5-methyl-2-furyl-p-
Chlorbenzyl-carbinol was obtained. Yield: 83% Reference Examples 10-11 Using the following halogen compounds, the same operation as in Reference Example 9 was carried out to obtain each furan carbinol compound represented by the general formula (). The results are shown below.

【表】 の内容
[Table] Contents

Claims (1)

【特許請求の範囲】 1 一般式 [式中、R1は炭素数6までのアルキル基、そ
の結合末端に不飽和結合を持たない炭素数6まで
のアルケニル基、アルキニル基または一般式
【式】で示される基を表わす。こ こにR2は水素原子、メチル基またはハロゲン原
子を表わす。] で示されるフランカルビノール化合物を水溶媒
中、マグネシウムの無機塩の存在下に処理するこ
とを特徴とする一般式 [式中、R1は前述と同じ意味を有する。] で示される3−オキソシクロペンテン化合物の製
造方法。 2 処理を20〜200℃で行なう特許請求の範囲第
1項に記載の方法。
[Claims] 1. General formula [In the formula, R 1 represents an alkyl group having up to 6 carbon atoms, an alkenyl group having up to 6 carbon atoms having no unsaturated bond at the bond end, an alkynyl group, or a group represented by the general formula [Formula]. R 2 here represents a hydrogen atom, a methyl group or a halogen atom. ] A general formula characterized in that a furancarbinol compound represented by is treated in an aqueous solvent in the presence of an inorganic salt of magnesium. [In the formula, R 1 has the same meaning as above. ] A method for producing a 3-oxocyclopentene compound. 2. The method according to claim 1, wherein the treatment is carried out at 20 to 200°C.
JP15881779A 1979-12-06 1979-12-06 Preparation of 3-oxocyclopentene compound Granted JPS5681530A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15881779A JPS5681530A (en) 1979-12-06 1979-12-06 Preparation of 3-oxocyclopentene compound
HU287680A HU186372B (en) 1979-12-06 1980-12-03 Process for producing 3-oxo-cyclopentene derivatives
DE8080107671T DE3063547D1 (en) 1979-12-06 1980-12-05 3-hydroxy-4-cyclopentenones and process for their production
EP19800107671 EP0031909B1 (en) 1979-12-06 1980-12-05 3-hydroxy-4-cyclopentenones and process for their production
DK522280A DK160294C (en) 1979-12-06 1980-12-05 METHOD OF PREPARING 3-OXYCYCLOPENTENES
US06/213,632 US4356326A (en) 1979-12-06 1980-12-05 Process for producing 3-oxocyclopentenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15881779A JPS5681530A (en) 1979-12-06 1979-12-06 Preparation of 3-oxocyclopentene compound

Publications (2)

Publication Number Publication Date
JPS5681530A JPS5681530A (en) 1981-07-03
JPS6257172B2 true JPS6257172B2 (en) 1987-11-30

Family

ID=15680006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15881779A Granted JPS5681530A (en) 1979-12-06 1979-12-06 Preparation of 3-oxocyclopentene compound

Country Status (1)

Country Link
JP (1) JPS5681530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11513058B2 (en) 2020-05-19 2022-11-29 Becton, Dickinson And Company Methods for modulating an intensity profile of a laser beam and systems for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11513058B2 (en) 2020-05-19 2022-11-29 Becton, Dickinson And Company Methods for modulating an intensity profile of a laser beam and systems for same

Also Published As

Publication number Publication date
JPS5681530A (en) 1981-07-03

Similar Documents

Publication Publication Date Title
Brueckner Synthesis of ynamides and ynol ethers via formamides and formates
JPS6139943B2 (en)
US4958033A (en) Process for preparing alcohols
JPS6257172B2 (en)
JP3407082B2 (en) Method for producing aminomethylpyridine derivative and intermediate thereof
JPS62201842A (en) Manufacture of 3-hydroxycyclopent-4-ene-1-ones
JPS6257173B2 (en)
JP3031279B2 (en) Method for producing 2-alkoxy-6- (trifluoromethyl) pyrimidin-4-ol
JPS6254417B2 (en)
JP2603284B2 (en) Intermediate of anti-hypercholesterolemic tetrazole compound
US4237069A (en) Production of alpha-hydroxy oximes
US4356326A (en) Process for producing 3-oxocyclopentenes
US4398043A (en) Process for preparing cyclopentenolones
EP0035060B1 (en) Process for preparing cyclopentenolones
US4172208A (en) 5-Bromo-5,5-dicarboxyethylvalaraldehyde diethyl acetal
JPS6254296B2 (en)
JPS6344746B2 (en)
JPS6254418B2 (en)
HU186372B (en) Process for producing 3-oxo-cyclopentene derivatives
JPH0761978B2 (en) Manufacturing method of glutaric acid derivative
SU497775A3 (en) The method of obtaining derivatives of tetrazole
JPS6254416B2 (en)
JPH0348909B2 (en)
JPH0465065B2 (en)
JPS6133012B2 (en)