JPS6257122A - Thin metallic film type magnetic recording medium - Google Patents

Thin metallic film type magnetic recording medium

Info

Publication number
JPS6257122A
JPS6257122A JP19518985A JP19518985A JPS6257122A JP S6257122 A JPS6257122 A JP S6257122A JP 19518985 A JP19518985 A JP 19518985A JP 19518985 A JP19518985 A JP 19518985A JP S6257122 A JPS6257122 A JP S6257122A
Authority
JP
Japan
Prior art keywords
magnetic
particles
recording medium
film
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19518985A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kiyokazu Toma
清和 東間
Kazuyoshi Honda
和義 本田
Taro Nanbu
太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19518985A priority Critical patent/JPS6257122A/en
Publication of JPS6257122A publication Critical patent/JPS6257122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve durability by providing nonmagnetic particles which are embedded in the surface of a magnetic layer consisting of a thin metallic film formed on a substrate and have the average grain size smaller than the film thickness of the magnetic layer to a titled medium. CONSTITUTION:The thin magnetic metallic film 2 is formed on the substrate 1 and the nonmagnetic particles 3 having the average grain size smaller than the film thickness of the layer 2 is embedded in the surface thereof. SiO2, Al2O3, SiC, etc. having the hardness higher than the hardness of the layer 2 are used for the nonmagnetic particles 3 to improve the durability of the medium. The grain size of the particles 3 is made smaller than the film thickness of the magnetic layer 2 to permit the easy embedment.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐久性の優れた金m薄膜型磁気記録媒体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gold thin film type magnetic recording medium with excellent durability.

従来の技術 磁気記録再生装置は年々高密度化しており、短波長記録
再生特性の優れた磁気記録媒体が要望されている。現在
主に使用されている、基板上に磁性粉を塗布した塗布型
磁気記録媒体は、上記要望を満足すべく特性改善がなさ
れているが、はぼ限界に近づいている。この限界を越え
るものとして、金属薄膜型磁気記録媒体が開発されつつ
ある。金属Igl型磁気記録媒体は、真空蒸者法、スパ
ッタリング法、メッキ法等により作製され、優れた短波
長記録再生特性を有する。金属IW:!型磁気記録媒体
における磁性層としては、co、 Co−Ni 、 C
o−N1−P等の面内記録用薄膜、アルイG;tCo−
Cr 、 Co−V等の垂直記録用′n膜が有望である
BACKGROUND ART Magnetic recording and reproducing devices are becoming denser every year, and there is a demand for magnetic recording media with excellent short wavelength recording and reproducing characteristics. The characteristics of coated magnetic recording media, which are currently mainly used and in which magnetic powder is coated on a substrate, have been improved to meet the above requirements, but they are approaching their limits. Metal thin film magnetic recording media are being developed to overcome this limit. The metal Igl type magnetic recording medium is manufactured by a vacuum evaporation method, a sputtering method, a plating method, etc., and has excellent short wavelength recording and reproducing characteristics. Metal IW:! The magnetic layer in the type magnetic recording medium includes co, Co-Ni, C
Thin film for in-plane recording such as o-N1-P, Aluminum G; tCo-
'n films for perpendicular recording such as Cr and Co-V are promising.

発明が解決しようとする問題点 金属薄膜型磁気記録媒体は、優れた短波長記録再生特性
を有しているが、磁気ヘッドをこの記録媒体に接触させ
て記録再生する際に傷が入り易く、耐久性が悪いという
問題点があった。
Problems to be Solved by the Invention Metal thin film magnetic recording media have excellent short-wavelength recording and reproducing characteristics, but they are easily scratched when recording and reproducing by bringing a magnetic head into contact with the recording medium. There was a problem with poor durability.

問題点を解決するための手段 上記問題点を解決するため、本発明の金[1脱型磁気記
録媒体は、基板と、この基板上に形成された金Re膜か
らなる磁性層と、この磁性層の表面にjl設された磁性
層の膜厚よりも小さい平均粒子を有する非磁性粒子とを
備えた構成としたものである。
Means for Solving the Problems In order to solve the above problems, the gold [1 demolded magnetic recording medium of the present invention has a substrate, a magnetic layer made of a gold Re film formed on the substrate, and a magnetic layer formed on the substrate. This structure includes non-magnetic particles having an average particle size smaller than the thickness of the magnetic layer provided on the surface of the layer.

作用 上記構成によれば、非磁性粒子を磁性層に埋設したので
、短波長記録再生特性を劣化させることなく、耐久性を
大幅に向上できる。
Effects According to the above configuration, since the nonmagnetic particles are embedded in the magnetic layer, durability can be greatly improved without deteriorating the short wavelength recording/reproducing characteristics.

実施例 以下、本発明の一実施例を図面に基づいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の一実施例における金属薄膜型磁気記録
媒体(以下「媒体」と称す)の断面図で、1は基板であ
り、この基板1上に金l!Iil膜磁性層2が形成され
、その表面に金属薄膜磁性112の膜厚よりも小さい平
均粒径を有する非磁性粒子3が埋め込まれている。非磁
性粒子3の材料としては、媒体の耐久性を向上させると
いう点から、金属薄膜磁性層2よりも硬度の高い、5i
02 、 A1203 。
FIG. 1 is a cross-sectional view of a metal thin film type magnetic recording medium (hereinafter referred to as "medium") in one embodiment of the present invention, where 1 is a substrate, and gold l! An Iil film magnetic layer 2 is formed, and non-magnetic particles 3 having an average grain size smaller than the film thickness of the metal thin magnetic film 112 are embedded in the surface thereof. The material for the non-magnetic particles 3 is 5i, which has a higher hardness than the metal thin film magnetic layer 2, in order to improve the durability of the medium.
02, A1203.

SiC等が適している。また非磁性粒子3の粒径を金属
薄膜磁性層2の膜厚よりも大きくすると、非磁性粒子3
を埋め込むことが困難になり、さらに金属薄膜磁性層2
へのダメージも大きくなるので、好ましくない。非磁性
粒子3の埋め込み量について次に説明する。まず、非磁
性粒子3が金属薄膜磁性1f2の表面から、どの程度用
ていることが望ましいかについて述べる。この出ている
示を第1図のようにgで表わすと、ρが30〜250人
の範囲にあることが望ましい。250Aを越えると記録
・再生時のスペースロスが大きくなってしまい、短波長
記録再生特性が優れているという、金属薄膜型磁気記録
媒体の利点が失われてしまう。30A未満になると、摩
擦係数が大きくなり、傷も入り易くなるために、Aは3
0Å以上が必要である。次に、非磁性粒子3を金属薄膜
磁性WJ2の表面から、どの程度埋め込むべきかについ
て述べる。この点については、実際に埋め込み量を変え
て媒体の耐久試験を行なった結果、非磁性粒子3の粒径
の275程度以上埋め込めば、充分な耐久性が得られる
ことが確認された。非磁性粒子3を金属薄WAin性層
2に埋め込まずに、単に表面に塗布しただけでは、磁気
ヘッドによる記録再生の際、あるいはテープ状媒体の場
合には、ポストに沿って走行する際に、非磁性粒子3が
削り取られてしまい充分な耐久性が得られない。
SiC etc. are suitable. Furthermore, when the particle size of the non-magnetic particles 3 is made larger than the film thickness of the metal thin film magnetic layer 2, the non-magnetic particles 3
It becomes difficult to embed the metal thin film magnetic layer 2.
This is not desirable as it will cause more damage to the The amount of embedded non-magnetic particles 3 will be explained next. First, it will be described how far it is desirable for the non-magnetic particles 3 to extend from the surface of the magnetic thin metal film 1f2. If this value is expressed as g as shown in FIG. 1, it is desirable that ρ be in the range of 30 to 250 people. If it exceeds 250 A, the space loss during recording and reproduction becomes large, and the advantage of the metal thin film magnetic recording medium, which is the excellent short wavelength recording and reproduction characteristics, is lost. If it is less than 30A, the coefficient of friction will increase and scratches will occur easily, so A should be 3.
A thickness of 0 Å or more is required. Next, we will discuss how far the nonmagnetic particles 3 should be embedded from the surface of the metal thin film magnetic WJ2. Regarding this point, as a result of actually conducting a durability test of the medium by changing the amount of embedding, it was confirmed that if the embedding amount is about 275 or more of the particle size of the non-magnetic particles 3, sufficient durability can be obtained. If the non-magnetic particles 3 are simply coated on the surface of the thin metal WAin layer 2 without embedding it, it will cause problems when recording and reproducing with a magnetic head or when traveling along a post in the case of a tape-shaped medium. The non-magnetic particles 3 are scraped off and sufficient durability cannot be obtained.

次に上記媒体の製造方法の一例について説明する。第2
図は圧力により非磁性粒子3を金属薄膜磁性層2に埋め
込む方法を示している。製造に際しては、まず、金[9
膜磁性層2の表面に、非磁性粒子3が分散された溶剤4
を塗布する(第2図(A))。この溶剤4中には非磁性
粒子3と金属薄膜磁性層2とを結合するための接着剤が
含まれていることが望ましい。溶剤4中の揮発成分が蒸
発した後に、第2図(B)に示すように、媒体に圧着ロ
ーラ5により圧力を加え、非磁性粒子3を金属i1膜磁
性層2の表面に埋め込む。第2図(B)における矢印は
、媒体の移動方向及び圧着ローラ5の回転方向を示す。
Next, an example of a method for manufacturing the above-mentioned medium will be described. Second
The figure shows a method of embedding nonmagnetic particles 3 into a metal thin film magnetic layer 2 using pressure. During production, gold [9
A solvent 4 in which non-magnetic particles 3 are dispersed on the surface of the magnetic film layer 2.
(Figure 2 (A)). It is desirable that the solvent 4 contains an adhesive for bonding the nonmagnetic particles 3 and the metal thin film magnetic layer 2. After the volatile components in the solvent 4 have evaporated, pressure is applied to the medium by a pressure roller 5 to embed the nonmagnetic particles 3 into the surface of the metal i1 film magnetic layer 2, as shown in FIG. 2(B). The arrows in FIG. 2(B) indicate the moving direction of the medium and the rotating direction of the pressure roller 5.

以上の方法により、第1図に示される様な媒体が得られ
る。
By the above method, a medium as shown in FIG. 1 can be obtained.

第°3図は上記媒体の別の製造方法を示しており、この
方法では、非磁性粒子3をよく知られたプラズマ溶射法
あるいは爆発溶射法によって、金属薄膜磁性層2に打ち
込む。非磁性粒子3の埋め込み量は、溶射の際に非磁性
粒子3に与える運動エネルギーによって制御出来る。な
お第3図における矢印は非磁性粒子3の飛来方向を示す
FIG. 3 shows another method of manufacturing the medium, in which non-magnetic particles 3 are implanted into the thin metal magnetic layer 2 by well-known plasma spraying or detonation spraying. The amount of embedded non-magnetic particles 3 can be controlled by the kinetic energy given to the non-magnetic particles 3 during thermal spraying. Note that the arrow in FIG. 3 indicates the flying direction of the nonmagnetic particles 3.

次に具体実施例について説明する。Next, specific examples will be described.

[具体実施例11 基板1としての膜厚5Gμlのポリイミドフィルム上に
、真空蒸着法で金属wJWi型磁性層2しての膜厚0.
2μmのco−Cr垂直磁気異方性膜を形成し、この上
に非磁性粒子3としての5i02粒子が分散された溶剤
4を塗布した。8102粒子の平均粒径は200人、C
o−Cr垂直磁気異方性膜上の5i02粒子の密度は約
30個/μゴとした。また溶剤4中には接着剤を含有さ
せた。溶剤4中の揮発成分を蒸発させた後に、第2図(
B)に示される様に、圧着ローラ5により、5i02粒
子をCo−Cr垂直磁気異方性膜の表面に埋め込ませた
。この状態で、表面荒らさ計により、媒体表面荒らさを
測定すると約70人であった。したがって、5i02粒
子の粒径の半分以上に当たる・130人程度が、Co−
Cr垂直磁気異方性膜中に埋め込まれたものと考えられ
る。以上の様に5i02粒子の埋め込まれたCo−Cr
垂直磁気異方性膜上に、潤WI層としての約80へのフ
ッ素系樹脂を塗布した。かくして得られた媒体を、フロ
ッピーディスクドライブにて、on−znnフチイトの
リングヘッドで記録・再生を行なったところ、1ooo
万パス以上の耐久性を示した。これに対し、5i02粒
子を埋め込まずに、Co−Cr垂直磁気異方性膜の上に
単にフッ素系樹脂を塗・布しただけの媒体は、上記と同
じ評価方法で、1万パスを越えると表面に傷が入り、使
用不可能となった。   −[具体実施例2] 基板1としての膜厚12μIのポリイミドフィルム上に
、真空蒸着法で膜厚0.03μII膜を形成し、さらに
この上に金属薄膜磁性層2としての膜厚0.15μIの
Co−Cr垂直磁気異方性膜を形成した。
[Specific Example 11] On a polyimide film having a thickness of 5 Gμl as a substrate 1, a metal wJWi type magnetic layer 2 was formed with a thickness of 0.5 Gμl by vacuum evaporation.
A 2 μm co-Cr perpendicular magnetic anisotropy film was formed, and a solvent 4 in which 5i02 particles as non-magnetic particles 3 were dispersed was applied thereon. The average particle size of 8102 particles is 200 people, C
The density of 5i02 particles on the o-Cr perpendicular magnetic anisotropy film was approximately 30 particles/μg. Further, the solvent 4 contained an adhesive. After evaporating the volatile components in the solvent 4, as shown in Fig. 2 (
As shown in B), 5i02 particles were embedded in the surface of the Co--Cr perpendicular magnetic anisotropic film using the pressure roller 5. In this state, the surface roughness of the medium was measured using a surface roughness meter and was found to be about 70 people. Therefore, approximately 130 people, which is more than half the particle size of 5i02 particles,
It is thought that it is embedded in the Cr perpendicular magnetic anisotropy film. As described above, Co-Cr embedded with 5i02 particles
On the perpendicular magnetic anisotropy film, a fluororesin having a thickness of about 80 mm was applied as a wet WI layer. When the thus obtained medium was recorded and played back using a floppy disk drive with an on-znn frame ring head, the result was 1ooo.
It showed durability of more than 10,000 passes. On the other hand, a medium in which fluorine-based resin is simply coated on a Co-Cr perpendicular magnetic anisotropic film without embedding 5i02 particles will exceed 10,000 passes using the same evaluation method as above. The surface was scratched, making it unusable. - [Specific Example 2] On a polyimide film with a thickness of 12 μI as the substrate 1, a film with a thickness of 0.03 μI is formed by vacuum evaporation, and on this, a film with a thickness of 0.15 μI as the metal thin film magnetic layer 2 is formed. A Co--Cr perpendicular magnetic anisotropic film was formed.

この上に具体実施例1と同様にして、平均粒径150人
の5i02粒子を約3011/μゴの密度で埋め込んだ
。なお表面荒らさ計によると、表面荒らさは約40八で
あった。以上の様に5i02粒子の埋め込まれたCo−
Cr垂直磁気異方性膜上に、プラズマ重合法により、膜
厚70人のカーボン膜を形成した。
In the same manner as in Example 1, 5i02 particles having an average particle diameter of 150 were embedded thereon at a density of about 3011/μ. According to a surface roughness meter, the surface roughness was approximately 408. As described above, Co-
A carbon film having a thickness of 70 mm was formed on the Cr perpendicular magnetic anisotropy film by plasma polymerization.

かくして得られた媒体を8Il#Iビデオデツキにかけ
てスチル再生を行なったところ、30分以上経過しても
再生出力はほとんど変化しなかった。これに対し、5i
02粒子を埋め込まずに、Co−Cr垂直磁気異方性膜
の上に単にカーボンのプラズマ重合膜を形成しただけの
媒体は、上記と同じ評価方法で、20〜30秒で表面に
傷が入り、再生出力が出なくなった。
When the medium thus obtained was used for still playback on an 8Il#I video deck, there was almost no change in the playback output even after 30 minutes or more had elapsed. On the other hand, 5i
A medium in which a carbon plasma polymerized film was simply formed on a Co-Cr perpendicular magnetic anisotropic film without embedding 02 particles was evaluated using the same evaluation method as above, and the surface was scratched in 20 to 30 seconds. , there is no playback output.

発明の効果 以上述べたごとく本発明によれば、短波長記録再生特性
を劣化させることなく、耐久性を大幅に向上させること
ができる。
Effects of the Invention As described above, according to the present invention, durability can be significantly improved without deteriorating short wavelength recording/reproducing characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における金属薄膜型磁気記録
媒体の断面図、第2図及び第3図は各々同金!a薄模型
磁気記録媒体の製造方法を説明する断面図である。 1・・・基板、2・・・金属薄膜磁性層、3・・・非磁
性粒子
FIG. 1 is a cross-sectional view of a metal thin film magnetic recording medium according to an embodiment of the present invention, and FIGS. 2 and 3 are the same metal thin film type magnetic recording medium. FIG. 3 is a cross-sectional view illustrating a method of manufacturing a thin model magnetic recording medium. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Metal thin film magnetic layer, 3...Nonmagnetic particles

Claims (1)

【特許請求の範囲】 1、基板と、この基板上に形成された金属薄膜からなる
磁性層と、この磁性層の表面に埋設された磁性層の膜厚
よりも小さい平均粒子を有する非磁性粒子とを備えた金
属薄膜型磁気記録媒体。 2、非磁性粒子は配化物である特許請求の範囲第1項記
載の金属薄膜型磁気記録媒体。 3、非磁性粒子は炭化物である特許請求の範囲第1項記
載の金属薄膜型磁気記録媒体。
[Claims] 1. A substrate, a magnetic layer made of a thin metal film formed on the substrate, and non-magnetic particles embedded in the surface of the magnetic layer and having an average particle size smaller than the thickness of the magnetic layer. A thin metal film magnetic recording medium. 2. The metal thin film type magnetic recording medium according to claim 1, wherein the nonmagnetic particles are a compound. 3. The metal thin film magnetic recording medium according to claim 1, wherein the nonmagnetic particles are carbide.
JP19518985A 1985-09-04 1985-09-04 Thin metallic film type magnetic recording medium Pending JPS6257122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19518985A JPS6257122A (en) 1985-09-04 1985-09-04 Thin metallic film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19518985A JPS6257122A (en) 1985-09-04 1985-09-04 Thin metallic film type magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6257122A true JPS6257122A (en) 1987-03-12

Family

ID=16336931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19518985A Pending JPS6257122A (en) 1985-09-04 1985-09-04 Thin metallic film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6257122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525942A (en) * 1993-08-09 1996-06-11 Oki Electric Industry Co., Ltd. LC-type dielectric filter and duplexer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525942A (en) * 1993-08-09 1996-06-11 Oki Electric Industry Co., Ltd. LC-type dielectric filter and duplexer

Similar Documents

Publication Publication Date Title
JPS6257122A (en) Thin metallic film type magnetic recording medium
JPS63152022A (en) Glass substrate for magnetic disk
JPH05282646A (en) Floating type magnetic head
JPS62246129A (en) Magnetic recoding medium
JPH0489616A (en) Magnetic disk device and magnetic disk
JPH06243451A (en) Magnetic recording medium and magnetic recorder
JP2002324313A (en) Manufacturing method of magnetic recording medium
JPH0223517A (en) Perpendicular magnetic recording medium
JPS61199233A (en) Magnetic recording medium
JP2581225B2 (en) Magnetic recording medium and method of manufacturing the same
JPS61131224A (en) Magnetic recording medium
JPH07254125A (en) Magnetic recording medium and its production
JPH08138228A (en) Magnetic recording medium, its production and magnetic recorder
JPH0268712A (en) Thin film magnetic recording medium
US6803119B2 (en) Oriented magnetic recording media on a nonmetallic substrate
JPH0319124A (en) Magnetic recording medium
JPS6126924A (en) Magnetic recording medium
JPH01320619A (en) Magnetic recording medium
JPS61230618A (en) Magnetic disk
JPH07111775B2 (en) Magnetic recording medium
JPS60224118A (en) Magnetic recording medium
JPS58115632A (en) Magnetic recording medium
JPH06325342A (en) Magnetic recording medium
JPS63136318A (en) Magnetic recording medium
JPS61240435A (en) Production of metallic thin film-type magnetic recording medium