JPS6257059B2 - - Google Patents
Info
- Publication number
- JPS6257059B2 JPS6257059B2 JP9881482A JP9881482A JPS6257059B2 JP S6257059 B2 JPS6257059 B2 JP S6257059B2 JP 9881482 A JP9881482 A JP 9881482A JP 9881482 A JP9881482 A JP 9881482A JP S6257059 B2 JPS6257059 B2 JP S6257059B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- rod
- envelope
- spiral
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 66
- 239000002184 metal Substances 0.000 claims description 66
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 10
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 3
- 238000005219 brazing Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/24—Slow-wave structures, e.g. delay systems
- H01J23/26—Helical slow-wave structures; Adjustment therefor
Landscapes
- Microwave Tubes (AREA)
Description
【発明の詳細な説明】
本発明は進行波管に用いられるらせん遅波回路
の耐電力性の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the power durability of a helical slow wave circuit used in a traveling wave tube.
らせん回路は集行波管の遅波回路として広く用
いられているが、これは他のタイプの遅波回路に
くらべて電子ビームとの結合インピーダンスが高
く、位相速度が周波数によつて殆んど変化しない
という優れた特性をもつているからである。らせ
ん遅波回路は通常、モリブデン・タングステン等
の高融点金属線をらせん状に巻回し、それを数本
の誘電体棒によつて、真空外囲器もかねる金属外
囲器内に、管軸と同心的に支持して構成されてい
る。誘電体棒は、らせん線と金属外囲器を電気的
に絶縁し、それらを同心的に支持すると共に、電
磁波がらせん遅波回路を伝送する際に生じる高周
波損失や回路内を通過する電子ビームがらせんと
衝突して生じる熱を外部に伝導する役割をする。
しかしながら、誘電体の熱伝導率は金属とくらべ
て小さい上に、らせん一誘電体棒および誘電体棒
一金属外囲器間に形成された接触部で大きな熱抵
抗が存在するために、許容電力が小さい欠点があ
る。 Spiral circuits are widely used as slow-wave circuits in concentrating wave tubes, but they have a higher coupling impedance with the electron beam than other types of slow-wave circuits, and the phase velocity varies depending on the frequency. This is because it has the excellent property of not changing. Normally, a spiral slow-wave circuit is made by winding a high-melting point metal wire such as molybdenum or tungsten in a spiral shape, and using several dielectric rods to wrap the wire around the tube axis within a metal envelope that also serves as a vacuum envelope. It is constructed by supporting concentrically. The dielectric rod electrically insulates the helical wire and the metal envelope, supports them concentrically, and protects against high-frequency loss that occurs when electromagnetic waves are transmitted through a helical slow-wave circuit, and the electron beam that passes through the circuit. It plays the role of conducting the heat generated by collision with the spiral to the outside.
However, the thermal conductivity of dielectrics is lower than that of metals, and there is a large thermal resistance at the contact areas formed between the helix and the dielectric rod and between the dielectric rod and the metal envelope, so the allowable power There is a small drawback.
らせん遅波回路の耐熱性を高め、大電力進行波
管に適用させるため、従来から種々の工夫がなさ
れている。例えば、仏国のトムソン・シー・エ
ス・エフ社では、らせん一誘電体棒および誘電体
棒−金属外囲器間を低融点金属(ろう材)で接合
し、接触部の熱抵抗を減少させる第1図に示すよ
うな構成を採用している(インターナシヨナル・
エレクトロン・デバイス・ミーテイング、1977年
12月、米国ワンシントン・デイー・シーにて開催
された著名な国際会議)。 Various efforts have been made to improve the heat resistance of helical slow-wave circuits and apply them to high-power traveling wave tubes. For example, Thomson CSF of France uses a low-melting metal (brazing metal) to connect a spiral dielectric rod and a dielectric rod to a metal envelope to reduce the thermal resistance of the contact area. The configuration shown in Figure 1 is adopted (international
Electron Device Meeting, 1977
A prestigious international conference held in December at Washington DC, USA).
また、米国のアール・シー・エー社では、らせ
んと誘電体棒の周囲を金属線で巻き、金属線と金
属外囲器間をろう材で接合した第2図に示すよう
な構成を採用している(著名雑誌、マイクロウエ
ーブ・ジヤーナル、16巻、10号、1973年10月)。
第1の方法は、金属と誘電体の熱膨脹率の差によ
つて、接合時に誘電体棒が破断することを防止す
るため、らせん・金属外囲器を可塑性の銅でつく
らなければならない。このため、機械的強度・融
点が低下して望ましくない。また、融電体棒に
は、らせんと接触するらせんピツチ毎にメタライ
ズとしなければならないので、組立に高精度が要
求されて非常に高価なものになる。一方、第2の
方法は接合を金属どおしに限つているので第1の
方法のような問題はなく、また、らせん遅波回路
の耐熱性も従来のいわゆる「スクイズ法」にくら
べ非常に改善されていて優れている。 In addition, R.C.A., Inc. in the United States has adopted the configuration shown in Figure 2, in which a metal wire is wrapped around the helix and the dielectric rod, and the metal wire and metal envelope are bonded using a brazing material. (Microwave Journal, Volume 16, Issue 10, October 1973).
In the first method, the helical metal envelope must be made of plastic copper in order to prevent the dielectric rod from breaking during bonding due to the difference in coefficient of thermal expansion between the metal and the dielectric. For this reason, mechanical strength and melting point decrease, which is undesirable. Further, since the molten rod must be metallized at each helical pitch that comes into contact with the helix, high precision is required for assembly, making it very expensive. On the other hand, the second method does not have the same problems as the first method because the bonding is limited to metals, and the heat resistance of the helical slow-wave circuit is also much higher than that of the conventional "squeeze method." Improved and better.
本発明の目的は、上記の第2の方法に、さらに
改良を加え、安価で製造しやすく、耐熱特性の優
れたらせん遅波回路を提供することにある。 An object of the present invention is to provide a helical slow-wave circuit that is inexpensive, easy to manufacture, and has excellent heat resistance characteristics by further improving the second method.
本発明によるらせん遅波回路は、高融点金属で
つくられたらせんと複数の誘電体棒とそれらの周
囲を密に巻回して固定する金属線と、らせんと同
軸的に配設され円形の内壁形状を有する金属外囲
器と、金属外囲器と金属線の外周との間の空隙に
そう入・固着された複数の金属棒から構成され、
金属外囲器・金属棒・金属線の互いの接触部分を
低融点金属で溶融接合したることを特徴としてい
る。 The helical slow-wave circuit according to the present invention includes a spiral made of a high-melting point metal, a plurality of dielectric rods, a metal wire tightly wound and fixed around them, and a circular inner wall arranged coaxially with the spiral. It is composed of a metal envelope having a shape and a plurality of metal rods inserted and fixed in the gap between the metal envelope and the outer periphery of the metal wire,
It is characterized in that the contact parts of the metal envelope, metal rod, and metal wire are melted and bonded with a low-melting point metal.
次に図面を参照して本発明の実施例について説
明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第3図は本発明によるらせん遅波回路の横断面
図を示したものである。高融点金属のタングステ
ンでつくられた、らせん1と3本のベリリア棒2
はその周囲を密に巻回したキユプロニツケル線3
によつて固定され、それらの組立体をキユプロニ
ツケルでつくられた金属外囲器4にそう入後、金
属外囲器4と金属線3の外周との間の3カ所の空
隙に、さらに3本の金属棒6をそう入し、融点が
約900℃の低融点金属5を溶融して金属線3、金
属外囲器4、金属棒6の接触部を接合してつくら
れている。金属棒6の直径は金属外囲器4と金属
線3の外周との間につくられる空隙よりもわずか
大きいので、金属棒6をそう入することによつて
金属線3の張力が増加し、らせん1とベリリア棒
2の接触状態が良くなりその間の熱抵抗が減少す
る。これによつて、第1図に示した従来の方法の
場合に匹敵する熱抵抗値が得られる。また、金属
棒6がそう入されていることによつて金属線3と
金属外囲器4の熱伝導径路が増加するので、それ
らの間の熱抵抗も減少する。これらの効果によ
り、前述の第2図に示した従来の方法によるらせ
ん遅波回路にくらべて、らせん1と金属外囲器4
の間の熱抵抗は1/2から1/5に減少し、耐電力性も
同じ比率だけ向上している。 FIG. 3 shows a cross-sectional view of a helical slow wave circuit according to the present invention. Helix 1 and three beryllia rods 2 made of tungsten, a high melting point metal.
is the Cypronic wire 3 tightly wound around it.
After placing the assembly into a metal envelope 4 made of Cypronickel, three more wires are inserted into three gaps between the metal envelope 4 and the outer periphery of the metal wire 3. The metal wire 3, the metal envelope 4, and the metal rod 6 are bonded together by melting a low melting point metal 5 having a melting point of about 900°C. Since the diameter of the metal rod 6 is slightly larger than the gap created between the metal envelope 4 and the outer periphery of the metal wire 3, the tension of the metal wire 3 is increased by inserting the metal rod 6. The contact between the helix 1 and the beryllia rod 2 is improved, and the thermal resistance therebetween is reduced. This results in thermal resistance values comparable to those of the conventional method shown in FIG. Further, since the metal rod 6 is inserted so that the heat conduction path between the metal wire 3 and the metal envelope 4 is increased, the thermal resistance between them is also reduced. Due to these effects, compared to the conventional helical slow wave circuit shown in FIG.
Thermal resistance between the two has decreased from 1/2 to 1/5, and the power durability has also improved by the same proportion.
金属棒6を使用することによつて、らせん1と
ベリリア棒2の間の接触状態を改善しているの
は、ベリリア棒2が誘電体であるため脆いので、
金属線3で巻回するときに十分な張力を加えられ
ないからである。そして、それらの組立体が金属
外囲器4の中にそう入・固着された後では、金属
線3に、さらに張力を加えてもベリリア棒2が折
れるおそれはない。 The reason why the contact condition between the helix 1 and the beryllia rod 2 is improved by using the metal rod 6 is because the beryllia rod 2 is dielectric and is brittle.
This is because sufficient tension cannot be applied when winding the metal wire 3. After these assemblies are inserted and fixed in the metal envelope 4, there is no risk that the beryllia rods 2 will break even if further tension is applied to the metal wires 3.
接合用の低融点金属5は棒状のものを使用し、
接触部の近くにそう入して水素炉あるいは真空炉
で加熱・溶融する。溶融した金属5は表面張力に
よつて接合個所のすき間を埋めるので接触部の熱
抵抗が格段に改善される。 A rod-shaped low melting point metal 5 is used for joining,
It is placed near the contact area and heated and melted in a hydrogen furnace or vacuum furnace. Since the molten metal 5 fills the gap between the joints due to surface tension, the thermal resistance of the contact area is significantly improved.
第4図に本発明の第2の実施例を示している
が、誘電体棒2および金属棒6が4本になつてい
る点を除いては第1の実施例と同様である。この
場合、らせん1と誘電体棒2との接触面積が増大
しているので、らせん遅波回路の耐熱性はさらに
向上している。 A second embodiment of the present invention is shown in FIG. 4, which is the same as the first embodiment except that there are four dielectric rods 2 and four metal rods 6. In this case, since the contact area between the helix 1 and the dielectric rod 2 is increased, the heat resistance of the helical slow wave circuit is further improved.
上述の実施例では、いづれも棒状の低融点金属
を使用しているが、金属線3および金属棒6に低
融点金属をメツキし、それを加熱・溶融してもよ
い。また、誘電体棒2が5本以上の場合に対して
も本発明を適用できる。さらに、金属棒6の断面
形状も円形に限られることはなく任意のものが可
能である。その場合、接触部が互いに適合した形
状であることが望ましいのは言うまでもない。 In the above embodiments, rod-shaped low melting point metals are used, but the metal wire 3 and the metal rod 6 may be plated with a low melting point metal and then heated and melted. Further, the present invention can also be applied to a case where there are five or more dielectric rods 2. Further, the cross-sectional shape of the metal rod 6 is not limited to a circular shape, and any shape is possible. In this case, it goes without saying that it is desirable that the contact portions have shapes that are compatible with each other.
以上説明した通り、本発明によれば製造が容易
で、耐熱性したがつて耐電力性が著しく向上した
らせん遅波回路が実現でき、それを用いて周波数
が10GHz以上で、連続出力が1KW以上のらせん形
進行波管が可能になる。 As explained above, according to the present invention, it is possible to realize a helical slow-wave circuit that is easy to manufacture, has heat resistance, and has significantly improved power durability, and uses it to achieve a frequency of 10 GHz or more and a continuous output of 1 KW or more. A spiral traveling wave tube becomes possible.
第1図、第2図は耐電力性を改善した従来のら
せん遅波回路の横断面図、第3図は本発明による
第1の実施例の横断面図、第4図は本発明による
第2の実施例の横断面図である。
1……らせん状、2……誘電体棒、3……らせ
んと誘電体棒の周囲を巻回して固定する金属線、
4……金属外囲器、5……接合用の低融点金属、
6……金属棒。
1 and 2 are cross-sectional views of a conventional spiral slow-wave circuit with improved power durability, FIG. 3 is a cross-sectional view of a first embodiment of the present invention, and FIG. 4 is a cross-sectional view of a conventional spiral slow-wave circuit with improved power durability. FIG. 2 is a cross-sectional view of the second embodiment. 1...Spiral shape, 2...Dielectric rod, 3...Metal wire wound and fixed around the spiral and dielectric rod,
4...Metal envelope, 5...Low melting point metal for bonding,
6...Metal rod.
Claims (1)
電体棒と、それらの周囲を密に巻回して固定する
金属線と、らせんと同軸的に配設され円形の内壁
形状を有する金属外囲器と、金属外囲器と金属線
の外周との間の空隙にそう入・固着された複数の
金属棒から構成され、金属外囲器・金属棒・金属
線の互いの接触部分を低融点金属で溶融接合した
ることを特徴とするらせん遅波回路。1. A spiral made of a high-melting point metal, a plurality of dielectric rods, a metal wire tightly wound and fixed around them, and a metal outer enclosure coaxially arranged with the spiral and having a circular inner wall shape. It consists of a container and a plurality of metal rods that are inserted and fixed in the gap between the metal envelope and the outer periphery of the metal wire, and the contact parts of the metal envelope, metal rods, and metal wire are made of a low melting point. A helical slow wave circuit characterized by being fused and bonded with metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9881482A JPS58216337A (en) | 1982-06-09 | 1982-06-09 | Helical slow-wave circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9881482A JPS58216337A (en) | 1982-06-09 | 1982-06-09 | Helical slow-wave circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58216337A JPS58216337A (en) | 1983-12-16 |
JPS6257059B2 true JPS6257059B2 (en) | 1987-11-28 |
Family
ID=14229788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9881482A Granted JPS58216337A (en) | 1982-06-09 | 1982-06-09 | Helical slow-wave circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58216337A (en) |
-
1982
- 1982-06-09 JP JP9881482A patent/JPS58216337A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58216337A (en) | 1983-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3949263A (en) | Diamond brazing method for slow wave energy propagating structures | |
EP0187033B1 (en) | Magnetron with a ceramic stem having a cathode support structure | |
US3670196A (en) | Helix delay line for traveling wave devices | |
JP2594262B2 (en) | Magnetron | |
US4358704A (en) | Helix traveling wave tubes with reduced gain variation | |
JP3144989B2 (en) | High frequency device | |
JPS6257059B2 (en) | ||
US2853644A (en) | Traveling-wave tube | |
US3293478A (en) | Traveling wave tube with longitudinal recess | |
JPS5818837A (en) | Spiral delayed wave circuit | |
US3505616A (en) | Electromagnetic delay line for a travelling wave tube | |
US4855644A (en) | Crossed double helix slow-wave circuit for use in linear-beam microwave tube | |
US3286120A (en) | Velocity tapering of traveling wave tube cylindrical delay line by use of nonuniformsupport rod | |
US3387170A (en) | Stub supported stripline helical slow wave circuit for electron tube | |
RU2285310C2 (en) | High-power helical traveling-wave tube | |
JPH0372171B2 (en) | ||
JPS5846516Y2 (en) | helical traveling wave tube | |
US5210464A (en) | Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load | |
US3521115A (en) | Helix coupled impedance transformer and tubes using same | |
JPH02301938A (en) | Traveling wave tube | |
JPS6215965Y2 (en) | ||
JPH0228595Y2 (en) | ||
JPS623887Y2 (en) | ||
JPS62184739A (en) | Traveling-wave tube | |
JPS61281500A (en) | Manufacture of current introduction terminal of nuclear fuser |