JPS5818837A - Spiral delayed wave circuit - Google Patents

Spiral delayed wave circuit

Info

Publication number
JPS5818837A
JPS5818837A JP11803981A JP11803981A JPS5818837A JP S5818837 A JPS5818837 A JP S5818837A JP 11803981 A JP11803981 A JP 11803981A JP 11803981 A JP11803981 A JP 11803981A JP S5818837 A JPS5818837 A JP S5818837A
Authority
JP
Japan
Prior art keywords
metal
spiral
wave circuit
wire
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11803981A
Other languages
Japanese (ja)
Inventor
Yoshio Yuasa
湯浅 祥雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11803981A priority Critical patent/JPS5818837A/en
Publication of JPS5818837A publication Critical patent/JPS5818837A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • H01J23/26Helical slow-wave structures; Adjustment therefor

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To obtain an easy to manufacture spiral delayed wave circuit with excellent heat resistant characteristics by melting and joining a metal wire and a metal enclosure using a low-melting metal in a traveling-wave tube. CONSTITUTION:A spiral 1 composed of tungusten as a high-melting metal and three beryllia rods 2 are fixed by a cupro-nickel wire 3 whose surface is wound tightly. Their assembly body is inserted in a metal enclosure 4 made of cupro- nickel. Then a low-melting metal 5 with a melting point of approximately 900 deg.C is melted and joins the metal wire 3 and the metal enclosure 4. Since the outer shape of the metal wire 3 wound tightly and the inner wall shape of the metal enclosure 4 are fit to each other, the joining surface ranges over all surfaces of the inner wall of the metal enclosure 4. As a result, as compared with the spiral delayed wave circuit by the conventional ''squeeze method'', the heat resistance between the spiral 1 and the metal enclosure 4 is reduced one third to one tenth and resistance to power is improved only for the same ratio.

Description

【発明の詳細な説明】 本発明は進行波管に用いられるらせん遅波回路の耐電力
性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the power durability of a helical slow wave circuit used in a traveling wave tube.

らせん回路は集行波管の遅波回路として広く用いられて
いるが、これは他のタイプの遅波回路にくらべて電子ビ
ームとの結合インピーダンスが高く、位相速度が周波数
によって殆んど変化しないという優れた特性をもってい
るからである。らせん遅波回路は通常、モリブデン・タ
ングステン等の高融点金属aをらせん状に巻回し、それ
を数本の誘電体棒によって、真空外囲器もかねる金属外
囲器内に、管軸と同心的に支持して構成されている。誘
電体棒は、らせん融と金属外囲器を電気的に絶縁し、そ
れらを同心的に支持すると共に、電磁波がらせん遅波回
路を伝送する際に生じる高周波損失や回路内を通過する
電子ビームがらせんと衝央して生じる熱を外部に伝導す
る役割をする。
Spiral circuits are widely used as slow-wave circuits in concentrating wave tubes, but they have a higher coupling impedance to the electron beam than other types of slow-wave circuits, and their phase velocity hardly changes with frequency. This is because it has such excellent properties. A helical slow-wave circuit usually involves spirally winding a high-melting point metal such as molybdenum or tungsten, and wrapping it concentrically with the tube axis using several dielectric rods inside a metal envelope that also serves as a vacuum envelope. It is designed to support the system. The dielectric rod electrically insulates the helical melt and the metal envelope, supports them concentrically, and prevents high frequency loss that occurs when electromagnetic waves are transmitted through the helical slow-wave circuit and electron beams that pass through the circuit. It plays the role of conducting the heat generated by the spiral to the outside.

しかしながら、誘電体の熱伝導率は金属とくらべて小さ
い上に、らせん−誘電体棒および誘電体棒−金属外囲器
間に形成された接触部で大き彦熱抵抗が存在する九めに
、許容電力が小さい欠点がある。
However, the thermal conductivity of dielectrics is smaller than that of metals, and large thermal resistances exist at the contact areas formed between the helix and the dielectric rod and between the dielectric rod and the metal envelope. The drawback is that the allowable power is small.

らせん遅波回路の耐熱性を高め、大電力進行波管に適用
させるため、従来から種々の工夫がなされている。例え
ば、仏画のトムノン・シー・ニス・エフ社では、らせん
−誘電体棒および誘電体棒−金属外囲器間を低融点金属
(ろう材)で接合し、接触部の熱抵抗を減少させる第1
図に示すよう表構成を採用している(インターナショナ
ル・エレクトロン・デバイス・ミーティング、1977
年12月、米国ワシントン・ディー・シーにて開催され
た著名な国際会議)。
Various efforts have been made to improve the heat resistance of helical slow-wave circuits and apply them to high-power traveling wave tubes. For example, at the French painting company Thomnon C.N.F., the spiral-dielectric rod and the dielectric rod-metal envelope are joined using a low-melting metal (brazing material) to reduce the thermal resistance of the contact area. 1
The tabular structure shown in the figure is adopted (International Electron Device Meeting, 1977
A prestigious international conference held in December 2016 in Washington, D.C., USA).

また、米国のアール・シー・ニー社では、らせんと誘電
体棒の周囲を金属線で巻き、金属線と金属外囲器間をろ
う材で接合した第2図に示すような構成を採用している
(著名雑誌、マイクロウェーブ・ジャーナル、16巻、
10号、1973年10月)。第1の方法は、金属と誘
電体の熱膨膜率の差によって、接合時に誘電体棒が破断
することを防止するため、らせん・金属外囲器を可塑性
の銅でつくらなければならない。このため、機械的強度
・融点が低下して望ましくない。また、誘電体棒には、
らせんと接触するらせんピッチ毎にメタライズをしなけ
ればならないので、組立に高精度が要求されて非常に高
価なものになる。一方、第2の方法は接合を金属どおし
に限りているので第1の方法のような問題はなく、また
、らせん遅波回路の耐熱性も従来のいわゆる「スクイズ
法」′にくらぺ非常に改善されていて優れている。
Additionally, R.C.N., Inc. in the United States has adopted the configuration shown in Figure 2, in which a metal wire is wrapped around the helix and the dielectric rod, and the metal wire and metal envelope are bonded using a brazing material. (Famous magazine, Microwave Journal, vol. 16,
10, October 1973). In the first method, the spiral metal envelope must be made of plastic copper in order to prevent the dielectric rod from breaking during bonding due to the difference in coefficient of thermal expansion between the metal and the dielectric. For this reason, mechanical strength and melting point decrease, which is undesirable. In addition, the dielectric rod has
Since metallization must be applied to each helical pitch that comes into contact with the helix, high precision is required for assembly, making it very expensive. On the other hand, the second method does not have the same problems as the first method because the bonding is limited to metals, and the heat resistance of the helical slow-wave circuit is also comparable to that of the conventional "squeeze method." Very improved and excellent.

本発明の目的は、上記の第2の方法に、さらに改良を加
え、安価で製造しやすく、耐熱特性の優れたらせん遅波
回路全提供することにある。
An object of the present invention is to further improve the second method described above, and to provide a complete spiral slow-wave circuit that is inexpensive, easy to manufacture, and has excellent heat resistance characteristics.

本発明によるらせん遅波回路は、高融点金属でつくられ
たらせんと複数の誘電体棒とそれらの周囲を密に巻回し
て固定する金属線と該金属線の外周形状に適合する内壁
形状を有し、前記らせんと同軸的に配設される金属外囲
器とからなり、前記金属線と前記金属外囲器を低融点金
属で溶融接合したることt−%徴としている。
The helical slow wave circuit according to the present invention includes a spiral made of a high-melting point metal, a plurality of dielectric rods, a metal wire tightly wound and fixed around them, and an inner wall shape that matches the outer circumferential shape of the metal wire. and a metal envelope disposed coaxially with the spiral, and the metal wire and the metal envelope are fused and joined with a low melting point metal.

次に図面を参照して本発明の実施例について説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第3図は本発明によるらせん遅波回路の横断面図を示し
たものである。高融点金属のタングステンでつくられた
、らせん1と3本のべIJ IJア棒2は、その周囲金
密に巻回したキュプニッケル巌3によって固定され、そ
れらの組立体をキエプロニッケルでつくられた金属外囲
器4にそう人後、融点が約900℃の低融点金属5を溶
融して金属線3と金属外囲器40間ヲ接合している。密
に巻回σれた金属線3の外周形状と金属外囲器4の内壁
形状は互いに適合するので接合面は金9属外囲器4の内
壁全面にわたっている。、このため、従来の「スクイズ
法」によるらせん遅波回路どくらべて、らせん1と金属
外囲器40間の熱抵抗がにからに。
FIG. 3 shows a cross-sectional view of a helical slow wave circuit according to the present invention. The helix 1 and three bars 2 made of tungsten, a high-melting point metal, are fixed by a cupnickel ring 3 tightly wound with gold around them, and the assembly is made of cupnickel. After the metal envelope 4 is attached, a low melting point metal 5 having a melting point of about 900° C. is melted to join the metal wire 3 and the metal envelope 40. The outer circumferential shape of the tightly wound metal wire 3 and the inner wall shape of the metal envelope 4 match each other, so that the joint surface covers the entire inner wall of the metal envelope 4. Therefore, the thermal resistance between the helix 1 and the metal envelope 40 is lower than that of a helical slow-wave circuit using the conventional "squeeze method."

に減少し、耐電力性も同じ比率だけ向上している。, and the power durability has also improved by the same proportion.

本発明を実施するにあたって注意すべきことの一つは、
金属外囲器40内壁ヰ”精密に加工し、金属[3の外周
寸法とのクリアランスをそう人が可能な範囲で出来る限
り小さくする。このため、金属外囲器4は放電加工法の
ような精密加工法でつくられる。ま友、接合用の低融点
金属5は棒状のものを使用し、これを第4図に示す金属
外囲器4にうがたれた溝6にそう人し、水素炉あるいは
真空炉で加熱・溶融する。
One thing to note when implementing the present invention is:
The inner wall of the metal envelope 40 is precisely machined to make the clearance with the outer circumference of the metal as small as humanly possible. It is manufactured using a precision machining method.The low melting point metal 5 for joining is used in the form of a rod, which is inserted into the groove 6 cut into the metal envelope 4 shown in Fig. 4, and hydrogen Heat and melt in a furnace or vacuum furnace.

@5図に本発明の第2の実施例を示しているが、誘電体
棒2が4本になっている点を除いて第1の実施例と同様
である。この場合、らせん1と誘電体棒2との接触面積
が増大しているので、らせん遅波回路としての耐熱性は
さらに向上している。
A second embodiment of the present invention is shown in Figure 5, which is the same as the first embodiment except that the number of dielectric rods 2 is four. In this case, since the contact area between the helix 1 and the dielectric rod 2 is increased, the heat resistance as a helical slow wave circuit is further improved.

上述の実施例では、いづれも接合用の低融点金属5は棒
状のものを使用しているが、金属線3に低融点金属5金
メツキし、それを加熱・溶融してもよい。また、誘電体
棒2が5本以上の場合に11しても本発明を適用できる
In the above-described embodiments, the low melting point metal 5 for joining is used in the form of a rod, but the metal wire 3 may be plated with low melting point metal 5 gold and then heated and melted. Further, the present invention can be applied even if there are 11 dielectric rods 2 in the case of 5 or more.

以上説明した通り、本発明によれば製造が容易で、耐熱
性したがって耐電力性が著しく向上したらせん遅波回路
が実現でき−それを用いて周波数が10GHz以上で、
連続出力がIKW以上のらせん形進行波管が可能になる
As explained above, according to the present invention, it is possible to realize a helical slow wave circuit that is easy to manufacture and has significantly improved heat resistance and hence power resistance.
A spiral traveling wave tube with continuous output greater than IKW becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は耐電力性を改善した従来のらせん遅波
回路の横断面図、第3図は本発明による第1の実施例の
横断面図、第4図は本発明による金属外囲器の斜視図、
第5図は本発明による第2の実施例の横断面図である。 1・・・・・・らせん、2・・・・・・誘電体棒、3・
・・・・・らせんと誘電体棒の周囲を巻回して固定する
金属線、4・・・・・・金属外囲器、5・・・・・・接
合用の低融点金属、6・・・・・・接合用の低融点金属
棒のそう大溝。 峯1フ 沼2回
1 and 2 are cross-sectional views of a conventional helical slow-wave circuit with improved power durability, FIG. 3 is a cross-sectional view of a first embodiment of the present invention, and FIG. 4 is a cross-sectional view of a metal according to the present invention. Perspective view of the envelope;
FIG. 5 is a cross-sectional view of a second embodiment according to the invention. 1... Helix, 2... Dielectric rod, 3.
... Metal wire wound around and fixed around the helix and dielectric rod, 4 ... Metal envelope, 5 ... Low melting point metal for bonding, 6 ... ... A large groove on a low melting point metal rod for joining. Mine 1 Funuma 2 times

Claims (1)

【特許請求の範囲】[Claims] 高融点金属でつくられたらせんと、複数の誘電体棒と、
それらの周囲を密に巻回して固定する金属線と誼金属層
の外周形状に適合する内壁形状管有し、前記らせんと同
軸的に配設される金属外囲器とからな〉、前記金属線と
前記金属外囲器を低融点金属で、溶融接合したることを
特徴とするらせん遅波回路。
A spiral made of high melting point metal, multiple dielectric rods,
a metal wire tightly wound and fixed around the metal wire; and a metal envelope having an inner wall shape that matches the outer peripheral shape of the metal layer, and a metal envelope disposed coaxially with the spiral. A spiral slow wave circuit characterized in that the wire and the metal envelope are fused and bonded using a low melting point metal.
JP11803981A 1981-07-28 1981-07-28 Spiral delayed wave circuit Pending JPS5818837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11803981A JPS5818837A (en) 1981-07-28 1981-07-28 Spiral delayed wave circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11803981A JPS5818837A (en) 1981-07-28 1981-07-28 Spiral delayed wave circuit

Publications (1)

Publication Number Publication Date
JPS5818837A true JPS5818837A (en) 1983-02-03

Family

ID=14726528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11803981A Pending JPS5818837A (en) 1981-07-28 1981-07-28 Spiral delayed wave circuit

Country Status (1)

Country Link
JP (1) JPS5818837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420778A (en) * 1987-07-16 1989-01-24 Fuji Photo Optical Co Ltd Control box for tv lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420778A (en) * 1987-07-16 1989-01-24 Fuji Photo Optical Co Ltd Control box for tv lens

Similar Documents

Publication Publication Date Title
US3949263A (en) Diamond brazing method for slow wave energy propagating structures
GB1454678A (en) Interconnecting bimetallic tubes
US3612934A (en) Collector for electron tubes
US4268778A (en) Traveling wave device with unific slow wave structure having segmented dielectric support
US3610999A (en) Slow wave circuit and method of fabricating same
US6747412B2 (en) Traveling wave tube and method of manufacture
US5274304A (en) Helix type traveling wave tube structure with supporting rods covered with boron nitride or artificial diamond
JPS5818837A (en) Spiral delayed wave circuit
US2853644A (en) Traveling-wave tube
US3624678A (en) Method for making dielectric-to-metal joints for slow-wave structure assemblies
US3832593A (en) Selectively damped travelling wave tube
JPS58216337A (en) Helical slow-wave circuit
US3548345A (en) Brazed dielectric-to-metal joints for slow-wave structure assemblies
US2848645A (en) Travelling wave tubes
US3505616A (en) Electromagnetic delay line for a travelling wave tube
RU2285310C2 (en) High-power helical traveling-wave tube
US3286120A (en) Velocity tapering of traveling wave tube cylindrical delay line by use of nonuniformsupport rod
US4564788A (en) Delay line for high-performance traveling-wave tubes, in the form of a two part-tungsten and molybdenum-ring ribbon conductor
US3500534A (en) Method of making a slow-wave structure encasement
US4465987A (en) Ring-bar slow wave structure and fabrication method
JPS6215965Y2 (en)
JPS623887Y2 (en)
JPS62165836A (en) Traveling-wave tube
JPH0372171B2 (en)
JPS60258831A (en) Microwave electron tube