JPS5846516Y2 - helical traveling wave tube - Google Patents

helical traveling wave tube

Info

Publication number
JPS5846516Y2
JPS5846516Y2 JP1978134673U JP13467378U JPS5846516Y2 JP S5846516 Y2 JPS5846516 Y2 JP S5846516Y2 JP 1978134673 U JP1978134673 U JP 1978134673U JP 13467378 U JP13467378 U JP 13467378U JP S5846516 Y2 JPS5846516 Y2 JP S5846516Y2
Authority
JP
Japan
Prior art keywords
traveling wave
helical
wave tube
helix
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978134673U
Other languages
Japanese (ja)
Other versions
JPS5550553U (en
Inventor
祥雄 湯浅
俊一 木村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP1978134673U priority Critical patent/JPS5846516Y2/en
Publication of JPS5550553U publication Critical patent/JPS5550553U/ja
Application granted granted Critical
Publication of JPS5846516Y2 publication Critical patent/JPS5846516Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Description

【考案の詳細な説明】 本考案は、らせん遅波回路を具備するらせん形進行波管
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a helical traveling wave tube equipped with a helical slow wave circuit.

第1図に示す如くらせん形進行波管1は電子ビームを射
出する電子銃2、電子ビームと高周波信号が相互作用し
増幅された高周波信号が伝搬するらせん遅波回路3、遅
波回路3の中心軸にそって電子ビームを一定の形状に集
束するための磁界集束装置4、増幅に寄与し不用となっ
た電子ビームを捕獲するコレクタ5、さらには入力側よ
り高周波信号を入力する入力回路6、及び増幅された高
周波信号を取り出す出力回路7、コレクタ5で発生した
熱を放散する冷却器(図示せず)などからなる。
As shown in FIG. 1, a spiral traveling wave tube 1 includes an electron gun 2 that emits an electron beam, a helical slow-wave circuit 3 in which the electron beam and a high-frequency signal interact and the amplified high-frequency signal propagates, and a slow-wave circuit 3. A magnetic field focusing device 4 that focuses the electron beam into a certain shape along the central axis, a collector 5 that contributes to amplification and captures the electron beam that is no longer needed, and an input circuit 6 that inputs high-frequency signals from the input side. , an output circuit 7 for extracting the amplified high-frequency signal, a cooler (not shown) for dissipating heat generated in the collector 5, and the like.

さて、らせん遅波回路3は図に示す如く、らせん11と
その周囲に配置された複数本の絶縁棒12からなり、真
空外囲器8の内部に固定され、らせん11の両端はそれ
ぞれ入力回路6および゛出力回路7に接続された構造に
なっている。
Now, as shown in the figure, the helical slow wave circuit 3 consists of a helix 11 and a plurality of insulating rods 12 arranged around it, and is fixed inside the vacuum envelope 8, and both ends of the helix 11 are connected to input circuits. 6 and an output circuit 7.

進行波管の動作を安定にするため、絶縁棒12の中央付
近には高周波減衰体13が外周面に塗布され、発振防止
用減衰器を構成し、この高周波減衰体13により遅波回
路3は入力側部分と出力側部分に分離されている。
In order to stabilize the operation of the traveling wave tube, a high frequency attenuator 13 is coated on the outer peripheral surface near the center of the insulating rod 12 to constitute an oscillation prevention attenuator. It is separated into an input side part and an output side part.

らせん11の金属材料には一般に溶融点が高いホリブデ
ンやタングステンなどか゛用いられている。
The metal material for the spiral 11 is generally a material having a high melting point, such as hollybdenum or tungsten.

入力回路6より入力された高周波信号はらせん11上を
伝搬する間に、電子銃2から射出され、磁界集束装置4
によって集束、成形された電子ビームと相互作用を行な
い増幅されて出力回路7より外部回路(図示せず)に出
力される。
The high frequency signal inputted from the input circuit 6 is emitted from the electron gun 2 while propagating on the spiral 11, and is transmitted to the magnetic field focusing device 4.
It interacts with the focused and shaped electron beam, is amplified, and is output from the output circuit 7 to an external circuit (not shown).

らせん11に沿って高周波信号が増幅される様子を第2
図に示しているが、らせん11上の高周波電力は、高周
波減衰体13でいったん減衰された後、距離と共に指数
関数的に増大し、やがて飽和に達する。
The second diagram shows how the high frequency signal is amplified along the spiral 11.
As shown in the figure, the high frequency power on the spiral 11 is once attenuated by the high frequency attenuator 13, and then increases exponentially with distance, and eventually reaches saturation.

第2図には高周波電力と共に、絶縁棒の誘電体損失およ
びらせん11内表皮効果(skin effect)に
よりらせん11上で生じる高周波損失の距離に対する特
性も同時に示しているが、高周波損失は高周波減衰体1
3を境にして高周波電力レベルの大きい出力側部分、そ
のなかでも出力端から数波長の部分で生じることがわか
る。
In addition to the high-frequency power, Figure 2 also shows the characteristics of the high-frequency loss generated on the helix 11 due to the dielectric loss of the insulating rod and the skin effect within the helix 11 versus distance. 1
3, it can be seen that the high frequency power level is generated in the output side portion where the high frequency power level is high, especially in the portion several wavelengths from the output end.

高周波損失は直流エネルギーから高周波エネルギーへの
実質的な変換効率を低下させるだけでなく、発生した熱
のためにらせん11が加熱されらせん11内の吸蔵ガス
が管内へ放出されて管内の真空度が劣化し雑音増加をも
たらし、さらには管球の寿命を低下させる。
High-frequency loss not only reduces the actual conversion efficiency from DC energy to high-frequency energy, but also the generated heat heats the helix 11 and releases the occluded gas in the helix 11 into the tube, reducing the vacuum inside the tube. This causes deterioration, increases noise, and further shortens the life of the tube.

従来、前記の高周波損失を低減する方法としてモリブチ
゛ンを基材として金メッキまたは銅メッキを表面に施し
た細線を用いてらせん11の全体を製作する方法があっ
た。
Conventionally, as a method for reducing the above-mentioned high frequency loss, there has been a method of manufacturing the entire spiral 11 using a thin wire whose surface is plated with gold or copper using molybutton as a base material.

確かにこのようにすれば表1より明らがなようにらせん
11の表面の電気抵抗が下り、表皮効果が少なくなり、
高周波損失が低減される。
It is true that by doing this, as is clear from Table 1, the electrical resistance of the surface of the helix 11 decreases, and the skin effect decreases.
High frequency loss is reduced.

そのため結果、単位長当りの利得が上ると共に進行波管
の効率が改善される利点があった。
As a result, there were advantages in that the gain per unit length was increased and the efficiency of the traveling wave tube was improved.

しかしながら溶融点の低い銅・金がらせん11の全表面
にわたり、メッキされているので、らせん遅波回路3の
許容電力(らせん金属がスパッタを起こさない最大許容
遅波回路電流×遅波回路電圧)を大きくとれないという
欠点があった。
However, since the entire surface of the helix 11 is plated with copper and gold, which have low melting points, the allowable power of the helical slow-wave circuit 3 (maximum allowable slow-wave circuit current without sputtering of the helical metal x slow-wave circuit voltage) The disadvantage was that it was not possible to obtain a large value.

即ち、電子銃2から射出された電子ビームがらせん遅波
回路3に局部的に衝突した場合などには、らせん遅波回
路3の温度が局部的に上昇し、らせん11にメッキされ
ている溶融点の低い金属材料が絶縁棒12の表面にスパ
ッタし、その部分で高周波が反射され、結果的に高周波
増幅作用が低減し、高周波出力が低下する。
That is, when the electron beam emitted from the electron gun 2 locally collides with the helical slow-wave circuit 3, the temperature of the helical slow-wave circuit 3 locally increases, causing the melt plated on the helix 11 to rise. The metal material with low points sputters on the surface of the insulating rod 12, and the high frequency waves are reflected at that part, resulting in a reduction in the high frequency amplification effect and a decrease in the high frequency output.

本考案は、このような欠点を除去しようとするものであ
り、高周波損失が遅波回路の最も出力側の部分、なかで
も出力端から数波長の部分で殆んど発生していること、
および電子ビームの遅波回路への衝突は入力端で起こり
やすく、さらにこの部分は熱容量が小さいので最もスパ
ッタしやすいことに着目し、高周波減衰体を境にして軸
方向にいくつかの部分に区分されるらせん遅波回路の最
も出力側部分のらせん表面に電気抵抗がらせん基材より
小さい金属のメッキを施こすことによって、高周波損失
を低減し効率を改善したらせん形進行波管を提供するこ
とにある。
The present invention aims to eliminate such drawbacks, and it is based on the fact that most of the high frequency loss occurs in the part closest to the output side of the slow wave circuit, especially in the part several wavelengths from the output end.
Furthermore, we focused on the fact that the electron beam collides with the slow-wave circuit more easily at the input end, and that this part is most prone to sputtering due to its small heat capacity, and divided it into several parts in the axial direction with the high-frequency attenuator as the boundary. To provide a helical traveling wave tube that reduces high frequency loss and improves efficiency by plating the helical surface of the most output side part of a helical slow wave circuit with a metal whose electrical resistance is smaller than that of the helical base material. It is in.

以下図面を参照して本考案の実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

本考案に係わるらせん形進行波管は第1図に示すものと
同様な構成をしているが、モリブデンを基材とするらせ
ん11にはその製造工程において、出力端から入力端に
向い動作中心周波数の5波長に相当する長さにわたって
、その表面に電気抵抗がモリブデンよりも小さい銅のメ
ッキが施こされている。
The helical traveling wave tube according to the present invention has a structure similar to that shown in FIG. The surface is plated with copper, which has a lower electrical resistance than molybdenum, over a length corresponding to five wavelengths.

すなわち第3図に示すように巻芯14に所定のピッチで
巻かれたらせん11は化学処理と熱処理が於こされた後
、5波長に相当する長さだけ巻芯からずらせて、この部
分だけメッキ処理槽の中に入れられて表面に数μの銅メ
ッキ15が於こされる。
In other words, as shown in Fig. 3, the helix 11 wound around the winding core 14 at a predetermined pitch is subjected to chemical treatment and heat treatment, then shifted from the winding core by a length corresponding to five wavelengths, and only this portion is removed. It is placed in a plating bath, and a few μm of copper plating 15 is applied to the surface.

らせん11の出力側部分にらせん11の基材金属より電
気抵抗が小さい銅メッキ15を施した場合の進行波管の
高周波出力改善について11G東進行波管(らせん内径
:1.4φ、線径:0.2φ、らせん材料:モリブデン
、らせん長:150mm、らせん電圧:4kV、電子ヒ
ーム電流:40mA)について計算を行なった。
About improving the high frequency output of a traveling wave tube when the output side portion of the helix 11 is coated with copper plating 15, which has a lower electrical resistance than the base metal of the helix 11. 11G east traveling wave tube (helix inner diameter: 1.4φ, wire diameter: 0.2φ, helical material: molybdenum, helical length: 150 mm, helical voltage: 4 kV, and electron beam current: 40 mA).

この結果は表2に示すように、出力端から動作中心周波
数のほぼ5波長に相当する長さのらせん表面に局部的に
銅メッキ15を施せば、らせんの全長にわたり銅メッキ
の施されているものとほぼ等しい進行波管の出力改善が
得られることがわかった。
As shown in Table 2, this result shows that if copper plating 15 is applied locally to the helical surface with a length corresponding to approximately 5 wavelengths of the operating center frequency from the output end, copper plating will be applied over the entire length of the helix. It is found that the output improvement of the traveling wave tube is almost equal to that of the traveling wave tube.

また実験によって、5波長に相当する長さに銅メッキを
施すことで十分進行波管の出力改善、別の云い方をすれ
ば効率改善を計ることが出来ることを確認した。
Furthermore, through experiments, it was confirmed that by applying copper plating to a length corresponding to five wavelengths, it was possible to sufficiently improve the output of the traveling wave tube, or in other words, to improve the efficiency.

一般に進行波管のらせん11の全長は動作中心周波数の
波長に換算して30〜40波長の長さであり、モリブデ
ンを基材とするらせん11において全長の1/6〜1/
8の程度の長さに銅メッキを施したもので、らせん11
の出力側の高周波損失を低減出来て、進行波管の効率が
10%程度改善される。
Generally, the total length of the helix 11 of a traveling wave tube is 30 to 40 wavelengths in terms of the wavelength of the operating center frequency, and in the case of a molybdenum-based helix 11, the total length is 1/6 to 1/6 of the total length.
Copper plating is applied to the length of 8, and the spiral 11
The high frequency loss on the output side of the tube can be reduced, and the efficiency of the traveling wave tube can be improved by about 10%.

この場合らせん11の5/6〜7/8の長さの部分は、
銅メッキされていない部分でありしかも最もスパッタし
やすい入力端近くのらせん11の部分はメッキされてい
ないので、らせん遅波回路3の許容電力の低下は極めて
小さい。
In this case, the length of the helix 11 from 5/6 to 7/8 is
Since the portion of the helix 11 near the input end, which is not copper-plated and is most prone to sputtering, is not plated, the drop in allowable power of the helical slow-wave circuit 3 is extremely small.

また、らせん11は熱処理後、局部的にメッキが施され
るので熱処理温度はメッキ材となる銅や、金の溶融点温
度に制約されず、らせん11の材料に応じで処理するこ
とが出来、製造工程的に十分高温での熱処理が可能であ
る。
In addition, since the helix 11 is locally plated after heat treatment, the heat treatment temperature is not limited by the melting point temperature of the plating material copper or gold, and can be processed according to the material of the helix 11. Heat treatment at a sufficiently high temperature is possible in terms of the manufacturing process.

進行波管の動作時にらせん11に電子ビームが衝突して
加熱されてもらせん11からのガス発生は少ないので、
管内を高真空に維持出来、進行波管の雑音、寿命の点で
有利となる。
Even if the helix 11 is heated by an electron beam colliding with it during operation of the traveling wave tube, gas generation from the helix 11 is small.
It is possible to maintain a high vacuum inside the tube, which is advantageous in terms of noise and life of the traveling wave tube.

以上説明した通り、本考案によれば、らせん遅波回路の
許容電力を殆んど低下させることなく、高周波損失が低
減し効率が向上したらせん形進行波管が得られる。
As explained above, according to the present invention, a helical traveling wave tube with reduced high frequency loss and improved efficiency can be obtained without substantially reducing the allowable power of the helical slow wave circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はらせん形進行波管の縦断面図、第2図は軸方向
距離に対する高周波電力、高周波損失の大きさをしめず
特性図、第3図はらせんに局部的なメッキを施こす方法
をしめず斜視図である。 図において、1・・・・・・らせん形進行波管、2・・
・・・・電子銃、3・・・・・・らせん遅波回路、4・
・・・・・磁界集束装置、5・・・・・・コレクタ、6
・・・・・・入力回路、7・・・・・・出力回路、8・
・・・・・真空外囲器、11・・・・・・らせん、12
・・・・・・絶縁棒、13・・・・・・高周波減衰体、
14・・・・・・巻芯、15・・・・・・銅メッキであ
る。
Figure 1 is a longitudinal cross-sectional view of a spiral traveling wave tube, Figure 2 is a characteristic diagram showing the magnitude of high-frequency power and high-frequency loss versus axial distance, and Figure 3 is a method of applying local plating to a spiral. FIG. In the figure, 1... spiral traveling wave tube, 2...
...Electron gun, 3...Spiral slow wave circuit, 4.
...Magnetic field focusing device, 5...Collector, 6
...Input circuit, 7...Output circuit, 8.
...Vacuum envelope, 11 ... Spiral, 12
...Insulating rod, 13...High frequency attenuator,
14... Winding core, 15... Copper plating.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] らせん遅波回路を有する進行波管において、前記らせん
遅延回路の出力側の端部より進行波管の動作周波数を波
長に換算して5〜7波長に相当する長さの範囲にらせん
基材金属の電気抵抗よりも小さい抵抗を有する金属のメ
ッキを施こしたことを特徴とするらせん形進行波管。
In a traveling wave tube having a helical slow wave circuit, a helical base metal is applied from the output end of the helical delay circuit to a length range corresponding to 5 to 7 wavelengths when the operating frequency of the traveling wave tube is converted into a wavelength. A spiral traveling wave tube characterized in that it is plated with a metal having an electrical resistance smaller than the electrical resistance of the tube.
JP1978134673U 1978-09-29 1978-09-29 helical traveling wave tube Expired JPS5846516Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978134673U JPS5846516Y2 (en) 1978-09-29 1978-09-29 helical traveling wave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978134673U JPS5846516Y2 (en) 1978-09-29 1978-09-29 helical traveling wave tube

Publications (2)

Publication Number Publication Date
JPS5550553U JPS5550553U (en) 1980-04-02
JPS5846516Y2 true JPS5846516Y2 (en) 1983-10-22

Family

ID=29104279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978134673U Expired JPS5846516Y2 (en) 1978-09-29 1978-09-29 helical traveling wave tube

Country Status (1)

Country Link
JP (1) JPS5846516Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215965Y2 (en) * 1980-05-14 1987-04-22
US4513223A (en) * 1982-06-21 1985-04-23 Varian Associates, Inc. Electron tube with transverse cyclotron interaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624678A (en) * 1966-09-15 1971-11-30 Hughes Aircraft Co Method for making dielectric-to-metal joints for slow-wave structure assemblies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624678A (en) * 1966-09-15 1971-11-30 Hughes Aircraft Co Method for making dielectric-to-metal joints for slow-wave structure assemblies

Also Published As

Publication number Publication date
JPS5550553U (en) 1980-04-02

Similar Documents

Publication Publication Date Title
US4296354A (en) Traveling wave tube with frequency variable sever length
US2771565A (en) Traveling wave tubes
US4158791A (en) Helix traveling wave tubes with resonant loss
JPS5846516Y2 (en) helical traveling wave tube
US3832593A (en) Selectively damped travelling wave tube
WO2002037520A1 (en) Traveling wave tube amplifier with reduced sever related applications
US2853644A (en) Traveling-wave tube
US3200286A (en) Traveling wave amplifier tube having novel stop-band means to prevent backward wave oscillations
WO2002005306A1 (en) Tapered traveling wave tube
JPS5848766Y2 (en) helical traveling wave tube
US4282457A (en) Backward wave suppressor
US2820172A (en) High frequency amplifying device
US4377770A (en) Microwave delay line incorporating a conductor with a variable cross-section for a travelling-wave tube
US4313474A (en) Method for the manufacture of a microwave delay line and microwave delay line obtained by this method
US3940654A (en) Traveling wave tube having tapered longitudinally directed loading conductors at the output
US4465987A (en) Ring-bar slow wave structure and fabrication method
US3532924A (en) Centipede slow wave circuit and microwave tubes using same
WO1982001101A1 (en) Magnetron
JPS5864737A (en) Traveling-wave tube
JPS6217972Y2 (en)
JPS6320043Y2 (en)
US3521115A (en) Helix coupled impedance transformer and tubes using same
US3408529A (en) Helical slow wave structure for a travelling wave tube to provide heat removal from the slow wave structure
US4376908A (en) Impedance tapered dematron
JPS6326919Y2 (en)