JPS6256782B2 - - Google Patents

Info

Publication number
JPS6256782B2
JPS6256782B2 JP57212379A JP21237982A JPS6256782B2 JP S6256782 B2 JPS6256782 B2 JP S6256782B2 JP 57212379 A JP57212379 A JP 57212379A JP 21237982 A JP21237982 A JP 21237982A JP S6256782 B2 JPS6256782 B2 JP S6256782B2
Authority
JP
Japan
Prior art keywords
gel
adsorbent
sulfate
molecular weight
ldl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57212379A
Other languages
Japanese (ja)
Other versions
JPS59102436A (en
Inventor
Nobutaka Tani
Tsuneo Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57212379A priority Critical patent/JPS59102436A/en
Priority to CA000442312A priority patent/CA1221307A/en
Priority to AU21832/83A priority patent/AU571855B2/en
Priority to ZA838908A priority patent/ZA838908B/en
Priority to DE3382834T priority patent/DE3382834T3/en
Priority to AT91115793T priority patent/ATE195891T1/en
Priority to DE87100215T priority patent/DE3382723T2/en
Priority to AT87100215T priority patent/ATE97832T1/en
Priority to AT83112042T priority patent/ATE42222T1/en
Priority to EP83112042A priority patent/EP0110409B2/en
Priority to EP87100215A priority patent/EP0225867B1/en
Priority to EP91115793A priority patent/EP0464872B2/en
Priority to DE8383112042T priority patent/DE3379644D1/en
Priority to US06/557,061 priority patent/US4576928A/en
Publication of JPS59102436A publication Critical patent/JPS59102436A/en
Priority to US06/737,880 priority patent/US4637994A/en
Publication of JPS6256782B2 publication Critical patent/JPS6256782B2/ja
Priority to AU12621/88A priority patent/AU598643B2/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は血液中の有害成分の除去用の吸着体に
関する。さらに詳しくは、血液あるいは血漿、血
清中からリポ蛋白、特に低密度リポ蛋白
(LDL)を選択的に吸着除去するための吸着体に
関する。 血液中に存在するリポ蛋白のうちLDLはコレ
ステロールを多く含み、動脈硬化の原因となるこ
とが知られている。とりわけ家族性高脂血症等の
高コレステロール症では正常値の数倍のLDL値
を示し、冠動脈の硬化等をひきおこす。この治療
のため、血中LDLの低下を目的として食事療
法、プロブコール、コレスチラミン等の薬物療法
が行なわれているが効果に限度があり、副作用も
懸念されている。特に家族性高脂血症に対しては
患者の血漿を分離した後、正常血漿あるいはアル
ブミン等を成分とする補液と交換する、いわゆる
血漿交換療法が現在のところほぼ唯一の効果的な
治療法である。しかしながら周知のごとく血漿交
換療法は、1)高価な新鮮血漿あるいは血漿製剤
を用いる必要がある、2)肝炎ビールス等の感染
のおそれがある、3)有害成分のみでなく有用成
分も同時に除去してしまう等の欠点を有する。こ
れらの欠点を解消する目的で膜による有害成分の
除去が試みられているが、選択性の点で満足でき
るものはいまだ得られていない。 また同じ目的で抗原、抗体等を固定したいわゆ
る免疫吸着体を用いる試みがなされており、これ
は選択性の点ではほぼ満足できるものの、用いる
抗原、抗体の入手が困難かつ高価であるという致
命的な欠点を有する。 さらには有害成分に親和性を有する化合物(い
わゆるリガンド)を固定した、いわゆるアフイニ
テイークロマトグラフの原理による吸着体も試み
られている。これに用いるリガンドは比較的安価
で、選択性も比較的よく好都合であるが、担体に
アガロースに代表されるソフトゲルを用いている
ため、カラムに充填した場合に十分な流量を得る
のが困難であつた。すなわち近年発達した体外循
環回路を用いた血液、血漿かん流療法(いわゆる
プラズマフエレーシス等)にこれらの吸着体を用
いようとすれば、高流量を得るためにカラム形状
に特別の工夫を要し、またしばしば詰りを生ずる
ため予備のカラムを用意しておく必要があるなど
問題点が多く、安定して治療を行なえる状況には
到つていない。吸着体の流れ特性を向上させるた
めには機械強度の大きい担体を用いればよいのは
明白であるが、これらの担体を用いるとアガロー
ス等のソフトゲルに比べて吸着能力が低下するこ
とが知られている。 一方、硫酸化多糖等のポリアニオン化合物がリ
ポ蛋白と親和性を持ち、金属イオンの共存下で沈
殿を形成することが知られており〔例えばM.
Burnstein and H.R.Scholnick,Adv.in Lipid.
Res.,11,67(1973)〕、臨床分析等に用いられ
てる。しかしながらこの方法で患者の血中から
LDLを除去しようとすれば、処理しようとする
血漿に対し少くとも0.05%のポリアニオン化合物
および0.02M上の金属イオンを添加しなければな
らず、また生じた沈殿を遠心分離等の方法で分離
する必要が生じ、操作が煩雑で危険性が高く、事
実上適用不可能であつた。 本発明者らは鋭意研究の結果、特定のポーラス
ポリマーハードゲルを用い、これにリポ蛋白に親
和性を有するポリアニオン化合物を固定すること
により、安価で流れ特性がよく、かつソフトゲル
を担体に用いた場合に比し吸着能力が低下しない
除去能力に優れたリポ蛋吸着体を得、本発明に到
達した。 すなわち本発明は、球状蛋白質の排除限界分子
量が100万以上1優以下のポーラスポリマーハー
ドゲルに、リポ蛋白に親和性を有するポリアニオ
ン化合物を固定してなるリポ蛋白吸着体である。 以下詳細に本発明を説明する。 本発明に用いるに適した担体は、1)耐圧性で
あること、2)比較的大きな径の細孔を有するこ
とが必要であり、ポリマーハードゲルは本発明に
最も適した担体である。 ここでいうハードゲルとは、デキストラン、ア
ガロース、アクリルアミド等のソフトゲルに比べ
溶媒による膨潤が少なく、また圧力により変形し
にくいゲルのことをいう。ハードゲルとソフトゲ
ルは次の方法により区別することができる。すな
わち後記参考例に示したごとくゲルを円筒状カラ
ムに均一に充填し、水性液体を流した際の圧力損
失と流量の関係が、ハードゲルではほぼ直線とな
るのに対し、ソフトゲルでは圧力がある点を越え
るとゲルが変形し圧密化して流量が増加しなくな
る。本発明では、後記参考例に示したカラムを用
いた場合、少くとも0.3Kg/cm2まで上記直線関係
のあるものをハードゲルと称する。 次に要求される性質は比較的大きな径の細孔を
有することである。すなわちLDLは分子量が少
くとも100万以上といわれる巨大分子であり、こ
れを吸着除去するためにはLDLが細孔内に侵入
できることが必要である。 次にLDLが細孔内に侵入できても、細孔内に
侵入する確率がある程度大きくなければ吸着体と
しての性能は低い、すなわち移動相と固定相(細
孔内)間の分配比(固定相の濃度/移動相の濃
度)が大きいほど好ましいと考えられる。従つて
細孔径が大きい程有利と思われる。 細孔径の測定法には種々あり、水銀圧入法が最
もよく用いられているが、ポリマーハードゲルの
場合には適用できないことがある。したがつて細
孔径の目安として排除限界分子量を用いるのが適
当である。排除限界分子量とは成書(例えば波多
野博行、花井俊彦著、実験高速液体クロマトグラ
フ、化学同人)等に述べられているごとく、ゲル
浸透クロマトグラフイーにおいて細孔内に侵入で
きない(排除される)分子のうち最も小さい分子
量をもつものの分子量をいう。現象的には、排除
限界分子量以上の分子は移動相体積Vo近傍に溶
出されることから、種々の分子量の化合物を用い
て溶出体積との関係を調べれば排除限界分子量を
求めることができる。排除限界分子量は対象とす
る化合物の種類により異なることが知られてお
り、一般に球状蛋白質、デキストラン、ポリエチ
レングリコール等についてよく調べられている
が、リポ蛋白についてはほとんど調べられていな
い。従つて最も類似している球状蛋白質(ビール
スを含む)を用いて得られた値を用いるのが適当
である。 排除限界の異なる種々の担体を用いて検討した
結果、予想に反し排除限界分子量がLDLの分子
量より小さい100万程度のものでもある程度の
LDL吸着能を示し、また細孔径の大きいもの程
能力が大きいわけではなく、むしろLDL以外の
蛋白が除去されることから最適な細孔径の範囲が
存在することが明らかになつた。すなわち100万
未満の排除限界分子量を持つ担体を用いた場合は
LDLの除去量は小さく実用に耐えないが、排除
限界分子量が100万乃至数百万とLDLの分子量に
近い担体でもある程度実用に供しうる吸着体が得
られた。一方排除限界分子量とLDLの吸着量、
およびLDL以外の蛋白質の吸着(いわゆる非特
異吸着)との関係を調べると、排除限界分子量が
大きくなるにつれLDLの吸着量が増加するが、
この増加は排除限界が1000万を超えると頭打ちと
なり、一方LDL以外の蛋白、例えばIGG、IGM等
の吸着が目立つようになることがわかつた。さら
に排除限界分子量が1億以上になるとリガンドの
固定化量が減少して結果的にLDLの吸着量が減
り、非特異吸着が無視できなくなる。従つて本発
明に用いる担体の好ましい排除限界分子量は100
万以上1億以下であり、最も好ましくは300万以
上7000万以下である。 次に担体の多孔構造については表面多孔性より
も全多孔性が好ましく、空孔容積が20%以上であ
ることが好ましい。担体の形状は、粒状、繊維
状、膜状、ホローフアイバー状等任意の形状を選
ぶことができる。粒子状の担体を用いる場合、そ
の粒子径は1μ以上5000μ以下であるのが望まし
い。 さらに担体表面には固定化反応に用い得る官能
基あるいは容易に活性化し得る官能基が存在して
いると好都合である。これらの官能基の代表例と
しては、アミノ基、カルボキシル基、ヒドロキシ
ル基、チオール基、酸無水物基、サクシニルイミ
ド基、塩素基、アルデヒド基、アミド基、エポキ
シ基等があげられる。 本発明に適したポリマーハードゲルの代表例と
しては、スチレン―ジビニルベンゼン共重合体、
架橋ポリビニルアルコール、架橋ポリアクリレー
ト、架橋されたビニルエーテル―無水マレイン酸
共重合体、架橋されたスチレン―無水マレイン酸
共重合体、架橋ポリアミド等の合成高分子や多孔
質セルロースゲル等の硬質多孔体、およびこれら
の表面に多糖類、合成高分子等をコーテイングし
たもの等があげられるが、これらに限定されるわ
けではない。これらのポリマーハードゲルは単独
で用いてもよいし2種類以上混合して用いてもよ
い。 本発明に用いるに適したリポ蛋白に親和性を有
するポリアニオン化合物の代表例としては、ヘパ
リン、デキストラン硫酸、コンドロイチン硫酸、
コンドロイチンポリ硫酸、ヘパラン酸、ケラタン
硫酸、ヘパリチン硫酸、キシラン硫酸、カロニン
硫酸、セルロース硫酸、キチン硫酸、キトサン硫
酸、ペクチン硫酸、イヌリン硫酸、アルギン酸硫
酸、グリコーゲン硫酸、ポリラクトース硫酸、カ
ラゲニン硫酸、デンプン硫酸、ポリグルコース硫
酸、ラミナリン硫酸、ガラクタン硫酸、レバン硫
酸、メペサルフエート等の硫酸化多糖、リンタン
グステン酸、ポリ硫酸化アネトール、ポリビニル
アルコール硫酸、ポリリン酸等があげられる。最
も好ましい例としては、ヘパリン、デキストラン
硫酸、コンドロイチンポリ硫酸があげられる。 リポ蛋白に親和性を有する化合物(リガンド)
を担体に固定する方法としては既知の種々の方法
を用いることができる。すなわち物理的吸着法、
イオン結合法、共有結合法等である。本発明によ
る吸着体を治療に用いるには、滅菌時あるいは治
療中にリガンドが脱離しないことが重要であるの
で結合の強固な共有結合法が望ましく、イオン結
合法を用いるにしてもリガンドを共有結合的に架
橋しておくことが望ましい。また必要によりスペ
ーサーを担体とリガンドの間に導入してもよい。 リガンドの固定化量については、リガンドの性
状、活性により異なるが、有意のリポ蛋白吸着量
を得るにはカラム体積1mlあたり0.02mg以上が好
ましく、また経済性を考慮すると100mg以下が望
ましい。さらに好ましくはカラム体積1mlあたり
0.5mg以上20mg以下である。 本発明による吸着体を治療に用いるには種々の
方法がある。最も簡便な方法としては患者の血液
を体外に導出して血液バツグ等に貯め、これに本
発明の吸着体(粒子)を混合してLDLを除去し
た後、フイルターを通して吸着体(粒子)を除去
し血液を患者に戻す方法がある。この方法は複雑
な装置を必要としないが、1回の処理量が少なく
治療に時間を要し、操作が煩雑になるという欠点
を有する。次の方法は吸着体をカラムに充填し、
体外循環回路に組み込みオンラインで吸着除去を
行なうものである。処理方法には全血を直接かん
流する方法と、血液から血漿を分離した後、血漿
をカラムに通す方法がある。本発明による吸着体
は、いずれの方法にも用いることができるが、前
述のごとくオンライン処理に最も適している。 本発明による吸着体を用いてLDLを除去する
際、処理しようとする血液、あるいは血漿に多価
金属イオンを添加することにより除去効率、選択
性を向上させることが可能である。この目的に用
いる多価金属イオンとしては、カルシウム、マグ
ネシウム、バリウム、ストロンチウム等のアルカ
リ土類金属イオン、アルミニウム等の属元素イ
オン、マンガン等の属元素イオン、コバルト等
の属元素イオン等があげられる。 以下実施例により本発明をさらに詳しく説明す
る。 参考例 両端に孔径15μmのフイルターを装着したガラ
ス製円筒カラム(内径9mm、カラム長150mm)に
アガロースゲル(Biorad社製Biogel A5m、粒径
50〜100メツシユ)、ポリマーハードゲル(東洋曹
達工業(株)製トヨパールHW65、粒径50〜100μ
m、およびチツソ(株)製セルロフアインGC−700、
粒径45〜105μm)をそれぞれ均一に充填し、ペ
リスタテイツクポンプにより水を流し、流量と圧
力損失の関係を求めた。結果を図1に示す。それ
によるとポリマーハードゲルが圧力の増加にほぼ
比例して流量が増加するのに対し、アガロースゲ
ルは圧密化をひきおこし圧力を増加させても流量
が増加しないことを示している。 実施例 1 架橋アクリレートゲル(全多孔性のハードゲ
ル)であるトヨパールHW55(球状蛋白質の排除
限界分子量(以下蛋白質の排除限界と略称する)
700000、粒径、50〜100μm)、HW60(蛋白質の
排除限界1000000、粒径50〜100μm)、HW65
(蛋白質の排除限界5000000、粒径50〜100μm)、
HW75(蛋白質の排除限界50000000、粒径50〜
100μm)各10mlに飽和NaOH水溶液6ml、エピ
クロルヒドリン15mlを加え撹拌しながら50℃で2
時間反応しエポキシ化ゲルを得た。このゲルに濃
アンモニア水20mlを加え50℃で2時間撹拌しアミ
ノ基を導入した。 次にヘパリン200mgを10mlの水に溶解しPH4.5に
調整した後、これに3mlの上記アミノ基含有ゲル
を加えた。これに1―エチル―3―(ジメチルア
ミノプロピル)―カルボジイミド200mgをPHを4.5
に保ちながら添加し4℃で24時間振とうした。反
応終了後、2モル食塩溶液、0.5モル食塩溶液、
水で洗浄しヘパリン固定化ゲルを得た。固定化さ
れたヘパリンの量はそれぞれ2.2mg/ml、1.8mg/
ml、1.4mg/ml、0.8mg/mlであつた。 実施例 2 硬質セルロース多孔体(全多孔性のハードゲ
ル)、セルロフアインGC700(チツソ(株)製、蛋白
質の排除限界400000、粒径45〜105μm)、セルロ
フアインA―2(チツソ(株)製(試作品)、蛋白質
の排除限界700000、粒径45〜105μm)、セルロフ
アインA―3(チツソ(株)製(試作品)、蛋白質の
排除限界約50000000、粒径45〜105μm)をそれ
ぞれ吸引過し、各10gをとり、これに20%
NaOHを4g、ヘプタン12gを加え、さらにノニオ
ン系界面活性剤TWEEN20を1滴加え撹拌してゲ
ルを分散させた。40℃で2時間撹拌後、これにエ
ピクロルヒドリン5gを加え40℃で2時間撹拌し
た。静置後、上澄みを捨て、ゲルを水洗過して
エポキシ化ゲルを得た。これに15mlの濃アンモニ
ア水を加え40℃で1.5時間撹拌し、内容物を吸引
過、水洗してアミノ基の導入されたセルロース
ゲルを得た。 次にヘパリン200mgを10mlの水に溶解し、これ
に上記アミノ基含有ゲル3mlを加えてPH4.5に調
整した。これに1―エチル―3―(ジメチルアミ
ノプロピル)―カルボジイミド200mgをPH4.5に保
ちながら添加し、4℃で24時間振とうした。反応
終了後、2モル食塩溶液、0.5モル食塩溶液、水
で洗浄しヘパリン固定化ゲルを得た。固定化され
たヘパリン量はそれぞれ2.5mg/ml、2.2mg/ml、
1.8mg/mlであつた。 実施例 3 ヘパリンをコンドロイチンポリ硫酸にかえた他
は実施例1と同じ方法でコンドロイチンポリ硫酸
固定化トヨパールゲルHW65を得た。固定化量は
1.2mg/mlであつた。 実施例 4 セルロフアインA―3 4mlに0.5モルNaIO4
を加えて10mlとし1時間室温で撹拌後、過水洗
してアルデヒド基を導入した。次にこのゲルをPH
8のリン酸緩衝液10ml中に懸濁し、ジエチルアミ
ン50mgを加えて室温で20時間撹拌し別した。こ
れを1%NaBH4溶液10ml中に懸濁し15分間還元
後、集、洗浄してアミノ基を導入した。 次にデキストラン硫酸300mgを0.25モルNaIO4
溶液10mlに溶解し室温で4時間撹拌後、エチレン
グリコール200mgを加えて1時間撹拌する。この
溶液をPH8に調整した後、上記アミノ基含有ゲル
を懸濁し24時間撹拌した。反応終了後、ゲルを
集、水洗し、これを1%NaBH4溶液10mlに懸濁
し15分間還元し、過水洗してデキストラン硫酸
固定化セルロースゲルを得た。固定化量は0.5
mg/mlであつた。 実施例 5 実施例1〜4で合成した吸着体各1mlを試験管
にとり、これに人血漿3ml(CaCl20.02M含有)
を加えて撹拌し、20℃で15分間静置後、上澄みの
コレステロール濃度およびLDL(β―リポ蛋
白)量を測定した。結果を表1に示す。
The present invention relates to an adsorbent for removing harmful components from blood. More specifically, the present invention relates to an adsorbent for selectively adsorbing and removing lipoproteins, particularly low-density lipoproteins (LDL), from blood, plasma, or serum. Among the lipoproteins present in the blood, LDL contains a large amount of cholesterol and is known to cause arteriosclerosis. In particular, in cases of hypercholesterolemia such as familial hyperlipidemia, the LDL value is several times higher than the normal value, leading to hardening of the coronary arteries. For this treatment, dietary therapy and drug treatments such as probucol and cholestyramine are being used to lower blood LDL, but their effectiveness is limited and there are concerns about side effects. Particularly for familial hyperlipidemia, so-called plasma exchange therapy, in which the patient's plasma is separated and replaced with normal plasma or a replacement fluid containing albumin, etc., is currently almost the only effective treatment. be. However, as is well known, plasmapheresis therapy requires the following: 1) It is necessary to use expensive fresh plasma or plasma preparations, 2) There is a risk of infection with hepatitis viruses, etc., and 3) It removes not only harmful components but also useful components. It has drawbacks such as being stowed away. In order to overcome these drawbacks, attempts have been made to remove harmful components using membranes, but no membranes have been found that are satisfactory in terms of selectivity. For the same purpose, attempts have been made to use so-called immunoadsorbents on which antigens, antibodies, etc. are immobilized.Although these are mostly satisfactory in terms of selectivity, they have the fatal problem of being difficult and expensive to obtain the antigens and antibodies used. It has some disadvantages. Furthermore, adsorbents based on the principle of so-called affinity chromatography, in which compounds having an affinity for harmful components (so-called ligands) are immobilized, have also been attempted. The ligands used for this are relatively inexpensive and have relatively good selectivity, but because the carrier is a soft gel such as agarose, it is difficult to obtain a sufficient flow rate when packed in a column. It was hot. In other words, if these adsorbents are to be used in blood or plasma perfusion therapy (so-called plasmapheresis, etc.) using the recently developed extracorporeal circulation circuit, special ingenuity is required in the column shape in order to obtain a high flow rate. However, there are many problems, such as the need to prepare spare columns because they often clog, and the situation has not been reached in which stable treatment can be performed. Although it is obvious that a carrier with high mechanical strength can be used to improve the flow characteristics of an adsorbent, it is known that the use of these carriers lowers the adsorption capacity compared to soft gels such as agarose. ing. On the other hand, it is known that polyanionic compounds such as sulfated polysaccharides have an affinity for lipoproteins and form precipitates in the presence of metal ions [for example, M.
Burnstein and HR Scholnick, Adv. in Lipid.
Res., 11 , 67 (1973)] and is used for clinical analysis, etc. However, with this method, the
To remove LDL, at least 0.05% of a polyanionic compound and 0.02M or more of metal ions must be added to the plasma to be processed, and the resulting precipitate must be separated by a method such as centrifugation. However, the operation was complicated and highly dangerous, and it was virtually impossible to apply. As a result of extensive research, the present inventors have found that by using a specific porous polymer hard gel and fixing a polyanion compound that has affinity for lipoproteins to it, it is possible to achieve a low cost, good flow characteristics, and a soft gel that can be used as a carrier. The present invention has been achieved by obtaining a lipoprotein adsorbent that has excellent removal ability without decreasing its adsorption ability compared to when the lipoprotein adsorbent was used. That is, the present invention is a lipoprotein adsorbent comprising a porous polymer hard gel having an exclusion limit molecular weight of 1 million or more and 1 or less for globular proteins, and a polyanionic compound having affinity for lipoproteins fixed thereon. The present invention will be explained in detail below. A carrier suitable for use in the present invention must 1) be pressure resistant and 2) have pores with a relatively large diameter, and polymer hard gel is the most suitable carrier for the present invention. The term "hard gel" as used herein refers to a gel that swells less with solvents than soft gels such as dextran, agarose, acrylamide, etc., and is less likely to deform under pressure. Hard gels and soft gels can be distinguished by the following method. In other words, as shown in the reference example below, when gel is uniformly packed into a cylindrical column and an aqueous liquid is flowed, the relationship between pressure loss and flow rate is almost a straight line for hard gel, but for soft gel there is a pressure drop. Beyond this point, the gel deforms and becomes compacted, and the flow rate no longer increases. In the present invention, when the column shown in the reference example below is used, a gel having the above linear relationship up to at least 0.3 Kg/cm 2 is referred to as a hard gel. The next required property is to have pores with a relatively large diameter. That is, LDL is a large molecule with a molecular weight of at least 1 million or more, and in order to adsorb and remove it, it is necessary for LDL to be able to enter the pores. Next, even if LDL can enter the pores, its performance as an adsorbent will be low unless the probability of LDL entering the pores is high to some extent.In other words, the distribution ratio between the mobile phase and the stationary phase (inside the pores) is It is considered that a higher ratio (phase concentration/mobile phase concentration) is more preferable. Therefore, it seems that the larger the pore diameter is, the more advantageous it is. There are various methods for measuring pore diameter, and mercury intrusion method is the most commonly used, but it may not be applicable to polymer hard gels. Therefore, it is appropriate to use the exclusion limit molecular weight as a measure of the pore diameter. What is the exclusion limit molecular weight?As stated in books (for example, Hiroyuki Hatano and Toshihiko Hanai, Experimental High Performance Liquid Chromatography, Kagaku Doujin), the molecular weight cannot enter the pores (is excluded) in gel permeation chromatography. It refers to the molecular weight of the one with the smallest molecular weight among molecules. Phenomenologically, molecules with a molecular weight above the exclusion limit are eluted near the mobile phase volume Vo, so the exclusion limit molecular weight can be determined by examining the relationship with the elution volume using compounds of various molecular weights. It is known that the exclusion limit molecular weight varies depending on the type of target compound, and in general, it has been well investigated for globular proteins, dextran, polyethylene glycol, etc., but it has hardly been investigated for lipoproteins. Therefore, it is appropriate to use the values obtained using the most similar globular proteins (including viruses). As a result of studies using various carriers with different exclusion limits, we found that, contrary to expectations, even carriers with an exclusion limit molecular weight of about 1 million, which is smaller than the molecular weight of LDL, have a certain degree of
It has become clear that there is an optimal pore size range because it exhibits LDL adsorption ability, and the larger the pore size, the greater the ability, rather proteins other than LDL are removed. In other words, when using a carrier with an exclusion limit molecular weight of less than 1 million,
Although the amount of LDL removed was too small to be practical, an adsorbent with an exclusion limit molecular weight of 1 million to several million, which is close to the molecular weight of LDL, was able to be used to some extent for practical use. On the other hand, the exclusion limit molecular weight and the adsorption amount of LDL,
Examining the relationship between this and the adsorption of proteins other than LDL (so-called non-specific adsorption), we found that as the exclusion limit molecular weight increases, the amount of LDL adsorbed increases;
It was found that this increase reaches a plateau when the exclusion limit exceeds 10 million, while adsorption of proteins other than LDL, such as IGG and IGM, becomes noticeable. Furthermore, when the exclusion limit molecular weight exceeds 100 million, the amount of immobilized ligand decreases, resulting in a decrease in the amount of LDL adsorbed, and nonspecific adsorption cannot be ignored. Therefore, the preferred exclusion limit molecular weight of the carrier used in the present invention is 100
The number is 10,000 to 100 million, most preferably 3 million to 70 million. Next, regarding the porous structure of the carrier, total porosity is preferable to surface porosity, and it is preferable that the pore volume is 20% or more. The shape of the carrier can be selected from any shape such as granules, fibers, membranes, and hollow fibers. When a particulate carrier is used, the particle size is preferably 1 μm or more and 5000 μm or less. Furthermore, it is advantageous if a functional group that can be used in an immobilization reaction or a functional group that can be easily activated is present on the surface of the carrier. Representative examples of these functional groups include amino groups, carboxyl groups, hydroxyl groups, thiol groups, acid anhydride groups, succinylimide groups, chlorine groups, aldehyde groups, amide groups, and epoxy groups. Typical examples of polymer hard gels suitable for the present invention include styrene-divinylbenzene copolymer,
Synthetic polymers such as cross-linked polyvinyl alcohol, cross-linked polyacrylate, cross-linked vinyl ether-maleic anhydride copolymer, cross-linked styrene-maleic anhydride copolymer, cross-linked polyamide, and hard porous materials such as porous cellulose gel; Examples include, but are not limited to, those whose surfaces are coated with polysaccharides, synthetic polymers, etc. These polymer hard gels may be used alone or in combination of two or more. Representative examples of polyanionic compounds with affinity for lipoproteins suitable for use in the present invention include heparin, dextran sulfate, chondroitin sulfate,
Chondroitin polysulfate, heparanic acid, keratan sulfate, heparitin sulfate, xylan sulfate, caronine sulfate, cellulose sulfate, chitin sulfate, chitosan sulfate, pectin sulfate, inulin sulfate, alginate sulfate, glycogen sulfate, polylactose sulfate, carrageenan sulfate, starch sulfate, Examples include sulfated polysaccharides such as polyglucose sulfate, laminarin sulfate, galactan sulfate, levan sulfate, and mepesulfate, phosphotungstic acid, polysulfated anethole, polyvinyl alcohol sulfate, and polyphosphoric acid. The most preferred examples include heparin, dextran sulfate, and chondroitin polysulfate. Compounds (ligands) that have affinity for lipoproteins
Various known methods can be used for immobilizing on a carrier. i.e. physical adsorption method,
These include ionic bonding methods, covalent bonding methods, etc. In order to use the adsorbent according to the present invention for treatment, it is important that the ligand does not detach during sterilization or treatment, so a strong covalent bonding method is preferable. It is desirable to form a bond in a cross-linked manner. Furthermore, a spacer may be introduced between the carrier and the ligand if necessary. The amount of immobilized ligand varies depending on the properties and activity of the ligand, but is preferably 0.02 mg or more per ml of column volume in order to obtain a significant amount of lipoprotein adsorption, and desirably 100 mg or less in consideration of economic efficiency. More preferably, per ml of column volume
The amount is 0.5mg or more and 20mg or less. There are various ways in which the adsorbent according to the invention can be used therapeutically. The simplest method is to draw the patient's blood outside the body, store it in a blood bag, etc., mix it with the adsorbent (particles) of the present invention to remove LDL, and then pass it through a filter to remove the adsorbent (particles). There are ways to return the blood to the patient. Although this method does not require complicated equipment, it has the disadvantages that the amount of treatment per treatment is small, the treatment takes time, and the operation is complicated. The next method is to pack the adsorbent into a column and
It is installed in the extracorporeal circulation circuit and performs adsorption and removal online. Treatment methods include direct perfusion of whole blood and separation of plasma from blood and then passing the plasma through a column. Although the adsorbent according to the invention can be used in either method, it is most suitable for on-line processing as mentioned above. When removing LDL using the adsorbent according to the present invention, it is possible to improve the removal efficiency and selectivity by adding polyvalent metal ions to the blood or plasma to be treated. Examples of polyvalent metal ions used for this purpose include alkaline earth metal ions such as calcium, magnesium, barium, and strontium, genus element ions such as aluminum, genus element ions such as manganese, and genus element ions such as cobalt. . The present invention will be explained in more detail with reference to Examples below. Reference example Agarose gel (Biogel A5m manufactured by Biorad, particle size
50-100 mesh), polymer hard gel (Toyo Pearl HW65 manufactured by Toyo Soda Kogyo Co., Ltd., particle size 50-100μ)
m, and Cellulofine GC-700 manufactured by Chitsuso Co., Ltd.
(particle size: 45 to 105 μm) were uniformly filled in each tube, water was flowed through the tubes using a peristaltic pump, and the relationship between flow rate and pressure loss was determined. The results are shown in Figure 1. According to the results, the flow rate of polymer hard gel increases almost in proportion to the increase in pressure, whereas the flow rate of agarose gel does not increase even if the pressure is increased due to compaction. Example 1 Toyopearl HW55, a cross-linked acrylate gel (fully porous hard gel) (exclusion limit molecular weight for globular proteins (hereinafter abbreviated as protein exclusion limit))
700000, particle size, 50-100μm), HW60 (protein exclusion limit 1000000, particle size 50-100μm), HW65
(Protein exclusion limit 5000000, particle size 50-100μm),
HW75 (protein exclusion limit 50000000, particle size 50~
100 μm) Add 6 ml of saturated NaOH aqueous solution and 15 ml of epichlorohydrin to each 10 ml and heat at 50°C with stirring.
After a time reaction, an epoxidized gel was obtained. 20 ml of concentrated ammonia water was added to this gel and stirred at 50°C for 2 hours to introduce amino groups. Next, 200 mg of heparin was dissolved in 10 ml of water and the pH was adjusted to 4.5, and then 3 ml of the above amino group-containing gel was added thereto. Add 200 mg of 1-ethyl-3-(dimethylaminopropyl)-carbodiimide to this to bring the pH to 4.5.
The mixture was added while maintaining the temperature at 4°C, and the mixture was shaken at 4°C for 24 hours. After the reaction, 2 molar salt solution, 0.5 molar salt solution,
A heparin-immobilized gel was obtained by washing with water. The amount of immobilized heparin was 2.2 mg/ml and 1.8 mg/ml, respectively.
ml, 1.4 mg/ml, and 0.8 mg/ml. Example 2 Hard cellulose porous material (fully porous hard gel), Cellulofine GC700 (manufactured by Chitsuso Co., Ltd., protein exclusion limit 400000, particle size 45 to 105 μm), Cellulofine A-2 (manufactured by Chitsuso Co., Ltd. (prototype) ), protein exclusion limit: 700,000, particle size: 45-105 μm), Cellulofine A-3 (manufactured by Chitsuso Co., Ltd. (prototype), protein exclusion limit: approximately 5,000,000, particle size: 45-105 μm), and Take 10g and add 20% to it
4 g of NaOH and 12 g of heptane were added, and 1 drop of nonionic surfactant TWEEN20 was added and stirred to disperse the gel. After stirring at 40°C for 2 hours, 5 g of epichlorohydrin was added thereto, and the mixture was stirred at 40°C for 2 hours. After standing still, the supernatant was discarded, and the gel was washed with water to obtain an epoxidized gel. To this, 15 ml of concentrated ammonia water was added and stirred at 40°C for 1.5 hours, and the contents were filtered off by suction and washed with water to obtain a cellulose gel into which amino groups had been introduced. Next, 200 mg of heparin was dissolved in 10 ml of water, and 3 ml of the above amino group-containing gel was added thereto to adjust the pH to 4.5. To this was added 200 mg of 1-ethyl-3-(dimethylaminopropyl)-carbodiimide while maintaining the pH at 4.5, and the mixture was shaken at 4°C for 24 hours. After the reaction was completed, the gel was washed with a 2 molar salt solution, a 0.5 molar salt solution, and water to obtain a heparin-immobilized gel. The amount of immobilized heparin was 2.5 mg/ml, 2.2 mg/ml, and
It was 1.8 mg/ml. Example 3 Chondroitin polysulfate-immobilized Toyopearl gel HW65 was obtained in the same manner as in Example 1, except that chondroitin polysulfate was used instead of heparin. The amount of immobilization is
It was 1.2 mg/ml. Example 4 Cellulofine A-3 0.5 mol NaIO 4 in 4 ml
The mixture was made up to 10 ml, stirred at room temperature for 1 hour, and washed with water to introduce aldehyde groups. Next, add this gel to PH
The suspension was suspended in 10 ml of phosphate buffer (No. 8), 50 mg of diethylamine was added, stirred at room temperature for 20 hours, and separated. This was suspended in 10 ml of 1% NaBH 4 solution and reduced for 15 minutes, then collected and washed to introduce amino groups. Then dextran sulfate 300mg 0.25mol NaIO4
Dissolve in 10 ml of solution and stir at room temperature for 4 hours, then add 200 mg of ethylene glycol and stir for 1 hour. After adjusting the pH of this solution to 8, the amino group-containing gel was suspended and stirred for 24 hours. After the reaction was completed, the gel was collected and washed with water, suspended in 10 ml of 1% NaBH 4 solution, reduced for 15 minutes, and washed with water to obtain a dextran sulfate-immobilized cellulose gel. The amount of immobilization is 0.5
It was mg/ml. Example 5 1 ml of each adsorbent synthesized in Examples 1 to 4 was placed in a test tube, and 3 ml of human plasma (containing 0.02M CaCl 2 ) was added to this.
was added and stirred, and after standing at 20°C for 15 minutes, the cholesterol concentration and LDL (β-lipoprotein) amount of the supernatant were measured. The results are shown in Table 1.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図1は、参考例において各種ゲルを用いて流速
と圧力損失の関係を調べたグラフである。
FIG. 1 is a graph showing the relationship between flow rate and pressure loss using various gels in a reference example.

Claims (1)

【特許請求の範囲】 1 球状蛋白質の排除限界分子量が100万以上1
億以下のポーラスポリマーハードゲルに、リポ蛋
白に親和性を有するポリアニオン化合物を固定し
てなるリポ蛋白吸着体。 2 ポーラスポリマーハードゲルが合成高分子か
らなる特許請求の範囲第1項記載の吸着体。 3 ポーラスポリマーハードゲルが多孔質セルロ
ースゲルである特許請求の範囲第1項記載の吸着
体。 4 ポリアニオン化合物が硫酸化多糖である特許
請求の範囲第1項記載の吸着体。 5 硫酸化多糖がヘパリン、デキストラン硫酸、
コンドロイチンポリ硫酸から選ばれる少くとも1
種である特許請求の範囲第4項記載の吸着体。 6 ポリアニオン化合物の固定化量がカラム体積
1mlあたり0.02mg以上100mg以下である特許請求
の範囲第1項記載の吸着体。
[Claims] 1. Exclusion limit molecular weight of globular protein is 1 million or more.1
A lipoprotein adsorbent made by immobilizing a polyanionic compound that has an affinity for lipoproteins onto a porous polymer hard gel of less than 100 million yen. 2. The adsorbent according to claim 1, wherein the porous polymer hard gel is made of a synthetic polymer. 3. The adsorbent according to claim 1, wherein the porous polymer hard gel is a porous cellulose gel. 4. The adsorbent according to claim 1, wherein the polyanion compound is a sulfated polysaccharide. 5 Sulfated polysaccharides include heparin, dextran sulfate,
At least one selected from chondroitin polysulfate
The adsorbent according to claim 4, which is a species. 6. The adsorbent according to claim 1, wherein the amount of the polyanion compound immobilized is 0.02 mg or more and 100 mg or less per ml of column volume.
JP57212379A 1982-12-02 1982-12-02 Adsorbent body Granted JPS59102436A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP57212379A JPS59102436A (en) 1982-12-02 1982-12-02 Adsorbent body
CA000442312A CA1221307A (en) 1982-12-02 1983-11-30 Adsorbent and process for preparing the same
AU21832/83A AU571855B2 (en) 1982-12-02 1983-11-30 Adsorbent for removing harmful substances from blood
ZA838908A ZA838908B (en) 1982-12-02 1983-11-30 Absorbent and process for preparing the same
EP83112042A EP0110409B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
EP91115793A EP0464872B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
DE87100215T DE3382723T2 (en) 1982-12-02 1983-12-01 Adsorbent and process for its manufacture.
AT87100215T ATE97832T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
AT83112042T ATE42222T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
DE3382834T DE3382834T3 (en) 1982-12-02 1983-12-01 Sorbent and its production process
EP87100215A EP0225867B1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
AT91115793T ATE195891T1 (en) 1982-12-02 1983-12-01 SORBENT AGENT AND PRODUCTION PROCESS THEREOF
DE8383112042T DE3379644D1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
US06/557,061 US4576928A (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
US06/737,880 US4637994A (en) 1982-12-02 1985-05-28 Adsorbent and process for preparing the same
AU12621/88A AU598643B2 (en) 1982-12-02 1988-03-01 Adsorbent and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212379A JPS59102436A (en) 1982-12-02 1982-12-02 Adsorbent body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63249652A Division JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood

Publications (2)

Publication Number Publication Date
JPS59102436A JPS59102436A (en) 1984-06-13
JPS6256782B2 true JPS6256782B2 (en) 1987-11-27

Family

ID=16621591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212379A Granted JPS59102436A (en) 1982-12-02 1982-12-02 Adsorbent body

Country Status (2)

Country Link
JP (1) JPS59102436A (en)
ZA (1) ZA838908B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268355A (en) * 1985-05-23 1986-11-27 Kanegafuchi Chem Ind Co Ltd Lipoprotein adsorbent for external circulation treatment and its preparation
JPH0659309B2 (en) * 1985-07-23 1994-08-10 旭化成工業株式会社 Low specific gravity lipoprotein adsorption device
JP2005315666A (en) * 2004-04-28 2005-11-10 Toshihiko Hanai Sugar bonded filler and its manufacturing method
CN100455349C (en) * 2006-03-28 2009-01-28 南京赛邦医疗用品有限公司 Absorbent for removing low-density lipoprotein by utilizing blood extracorporeal circulation and preparation method thereof
US20140054227A1 (en) * 2011-03-04 2014-02-27 Dic Corporation Sugar-immobilized polymer substrate for removing virus and method for removing virus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525393A (en) * 1975-06-25 1977-01-17 Ajinomoto Kk Production of carboxy alkylation substance
JPS5493689A (en) * 1977-12-02 1979-07-24 Baylor College Medicine Resin of selectively removing antibacterial from bacteria infected sap sample and its use
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel
JPS5812656A (en) * 1981-07-17 1983-01-24 旭化成株式会社 Adsorbing material for treating recirculation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525393A (en) * 1975-06-25 1977-01-17 Ajinomoto Kk Production of carboxy alkylation substance
JPS5493689A (en) * 1977-12-02 1979-07-24 Baylor College Medicine Resin of selectively removing antibacterial from bacteria infected sap sample and its use
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel
JPS5812656A (en) * 1981-07-17 1983-01-24 旭化成株式会社 Adsorbing material for treating recirculation

Also Published As

Publication number Publication date
ZA838908B (en) 1984-07-25
JPS59102436A (en) 1984-06-13

Similar Documents

Publication Publication Date Title
EP0464872B1 (en) Adsorbent and process for preparing the same
JPH0434451B2 (en)
EP1621220B1 (en) Low density lipoprotein/fibrinogen adsorbent and adsorption apparatus capable of whole blood treatment
JPS6256782B2 (en)
JPS59193135A (en) Adsorbing body
JPS6319214B2 (en)
JPS62192172A (en) Adsorbing body
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JPH0362433B2 (en)
JPH0339736B2 (en)
JPS59186559A (en) Self-antibody and/or immunological composite adsorbing material
JP3157026B2 (en) Adsorbent for blood purification
JPH0622632B2 (en) Adsorbent and removal device
JPH11332981A (en) Method for removing low-density lipoprotein in blood
JP4141224B2 (en) Low density lipoprotein and fibrinogen adsorbent and adsorber thereof
JP2726662B2 (en) Adsorbent and removal device using the same
JPH0771632B2 (en) Adsorbent and removal device using the same
JPH0513697B2 (en)
JP2983955B2 (en) Device for removing glomerular basement membrane adhering protein
JPH04227268A (en) Manufacture of adsorbing body
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation
JPH035822B2 (en)
JPS6077769A (en) Production of adsorbing body
JPH0622624B2 (en) Regeneration method of low density lipoprotein adsorbent
JPH0611335B2 (en) Adsorbent and removal device