JPS59102436A - Adsorbent body - Google Patents

Adsorbent body

Info

Publication number
JPS59102436A
JPS59102436A JP57212379A JP21237982A JPS59102436A JP S59102436 A JPS59102436 A JP S59102436A JP 57212379 A JP57212379 A JP 57212379A JP 21237982 A JP21237982 A JP 21237982A JP S59102436 A JPS59102436 A JP S59102436A
Authority
JP
Japan
Prior art keywords
gel
lipoprotein
ldl
adsorbent
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57212379A
Other languages
Japanese (ja)
Other versions
JPS6256782B2 (en
Inventor
Nobutaka Tani
谷 ▲のぶ▼孝
Tsuneo Hayashi
林 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57212379A priority Critical patent/JPS59102436A/en
Priority to ZA838908A priority patent/ZA838908B/en
Priority to AU21832/83A priority patent/AU571855B2/en
Priority to CA000442312A priority patent/CA1221307A/en
Priority to EP91115793A priority patent/EP0464872B2/en
Priority to EP87100215A priority patent/EP0225867B1/en
Priority to US06/557,061 priority patent/US4576928A/en
Priority to DE3382834T priority patent/DE3382834T3/en
Priority to DE8383112042T priority patent/DE3379644D1/en
Priority to AT91115793T priority patent/ATE195891T1/en
Priority to EP83112042A priority patent/EP0110409B2/en
Priority to AT87100215T priority patent/ATE97832T1/en
Priority to AT83112042T priority patent/ATE42222T1/en
Priority to DE87100215T priority patent/DE3382723T2/en
Publication of JPS59102436A publication Critical patent/JPS59102436A/en
Priority to US06/737,880 priority patent/US4637994A/en
Publication of JPS6256782B2 publication Critical patent/JPS6256782B2/ja
Priority to AU12621/88A priority patent/AU598643B2/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a body for selectively adsorbing and removing lipoprotein in blood by immobilizing a polyanion compd. having affinity to lipoprotein to a specific porous polymer hard gell. CONSTITUTION:A material prepd. by immobilizing a polyanion compd. consisting of heparin, sulfated polysaccharide such as dextran sulfuric acid, chondroitin polysulfate or the like and having high affinity to lipoprotein on a porous cellulose gel having 1,000,000-100,000,000 limit mol. wt. for removal of spherical protein, such as a synthetic high polymer such as a styrene-divinyl benzene copolymer, crosslinked PVA or the like and porous cellulose gel, at 0.02-100mg for each 1ml of column volume is used as an adsorbent body for selectively adsorbing and removing the lipoprotein (LDL) in the human blood, plasma or serum. The LDL which is a cause for arteriosclerosis is adsorbed and removed selectively at a low cost and said adsorbent body is used for the treatment of the hyperlipemia.

Description

【発明の詳細な説明】 本発明は血液中の有害成分の除去用の吸着体に関する。[Detailed description of the invention] The present invention relates to an adsorbent for removing harmful components from blood.

さらに詳しくは、血液あるいは血漿、血清中からリポ蛋
白、特に低密度リポ蛋白(LDL)を選択的に吸着除去
するだめの吸着体に関する。
More specifically, the present invention relates to an adsorbent that selectively adsorbs and removes lipoproteins, particularly low-density lipoproteins (LDL), from blood, plasma, or serum.

血液中に存在するリポ蛋白のうちLDLはコレステロー
ルを多く含み、動脈硬化の原因となることが知られてい
る。とりわけ家族性高脂血症等の扁コレステロール症で
は正常値の数倍のLDL値を示し、冠動脈の硬化等をひ
きおこす。この治療のため、血中LDLの低下を目的と
して食事療法、グロブコール、コレスチラミン等の薬物
療法が行なわれているが効果に限度があり、副作用も懸
念されている。特に家族性高脂血症に対しでは患者の血
漿を分離した後、正常血漿あるいはアルブミン等を成分
とする補液と交換する、いわゆる血漿交換療法が現在の
ところほぼ唯一の効果的な治療法である。しかしながら
周知のごとく血漿交換療法は、l)高価な新鮮血漿ある
いは血漿製剤を用いる必要がある。2)肝炎ビールス等
の感染のおそれがある。3)有害成分のみでなく有用成
分も同時tζ除去してしまう等の欠点を有する。これら
の欠点を解消する目的で膜による有害成分の除去が試み
られているが、選択性の点で満足できるものはいまだ得
られていない。
Among the lipoproteins present in the blood, LDL contains a large amount of cholesterol and is known to cause arteriosclerosis. Particularly, in cases of flat cholesterol such as familial hyperlipidemia, the LDL value is several times higher than the normal value, which causes hardening of the coronary arteries. For this treatment, dietary therapy and drug therapy such as globucol and cholestyramine have been used to lower blood LDL, but their effectiveness is limited and there are concerns about side effects. Particularly for familial hyperlipidemia, so-called plasma exchange therapy, in which the patient's plasma is separated and replaced with normal plasma or a replacement fluid containing albumin, etc., is currently almost the only effective treatment. . However, as is well known, plasma exchange therapy requires the use of: l) expensive fresh plasma or plasma preparations; 2) There is a risk of infection with hepatitis viruses, etc. 3) It has the disadvantage that not only harmful components but also useful components are removed at the same time. In order to overcome these drawbacks, attempts have been made to remove harmful components using membranes, but no membranes have been found that are satisfactory in terms of selectivity.

また同じ目的で抗原、抗体等を固定したいわゆる免疫吸
着体を用いる試みがなされており、これは選択性の点で
はほぼ満足できるものの、用いる抗原、抗体の入手が困
難かつ高価であるという致命的な欠点を有する。
For the same purpose, attempts have been made to use so-called immunoadsorbents on which antigens, antibodies, etc. are immobilized.Although these are mostly satisfactory in terms of selectivity, they have the fatal problem of being difficult and expensive to obtain the antigens and antibodies used. It has some disadvantages.

さらには有害成分に親和性を有する化合物(いわゆるリ
ガンド)を固定した、いわゆるアフィニティークロマト
グラフの原理による吸着体も試みられている。これに用
いるリガンドは比較的安価で、選択性も比較的よく好都
合であるが、担体にアガロースに代表されるソフトゲル
を用いているため、カラムに充填した場合に十分な流量
を得るのが困難であった。すなわち近年発達した体外循
環回路を用いた血液、血漿かん流療法(いわゆるプラズ
マ7エレーシス等〕にこれらの吸着体を用いようとすれ
ば、筒流量を得るためにカラム形状に特別の工夫を要し
、またしばしば詰りを生ずるだめ予備のカラムを用意し
ておく必要があるなど問題点が多く、安定して治療を行
なえる状況には到っていない。吸着体の流れ特性を向上
嘔せるためには機械強度の大きい担体を用いればよいの
は明白であるが、これらの担体を用いるとアガロース等
のソフトゲルに比べて吸着能力が低下することが知られ
ている。
Furthermore, adsorbents based on the principle of so-called affinity chromatography, in which compounds (so-called ligands) that have an affinity for harmful components are immobilized, have also been attempted. The ligands used for this are relatively inexpensive and have relatively good selectivity, but because the carrier is a soft gel such as agarose, it is difficult to obtain a sufficient flow rate when packed in a column. Met. In other words, if these adsorbents are to be used in blood or plasma perfusion therapy using the extracorporeal circulation circuit that has been developed in recent years (so-called Plasma 7 Elesis, etc.), special ingenuity is required in the column shape in order to obtain a cylindrical flow rate. In addition, there are many problems such as the need to prepare a spare column due to frequent clogging, and the situation has not been reached in which stable treatment can be performed.In order to improve the flow characteristics of the adsorbent, Although it is obvious that a carrier with high mechanical strength should be used, it is known that when these carriers are used, the adsorption capacity is lower than that of soft gels such as agarose.

一方一硫酸化多糖等のポリアニオン化合物がリポ蛋白と
親和性を持ち、金属イオンの共存下で沈殿を形成するこ
とが知られており[例えばM、BurnsLein  
and  H,R,5cholnick  、Adv、
1nLipid、 Res、、 It 、67 (19
73> ]、臨床分析等に用いられている。しかしなが
らこの方法で患者の血中からLDLを除去しようとすれ
ば、処理しようとする血11c対し少くとも0.05%
のポリアニオン化合物および0.02M以上の金属イ゛
オンを添加しなければならず、また生じた沈殿を遠心分
離等の方法で分離する必要が生じ、操作が煩雑で危険性
が高く、事実上適用不可能であった。
On the other hand, it is known that polyanionic compounds such as monosulfated polysaccharides have affinity with lipoproteins and form precipitates in the coexistence of metal ions [for example, M, BurnsLein et al.
and H,R,5cholnick,Adv,
1nLipid, Res, It, 67 (19
73> ], used for clinical analysis, etc. However, if this method is used to remove LDL from the patient's blood, at least 0.05% of the blood 11c to be processed must be removed.
of a polyanion compound and metal ions of 0.02 M or more must be added, and the resulting precipitate must be separated by a method such as centrifugation, making the operation complicated and highly dangerous, making it virtually impossible to apply. It was impossible.

本発明者らは鋭意研究の結果、特定のポーラスポリマー
ハードゲルを用い、これにリポ蛋白に親和性を有するポ
リアニオン化合物を固定することにより、安価で流れ特
性がよく、かつソフトゲルを担体に用いた場合に比し吸
着能力が低下しない除去能力に優れたリポ蛋白吸着体を
得、本発明に到達した。
As a result of extensive research, the present inventors have found that by using a specific porous polymer hard gel and fixing a polyanion compound that has affinity for lipoproteins to it, it is possible to achieve a low cost, good flow characteristics, and a soft gel that can be used as a carrier. The present invention has been achieved by obtaining a lipoprotein adsorbent that has excellent removal ability without decreasing its adsorption ability compared to when the lipoprotein adsorbent was used.

すなわち本発明は、球状蛋白質の排除限界分子量が10
0万以上】優以下のポーラスポリマ=7・−ドゲルに、
リポ蛋白に親和性を有するポリアニオン化合物を固定し
てなるリポ蛋白吸着体である。
That is, in the present invention, the exclusion limit molecular weight of globular proteins is 10
00,000 or more] porous polymer of excellent or less = 7-dogel,
This is a lipoprotein adsorbent made by immobilizing a polyanionic compound that has affinity for lipoproteins.

以下詳細に本発明を説明する。The present invention will be explained in detail below.

本発明に用いるに適した担体は、 l)耐圧性であるこ
と、2)比較的大きな径の細孔を有することが必要であ
り、ボリマーノ・−ドゲルは本発明に最も適した担体で
ある。
A carrier suitable for use in the present invention must: 1) be pressure resistant; 2) have pores with a relatively large diameter; Bolimano-Dogel is the most suitable carrier for the present invention.

ここでいうハードゲルとは、デキストラン、アガロース
、アクリルアミド等のソフトゲルに比べ溶媒による膨潤
が少なく、また圧力により変形しにくいゲルのことをい
う。ハードゲルとソフトゲルは次の方法により区別する
ことができる。すなわち後記参考例に示したごとくゲル
を円筒状カラムに均一に充填し、水性液体を流した際の
圧力損失と流量の関係が、ハードゲルではほぼ直線とな
るのに対し、ソフトゲルでは圧力がある点を越えるとゲ
ルが変形し圧密化して流量が増加しなくなる。本発明で
は、少くとも0.3 kyA まで上記直線関係のある
ものをノ・−ドゲルと称する。
The term "hard gel" as used herein refers to a gel that swells less with solvents than soft gels such as dextran, agarose, acrylamide, etc., and is less likely to deform under pressure. Hard gels and soft gels can be distinguished by the following method. In other words, as shown in the reference example below, when gel is uniformly packed into a cylindrical column and an aqueous liquid is flowed, the relationship between pressure loss and flow rate is almost a straight line for hard gel, but for soft gel there is a pressure drop. Beyond this point, the gel deforms and becomes compacted, and the flow rate no longer increases. In the present invention, a substance having the above linear relationship up to at least 0.3 kyA is referred to as a no-dogel.

次に要求される性質は比較的大きな径の細孔を有するこ
とである。すなわちLDLは分子量が少くとも100万
以上といわれる巨大分子であり、これを吸着除去するた
めにはLDLが細孔内に侵入できることが必要でおる。
The next required property is to have pores with a relatively large diameter. That is, LDL is a large molecule with a molecular weight of at least 1 million or more, and in order to adsorb and remove it, it is necessary for LDL to be able to penetrate into the pores.

次l/i:LDLが細孔内に侵入できても、細孔内に侵
入する確率がある程度大きくなければ吸着体としての性
能は低い、すなわち移動相と固定相(細孔内)間の分配
比(固定相の濃度/移動相の濃゛度)が大きいほど好ま
しいと考えられる。従って組孔径が大きい程有利と思わ
れる。
Next l/i: Even if LDL can enter the pores, unless the probability of entering the pores is high to a certain extent, its performance as an adsorbent will be low, i.e. partition between the mobile phase and stationary phase (inside the pores) It is considered that the larger the ratio (stationary phase concentration/mobile phase concentration) is, the more preferable it is. Therefore, it seems that the larger the hole diameter is, the more advantageous it is.

細孔径の測定法には種々あり、水銀圧入法が最もよく用
いられているが、ポリマーハードゲルの場合には適用で
きないことがある。したがって細孔径の目安として排除
限界分子量を用いるのが適当である。排除限界分子量と
は放置(例えば波多野博行、花卉俊彦著、実験高速液体
クロマトグラフ、化学同人)等に述べられているごとく
、ゲル浸透クロマトグラフィーにおいて細孔内に侵入で
きない(排除される)分子のうち最も小さい分子量をも
つものの分子量をいう。現象的には、排除限界分子量以
上の分子は移動相体積Vo近傍に溶出されることから、
種々の分子量の化合物を用いて溶出体積との関係を調べ
れば排除限界分子量を求めることができる。排除限界分
子量は対象とする化合物の種類により異なることが知ら
れており、一般に球状蛋白質、デキストラン、ボリエテ
レノグリコール等についてよく調べられているが、リポ
蛋白についてはほとんど調べられていない。従って最も
類似している球状蛋白質(ビールスを含む)を用いて得
られた値を用いるpが適当である。
There are various methods for measuring pore diameter, and mercury intrusion method is the most commonly used, but it may not be applicable to polymer hard gels. Therefore, it is appropriate to use the exclusion limit molecular weight as a guideline for the pore diameter. The exclusion limit molecular weight is the molecular weight of molecules that cannot enter the pores (excluded) in gel permeation chromatography, as described in Hiroyuki Hatano and Toshihiko Hana, Experimental High Performance Liquid Chromatography, Kagaku Doujin. It refers to the molecular weight of the one with the smallest molecular weight. Phenomenologically, molecules with a molecular weight above the exclusion limit are eluted near the mobile phase volume Vo.
Exclusion limit molecular weight can be determined by examining the relationship with elution volume using compounds of various molecular weights. It is known that the exclusion limit molecular weight varies depending on the type of target compound, and in general, globular proteins, dextran, borieterenoglycol, etc. have been well investigated, but lipoproteins have hardly been investigated. Therefore, it is appropriate to use p using the value obtained using the most similar globular protein (including viruses).

排除限界の異なる種々の担体を用いて検討した結果、予
想に反し排除限界分子量がLDLの分子量より小さい1
00万程反のものでもある程度のLDL吸層能を示し、
また細孔径の大きいもの程能力が大きいわけではなく、
むしろLDL以外の蛋白が除去されることから最適な細
孔径の範囲が存在することが明らかになった。すなわち
100万未満の排除限界分子量を持つ担体を用いた場合
はLDLの除去賞は小さく実用に耐えないが、排除限界
分子量が100万乃至数百万とLDLの分子量に近い担
体でもある程度実用に供しうる吸着体か得られた。一方
排除限界分子量とLDLの吸着量、およびLDL以外の
蛋白質の吸着(いわゆる非特異吸層)との関係を調べる
と、排除限界分子量が太きくなるVこっれLDLの吸着
量が増加するが、この増加は排除限界が1000万を超
えると頭打ちとなり、一方LDL以外の蛋白、例えばI
GG、IGM等の吸着が目立つようになることがわかっ
た。さらに排除限界分子量が1億以上になるとリガンド
の固定化量が減少して結果的にLDLの吸着量が減り、
非特異吸着が無視できなくなる。従って本発明に用いる
相体の好ましい排除限界分子量は100万以上1億以下
であり、最も好ましくは300万以上7000万以下で
ある。
As a result of studies using various carriers with different exclusion limits, we found that, contrary to expectations, the exclusion limit molecular weight was smaller than the molecular weight of LDL1.
Even those with a resistance of about 1,000,000 ml show a certain degree of LDL absorption ability,
Also, the larger the pore size, the greater the capacity;
Rather, it has become clear that there is an optimal pore size range since proteins other than LDL are removed. In other words, when a carrier with an exclusion limit molecular weight of less than 1 million is used, the removal of LDL is too small to be practical, but even a carrier with an exclusion limit molecular weight of 1 million to several million, which is close to the molecular weight of LDL, can be put to practical use to some extent. A moist adsorbent was obtained. On the other hand, when examining the relationship between the exclusion limit molecular weight, the adsorption amount of LDL, and the adsorption of proteins other than LDL (so-called non-specific absorption layer), we find that as the exclusion limit molecular weight becomes thicker, the adsorption amount of LDL increases; This increase reaches a plateau when the exclusion limit exceeds 10 million, while proteins other than LDL, such as I
It was found that adsorption of GG, IGM, etc. became noticeable. Furthermore, when the exclusion limit molecular weight exceeds 100 million, the amount of immobilized ligand decreases, resulting in a decrease in the amount of LDL adsorbed.
Non-specific adsorption can no longer be ignored. Therefore, the exclusion limit molecular weight of the phase used in the present invention is preferably from 1 million to 100 million, most preferably from 3 million to 70 million.

次vc担体の多孔構造については表面多孔性よりも全多
孔性が好ましく、空孔容積が20%以上であることが好
ましい。担体の形状は、粒状、繊維状、膜状、ホローフ
ァイバー状等任意の形状を選ぶことができる。粒子状の
担体を用いる場合、その粒子径は1μ以上5000μ以
下であるのが望ましい。
Regarding the porous structure of the next VC carrier, total porosity is preferable to surface porosity, and the pore volume is preferably 20% or more. The shape of the carrier can be selected from any shape such as granules, fibers, membranes, and hollow fibers. When using a particulate carrier, the particle size is preferably 1 μm or more and 5000 μm or less.

さらに担体表面には固定化反応に用い得る官能基あるい
は容易に活性化し得る官能基が存在していると好都合で
ある。これらの官能基の代表例としては、アミン基、カ
ルボキシル基、ヒドロキシル基、チオール基、酸無水物
基、サクシニルイミド基、塩素基、アルデヒド基、アミ
ド基、エポキシ基等があげられる。
Furthermore, it is advantageous if a functional group that can be used in an immobilization reaction or a functional group that can be easily activated is present on the surface of the carrier. Representative examples of these functional groups include amine groups, carboxyl groups, hydroxyl groups, thiol groups, acid anhydride groups, succinylimide groups, chlorine groups, aldehyde groups, amide groups, and epoxy groups.

本発明に適したポリマーハードゲルの代表例としては、
スチレン−ジビニルベン、ゼン共重合体、架橋ポリビニ
ルアルコール、架橋ポリアクリレート、架橋されたビニ
ルエーテル−無水マレイン酸共重合体、架橋されたスチ
レノー無水マレイン酸共重合体、架橋ポリアミド等の合
成高分子や多孔質セルロースゲル等の硬質多孔体、およ
びこれらの表面に多糖類、合成高分子等をコーティング
したもの等があげられるが、これらに限定てれるわけで
はない。これらのポリマーハードゲルは単独で用いても
よいし2種類以上混合して用いてもよい。
Representative examples of polymer hard gels suitable for the present invention include:
Synthetic polymers and porous materials such as styrene-divinylbene, Zen copolymer, cross-linked polyvinyl alcohol, cross-linked polyacrylate, cross-linked vinyl ether-maleic anhydride copolymer, cross-linked styrene-maleic anhydride copolymer, cross-linked polyamide, etc. Examples include, but are not limited to, hard porous bodies such as cellulose gel, and those whose surfaces are coated with polysaccharides, synthetic polymers, etc. These polymer hard gels may be used alone or in combination of two or more.

本発明に用いるに適したリボ蛋白に親和性を有するポリ
アニオン化合物の代表例としては、ヘパ、リン、テキス
トラン硫酸、コンドロイチン硫酸、コンドロイチンポリ
硫酸、ヘパラン酸、ケラタノ硫酸、ヘハリテン硫酸、キ
シラン硫酸、カロニン硫酸、セルロース硫酸、キチン釦
凱キトサン硫酸、ペクチンは酸、イヌリン硫酸、アルギ
ン酸硫酸、グリコーゲン硫酸、ポリラクトース硫酸、−
力ラゲニン硫酸、デンプ7硫酸、ポリグルコース硫酸、
ラミナリン硫酸、ガラクタン硫酸、レバン硫酸、メペサ
ルフエート等の硫酸化多糖、リンタングステン酸、ポリ
硫酸化アネトール、ポリビニルアルコール硫酸、ポリリ
ン酸等があげられる。最も好ましい例としては、ヘバリ
ノ、デキストラン硫酸、コンドロイチンポリ硫酸があげ
られる。
Representative examples of polyanionic compounds with affinity for riboproteins suitable for use in the present invention include hepa, phosphorus, texturan sulfate, chondroitin sulfate, chondroitin polysulfate, heparanic acid, keratanosulfate, hehalitene sulfate, xylan sulfate, caronine Sulfuric acid, cellulose sulfate, chitin chitosan sulfate, pectin acid, inulin sulfate, alginate sulfate, glycogen sulfate, polylactose sulfate, -
Lagenin sulfate, starch 7 sulfate, polyglucose sulfate,
Examples include sulfated polysaccharides such as laminarin sulfate, galactan sulfate, levan sulfate, and mepesulfate, phosphotungstic acid, polysulfated anethole, polyvinyl alcohol sulfate, and polyphosphoric acid. The most preferred examples include hevarino, dextran sulfate, and chondroitin polysulfate.

リポ蛋白に親和性を有する化合物(リガンド)を担体に
固定する方法としては既知の種々の方法を用いることが
できる。すなわち物理的吸着法、イオン結合法、共有結
合法等である。本発明による吸着体を治療に用いるには
、滅菌時あるいは治療中にリガンドが脱離しないことが
重要であるので結合の強固な共有結合法が望ましく、イ
オン結合法を用いるにしてもリガンドを共有結合的に架
橋しておくことが望ましい。また必要によりスペーサー
を担体とリガンドの間に導入してもよい。
Various known methods can be used to immobilize a compound (ligand) that has affinity for lipoproteins on a carrier. That is, physical adsorption methods, ionic bonding methods, covalent bonding methods, etc. In order to use the adsorbent according to the present invention for treatment, it is important that the ligand does not detach during sterilization or treatment, so a strong covalent bonding method is preferable. It is desirable to form a bond in a cross-linked manner. Furthermore, a spacer may be introduced between the carrier and the ligand if necessary.

リガンドの固定化量については、リガンドの性状、活性
によシ異なるが、有意のリポ蛋白吸着量を得るにはカラ
ム体積1mβあたりo、o2mダ以上が好ましく、また
経済性を考慮すると100 mFI以下が望ましい。で
らに好ましくは、カラム体積1.Jあたりo、5my以
上20mf以下である。
The amount of immobilized ligand varies depending on the properties and activity of the ligand, but in order to obtain a significant amount of lipoprotein adsorption, it is preferably 0.02 mDa or more per 1 mβ column volume, and from economical considerations, it is 100 mFI or less. is desirable. More preferably, the column volume is 1. o per J, 5 my or more and 20 mf or less.

本発明による吸着体を治療に用いるには種々の方法があ
る。最も簡便な方法としては患者の血液を体外に導出し
て血准バッグ等に貯め、これに本発明の吸着体(粒子)
を混合してLDLを除去した後、フィルターを通して吸
着体(粒子)を除去し血液を患者に戻す方法がある。こ
の方法は複雑な装置を必要としないが、1回の処理量が
少なく治療に時間を要し、操作が煩雑になるという欠点
を有する。次の方法は吸着体をカラムに充填し、体外循
環回路に組み込みオンラインで吸着除去を行なうもので
ある。処理方法には全血を直接がん流する方法と、血液
から血漿を分離した後、血漿をカラムに通す方法がある
。本発明による吸着体は、いずれの方法にも用いること
ができるが、前述のごとくオンライン処理に最も適して
いる。
There are various ways in which the adsorbent according to the invention can be used therapeutically. The simplest method is to draw the patient's blood out of the body and store it in a blood bag, etc., and then apply the adsorbent (particles) of the present invention to this.
There is a method of mixing blood to remove LDL, then passing it through a filter to remove adsorbents (particles), and returning the blood to the patient. Although this method does not require complicated equipment, it has the disadvantages that the amount of treatment per treatment is small, the treatment takes time, and the operation is complicated. The next method is to pack the adsorbent into a column and install it in an extracorporeal circulation circuit to perform online adsorption and removal. There are two processing methods: one in which whole blood is directly passed through the cancer, and the other in which plasma is separated from the blood and then passed through a column. Although the adsorbent according to the invention can be used in either method, it is most suitable for on-line processing as mentioned above.

本発明による吸着体を用いてLDLを除去する際、処理
しようとする血液、あるいは血漿に多価金属イオンを碓
カロすることにより除去効率、選択性を向上させること
が可能である。この目的に用いる多価金属イオンとして
は、カルシウム、マグネシウム、バリウム、ストロンチ
ウム等のアルカリ土類金属イオン、アルミニウム等の■
属元素イオン、マンガン等の■楓元素イオン、コバルト
等の■属元素イオン等があげられる。
When removing LDL using the adsorbent according to the present invention, it is possible to improve the removal efficiency and selectivity by adding polyvalent metal ions to the blood or plasma to be treated. Polyvalent metal ions used for this purpose include alkaline earth metal ions such as calcium, magnesium, barium, and strontium;
Examples include ions of genus elements, ions of genus elements such as manganese, ions of genus elements such as cobalt, and the like.

以下実施例により本発明をさらに詳しく説明する。The present invention will be explained in more detail with reference to Examples below.

参考例 両端に孔径15μmのフィルターを装着したガラス製円
筒カラム(内径9馴、カラム長150m+i)にアガロ
ースゲル(Biorad社製Bioge#A 5 m 
1粒径50〜100メツシュ)、ポリマーハードゲル(
東洋曹達工業■製トヨバールHW65、粒径5o〜10
0μm1およびチッソ■製セルロファインGC−700
、粒径45〜105μm)をそれぞれ均一に充填し、ペ
リスタティックポンプにより水を流し、流量と圧力損失
の関係を求めた。
Reference Example A glass cylindrical column (inner diameter 9 mm, column length 150 m+i) equipped with filters with a pore size of 15 μm at both ends was coated with agarose gel (Biorad Bioge#A 5 m).
1 particle size 50-100 mesh), polymer hard gel (
TOYOBAR HW65 manufactured by Toyo Soda Kogyo ■, particle size 5o~10
0μm1 and Chisso Cellulofine GC-700
, particle size: 45 to 105 μm) were uniformly filled in the tubes, water was flowed through the tubes using a peristaltic pump, and the relationship between flow rate and pressure loss was determined.

結果を]!+1に示す。それによるとポリマーハードゲ
ルが圧力の増加にほぼ比例して流量が増加するのに対し
、アガロースゲルは圧密jヒをひきおこし圧力を増加さ
せても流量が増力口しないことを示している。
Results]! +1. According to this study, the flow rate of polymer hard gel increases almost in proportion to the increase in pressure, whereas the flow rate of agarose gel does not increase even if the pressure is increased by causing compaction.

実施例1 架橋アクリレートゲル(全多孔性の)・−ドゲル)であ
るトヨバールHW55(球状蛋白質の排除限界分子量(
以下蛋白質の排除限界と略称する)700.0(10,
粒径50〜100μm)、)lW60(蛋白質の排除限
界1,000.l[o 、粒径50〜IQOpm)、H
W65(蛋白質の排除限界5.000,000 、粒径
50〜I OOpm )、HW75(蛋白質の排除限界
50.0−00,00(J 、粒径50〜100 tt
m )各10m1に飽QNaOH水溶液6 tJ。
Example 1 Toyovar HW55, a cross-linked acrylate gel (fully porous) (exclusion limit molecular weight of globular protein)
(hereinafter abbreviated as protein exclusion limit) 700.0 (10,
Particle size 50-100μm), )lW60 (protein exclusion limit 1,000.l[o, particle size 50-IQOpm), H
W65 (protein exclusion limit 5.000,000, particle size 50-100pm), HW75 (protein exclusion limit 50.0-00,00 (J, particle size 50-100 tt)
m) 6 tJ of saturated aqueous NaOH solution for each 10 ml.

エピクロルヒドリン15mdを加え撹拌しながら50°
Cで2時間反応しエポキシ化ゲルを得た。このゲルに濃
アンモニア水20 mgを加え50℃で2時間撹拌しア
ミノ基を導入した。
Add 15 md of epichlorohydrin and heat to 50° while stirring.
The mixture was reacted at C for 2 hours to obtain an epoxidized gel. 20 mg of concentrated ammonia water was added to this gel and stirred at 50°C for 2 hours to introduce amino groups.

次ニヘパリン200 mF/をtombの水に溶解しp
H4,5に調整した後、これに3−gの上記アミ7基含
有ゲルを加えた。これ[1−エチル−3−(ジメチルア
ミノプロピル)−カルボジイミド2004 f:pHを
4.5に保ちながら添加し4℃で24時時間表うした。
Next, dissolve niheparin 200 mF/p in the water of the tomb.
After adjusting to H4.5, 3-g of the above gel containing 7 amino groups was added thereto. This [1-ethyl-3-(dimethylaminopropyl)-carbodiimide 2004f] was added while keeping the pH at 4.5, and the mixture was incubated at 4°C for 24 hours.

反応終了後、2モル食塩溶液、0.5モル食塩溶液、水
で洗浄しヘパリン固定化ゲルを得た。固定化されたヘパ
リンの量はそれぞれ2.2mf//ml!、1.8 m
f/ml、1.4 mI/me 。
After the reaction was completed, the gel was washed with a 2 molar salt solution, a 0.5 molar salt solution, and water to obtain a heparin-immobilized gel. The amount of immobilized heparin is 2.2mf//ml each! , 1.8 m
f/ml, 1.4 mI/me.

0、8 mf/mlであった。It was 0.8 mf/ml.

実施例2 硬質セルロース多孔体(全多孔性のハードゲルλセルロ
ファインGC700(チッソ■製、蛋白質の排除限界4
00,000 、粒径45〜105μm)、セルロファ
インA−2(チッソ■H(試作品)、蛋白質の排除限界
700,000.粒径45〜105μm)、セルロファ
インA−3(チッソ(i5IO製(試作品)、蛋白質の
排除限界約50,000,000 、粒径45〜105
μm〕をそれぞれ吸引許過し、各1Of/をとり、これ
l/I:20%NaOHを4y、ヘゲタン12yを加え
、さらにノニオン系界面活性剤TWEEN20を1滴加
え撹拌してゲルを分散させた。40°Cで2時間撹拌後
、これにエピクロルヒドリン5yを加え40℃で2時間
、撹拌した。静置後、上澄みを捨て、ゲルを水洗許過し
てエポキシ化ゲルを得た。これl/il: I 5 m
lの濃アンモニア水を9口え40℃で1.5時間撹拌し
、内容物を吸引濾過、水洗してアミン基の導入されたセ
ルロースゲルを得た。
Example 2 Hard cellulose porous material (fully porous hard gel λ Cellulofine GC700 (manufactured by Chisso ■, protein exclusion limit 4)
00,000, particle size 45-105 μm), Cellulofine A-2 (Chisso ■H (prototype), protein exclusion limit 700,000, particle size 45-105 μm), Cellulofine A-3 (Chisso (made by i5IO) (prototype), protein exclusion limit approximately 50,000,000, particle size 45-105
[μm] were sucked and allowed to take 1Of/l/I: 4y of 20% NaOH and 12y of Hegetane, and then 1 drop of nonionic surfactant TWEEN 20 was added and stirred to disperse the gel. . After stirring at 40°C for 2 hours, epichlorohydrin 5y was added thereto, and the mixture was stirred at 40°C for 2 hours. After standing still, the supernatant was discarded and the gel was washed with water to obtain an epoxidized gel. This l/il: I 5 m
Nine liters of concentrated ammonia water were stirred at 40° C. for 1.5 hours, and the contents were suction filtered and washed with water to obtain a cellulose gel into which amine groups had been introduced.

次にヘパリ/200 mfをr o meの水に溶解し
、こfl、[上記アミノ基含有ゲル3 mlを加えてp
H4,5に調整した。これに1−エチル−3−(ジメチ
ルアミンプロピル)−カルボッイミド200 、、fを
pH4,5K保ちなから添〃口し、4℃で24時時間表
うした。反応終了後、2モル食塩溶液、0.5モル食塩
溶液、水で洗浄しヘパリン固定化ゲルを得た。固定化さ
れたヘバリ/址はそれぞれ2,5m9/、、(1,2,
2my/ml 、  1.8 m’j/m(lであった
Next, dissolve Hepari/200 mf in rome water, add 3 ml of the above amino group-containing gel, and add
Adjusted to H4.5. To this was added 200 ml of 1-ethyl-3-(dimethylaminepropyl)-carboimide, f while maintaining the pH at 4.5K, and the mixture was incubated at 4°C for 24 hours. After the reaction was completed, the gel was washed with a 2 molar salt solution, a 0.5 molar salt solution, and water to obtain a heparin-immobilized gel. The fixed height is 2,5m9/, (1,2,
2 my/ml, 1.8 m'j/m (l).

実施例3 ヘパリンをコンドロイテンポIJ a酸にかえた他は実
施例1と同じ方法でコンドロイチンポリ硫酸固定化トヨ
パールゲルHW65を得た。固定化量は1.2 mf/
meであった。
Example 3 Chondroitin polysulfate-immobilized Toyopearl gel HW65 was obtained in the same manner as in Example 1 except that heparin was replaced with chondroitempo IJa acid. The amount of immobilization is 1.2 mf/
It was me.

実施例4 セルロファイ7A−34yJ’に0.5モルNaIO4
を加えて10.Jとし1時間室温で撹拌後、濾過水洗し
てアルデヒド基を導入した。次にこのゲルをpH8のリ
ン酸緩衝液10m1l中に懸濁し、ジエチルアミン50
 mfを加えて室温で20時間撹拌しP別した。これを
1%NaBH4溶液10.J’中に懸濁し15分間還元
後、戸集、洗浄してアミン基を導入した。
Example 4 0.5 mol NaIO4 in Cellulophy 7A-34yJ'
Add 10. The mixture was stirred at room temperature for 1 hour, filtered and washed with water to introduce an aldehyde group. Next, this gel was suspended in 10 ml of pH 8 phosphate buffer, and 50 ml of diethylamine was added.
mf was added and stirred at room temperature for 20 hours to remove P. Add this to 1% NaBH4 solution 10. After suspension in J' and reduction for 15 minutes, the mixture was collected and washed to introduce an amine group.

次にデキストラン硫酸300 mfを0.25モルNa
IO4溶液10.J[溶解し室温で4時間撹拌後、エチ
レングリコール200 mfを加えて1時間撹拌する。
Next, add 300 mf of dextran sulfate to 0.25 mol Na
IO4 solution 10. J [After dissolving and stirring at room temperature for 4 hours, add 200 mf of ethylene glycol and stir for 1 hour.

この溶液をpH8VC調整した後、上記アミノ基含有ゲ
ルを懸濁し24時間撹拌した。反応終了後、ゲルをp集
、水洗し、これを1%NaBH4溶液10m1l/C懸
濁し15分分間光し、濾過水洗してデキストラン硫酸固
定化セルロースゲルを得た。固定化量は0.5 mf/
mlであった。
After adjusting the pH of this solution to 8VC, the above amino group-containing gel was suspended and stirred for 24 hours. After the reaction, the gel was collected and washed with water, suspended in 10 ml/C of 1% NaBH4 solution, exposed to light for 15 minutes, filtered and washed with water to obtain a dextran sulfate-immobilized cellulose gel. The amount of immobilization is 0.5 mf/
It was ml.

実施例5 実施例1〜4で合成した吸着体各14を試験管にとり、
これに人血漿3 ml! (GaC(120,02M含
有)を加えて撹拌し、20℃で15分間静置後、上澄み
のコレステロール濃度およびLDL (β−リポ蛋白)
童を測定した。結果を表1に示す。
Example 5 Each of 14 adsorbents synthesized in Examples 1 to 4 was placed in a test tube,
This includes 3 ml of human plasma! (GaC (containing 120.02M) was added, stirred, and allowed to stand at 20°C for 15 minutes. The cholesterol concentration and LDL (β-lipoprotein) in the supernatant were
Children were measured. The results are shown in Table 1.

(↓ス下太イつ(↓The bottom is thick

【図面の簡単な説明】[Brief explanation of drawings]

図1は、参考例において各種ゲルを用いて流力と圧力損
失の関係を調べたグラフである。 特許出願人 鐘淵化学工業株式会社 代理人 弁理士  浅 野 真 − 手続補正書(9匍 昭和り3年) 月20口 特許庁長官   若杉和夫 殿  Y、1411、事件
の表示 昭和57年I寺 飾 願第212379号2・発明の名
称   吸 羞 A渉− 3、補正をする者 事件との関係    特許出願人 徨IJ 力X    太阪市北区中之島三丁目2番4号
Mv”しゎh>  ”H)鐘淵化学工業11・式会社代
表者 高1)敞 4、代理人 6、 補正により増加する発明の数 7、補正の対象
FIG. 1 is a graph showing the relationship between flow force and pressure loss using various gels in a reference example. Patent applicant Makoto Asano, agent of Kanebuchi Chemical Industry Co., Ltd., patent attorney - Procedural amendment (9 volumes, 1939), 20 accounts per month, Commissioner of the Japan Patent Office, Kazuo Wakasugi, Y, 1411, Indication of the case, 1982, Idera Kazari Application No. 212379 2. Title of the invention: 3. Relationship with the person making the amendment: Patent applicant: 2-2-4 Nakanoshima, Kita-ku, Osaka Mv “Shiwah>” H) Kanebuchi Chemical Industry 11, representative of the formula company, high school 1) Sho 4, agent 6, number of inventions increased by amendment 7, subject of amendment

Claims (6)

【特許請求の範囲】[Claims] (1)球状蛋白質の排除限界分子量が100万以上1億
以下のポーラスポリマーハードゲルに、リポ蛋白に親和
性を有するポリアニオン化合物を固ボしてなるリポ蛋白
吸着体。
(1) A lipoprotein adsorbent comprising a porous polymer hard gel having an exclusion limit molecular weight of 1,000,000 to 100,000,000 for globular proteins, and a polyanionic compound having an affinity for lipoproteins.
(2)ポーラスポリマーハードゲルが合成高分子からな
る特許請求の範囲第1項記載の吸着体。
(2) The adsorbent according to claim 1, wherein the porous polymer hard gel is made of a synthetic polymer.
(3)ポーラスポリマーハードゲルが多孔質セルロー・
スゲルである特許請求の範囲第1項記載の吸着体。
(3) Porous polymer hard gel is porous cellulose
The adsorbent according to claim 1, which is a gel.
(4)ポリアニオン化合物が硫酸化多糖である特許請求
の範囲第1項記載の吸着体。
(4) The adsorbent according to claim 1, wherein the polyanionic compound is a sulfated polysaccharide.
(5)−硫酸化多糖がヘパリン、デキストラン硫酸、コ
ンドロイチンポリ硫酸から選ばれる少くとも1種である
特許請求の範囲第4項記載の吸着体。
(5) The adsorbent according to claim 4, wherein the sulfated polysaccharide is at least one selected from heparin, dextran sulfate, and chondroitin polysulfate.
(6)  ポリアニオン化合物の固定化量がカラム体積
1m1hだり0.02my以上t o o my以下で
ある特許請求の範囲第1項記載の吸着体。
(6) The adsorbent according to claim 1, wherein the amount of the polyanionic compound immobilized is 0.02 my or more and too my or less per 1 ml of column volume per hour.
JP57212379A 1982-12-02 1982-12-02 Adsorbent body Granted JPS59102436A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP57212379A JPS59102436A (en) 1982-12-02 1982-12-02 Adsorbent body
ZA838908A ZA838908B (en) 1982-12-02 1983-11-30 Absorbent and process for preparing the same
AU21832/83A AU571855B2 (en) 1982-12-02 1983-11-30 Adsorbent for removing harmful substances from blood
CA000442312A CA1221307A (en) 1982-12-02 1983-11-30 Adsorbent and process for preparing the same
AT91115793T ATE195891T1 (en) 1982-12-02 1983-12-01 SORBENT AGENT AND PRODUCTION PROCESS THEREOF
AT87100215T ATE97832T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
US06/557,061 US4576928A (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
DE3382834T DE3382834T3 (en) 1982-12-02 1983-12-01 Sorbent and its production process
DE8383112042T DE3379644D1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
EP91115793A EP0464872B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
EP83112042A EP0110409B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
EP87100215A EP0225867B1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
AT83112042T ATE42222T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
DE87100215T DE3382723T2 (en) 1982-12-02 1983-12-01 Adsorbent and process for its manufacture.
US06/737,880 US4637994A (en) 1982-12-02 1985-05-28 Adsorbent and process for preparing the same
AU12621/88A AU598643B2 (en) 1982-12-02 1988-03-01 Adsorbent and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212379A JPS59102436A (en) 1982-12-02 1982-12-02 Adsorbent body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63249652A Division JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood

Publications (2)

Publication Number Publication Date
JPS59102436A true JPS59102436A (en) 1984-06-13
JPS6256782B2 JPS6256782B2 (en) 1987-11-27

Family

ID=16621591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212379A Granted JPS59102436A (en) 1982-12-02 1982-12-02 Adsorbent body

Country Status (2)

Country Link
JP (1) JPS59102436A (en)
ZA (1) ZA838908B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268355A (en) * 1985-05-23 1986-11-27 Kanegafuchi Chem Ind Co Ltd Lipoprotein adsorbent for external circulation treatment and its preparation
JPS6222658A (en) * 1985-07-23 1987-01-30 旭化成株式会社 Low specific gravity lipoprotein adsorbing apparatus
JP2005315666A (en) * 2004-04-28 2005-11-10 Toshihiko Hanai Sugar bonded filler and its manufacturing method
CN100455349C (en) * 2006-03-28 2009-01-28 南京赛邦医疗用品有限公司 Absorbent for removing low-density lipoprotein by utilizing blood extracorporeal circulation and preparation method thereof
WO2012121073A1 (en) * 2011-03-04 2012-09-13 Dic株式会社 Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525393A (en) * 1975-06-25 1977-01-17 Ajinomoto Kk Production of carboxy alkylation substance
JPS5493689A (en) * 1977-12-02 1979-07-24 Baylor College Medicine Resin of selectively removing antibacterial from bacteria infected sap sample and its use
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel
JPS5812656A (en) * 1981-07-17 1983-01-24 旭化成株式会社 Adsorbing material for treating recirculation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525393A (en) * 1975-06-25 1977-01-17 Ajinomoto Kk Production of carboxy alkylation substance
JPS5493689A (en) * 1977-12-02 1979-07-24 Baylor College Medicine Resin of selectively removing antibacterial from bacteria infected sap sample and its use
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel
JPS5812656A (en) * 1981-07-17 1983-01-24 旭化成株式会社 Adsorbing material for treating recirculation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268355A (en) * 1985-05-23 1986-11-27 Kanegafuchi Chem Ind Co Ltd Lipoprotein adsorbent for external circulation treatment and its preparation
JPH0513697B2 (en) * 1985-05-23 1993-02-23 Kanegafuchi Chemical Ind
JPS6222658A (en) * 1985-07-23 1987-01-30 旭化成株式会社 Low specific gravity lipoprotein adsorbing apparatus
JPH0659309B2 (en) * 1985-07-23 1994-08-10 旭化成工業株式会社 Low specific gravity lipoprotein adsorption device
JP2005315666A (en) * 2004-04-28 2005-11-10 Toshihiko Hanai Sugar bonded filler and its manufacturing method
CN100455349C (en) * 2006-03-28 2009-01-28 南京赛邦医疗用品有限公司 Absorbent for removing low-density lipoprotein by utilizing blood extracorporeal circulation and preparation method thereof
WO2012121073A1 (en) * 2011-03-04 2012-09-13 Dic株式会社 Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses
JP5140211B2 (en) * 2011-03-04 2013-02-06 Dic株式会社 Substrate for removing saccharide-immobilized virus and virus removal instrument

Also Published As

Publication number Publication date
JPS6256782B2 (en) 1987-11-27
ZA838908B (en) 1984-07-25

Similar Documents

Publication Publication Date Title
EP0464872B2 (en) Adsorbent and process for preparing the same
JP5656871B2 (en) Endotoxin sorbent
US5476715A (en) Particulate adsorbent for the removal of biomacromolecules such as LDL and endotoxins from whole blood in extracorporeal circuits
JPH0434451B2 (en)
JP4578405B2 (en) Adsorbent and adsorber for low density lipoprotein and fibrinogen capable of whole blood treatment
JPS59102436A (en) Adsorbent body
JPH0518625B2 (en)
JPS59193135A (en) Adsorbing body
JPS6319214B2 (en)
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JPH01145071A (en) Removal of lipoprotein from blood
JPS59186558A (en) Adsorbing material of self-antibody and/or immunological composite
JPH0339736B2 (en)
JP3157026B2 (en) Adsorbent for blood purification
JP4141224B2 (en) Low density lipoprotein and fibrinogen adsorbent and adsorber thereof
JP4402236B2 (en) Lipoprotein adsorption removal method
JP5250288B2 (en) Method for operating body fluid purification system
JP4837221B2 (en) Adsorbent of cardiac glycoside, adsorption removal method and adsorber
JPH0771632B2 (en) Adsorbent and removal device using the same
JP2726662B2 (en) Adsorbent and removal device using the same
JPH05176994A (en) Low specific gravity lipoprotein adsorbent
JPH035822B2 (en)
JPS6077769A (en) Production of adsorbing body
JPH0513697B2 (en)
JPS62211073A (en) Adsorbent for compliant component